Skip to main content

Modeling Proteolytically Driven Tumor Lymphangiogenesis

  • Chapter
  • First Online:
Systems Biology of Tumor Microenvironment

Abstract

With the exception of a limited number of sites in the body, primary tumors infrequently lead to the demise of cancer patients. Instead, mortality and a significant degree of morbidity result from the growth of secondary tumors in distant organs. Tumor survival, growth and dissemination are associated with the formation of both new blood vessels (angiogenesis) and new lymph vessels (lymphagenesis or lymphangiogenesis). Although intensive research in tumor angiogenesis has been going on for the past four decades, experimental results in tumor lymphangiogenesis began to appear only in the last 10 years. In this chapter we expand the models proposed by Friedman, Lolas and Pepper on tumor lymphangiogenesis mediated by proteolytically and un-proteolytically processed growth factors (Friedman and Lolas G, Math Models Methods Appl Sci 15(01):95–107, 2005; Pepper and Lolas G, Selected topics in cancer modeling: genesis, evolution, immune competition, and therapy. In: The lymphatic vascular system in lymphangiogenesis invasion and metastasis a mathematical approach. Birkhäuser Boston, Boston, pp 1–22, 2008). The variables represent different cell densities and growth factors concentrations, and where possible the parameters are estimated from experimental and clinical data. The results obtained from computational simulations carried out on the model equations produce dynamic heterogeneous (“anarchic”) spatio-temporal solutions. More specifically, we observed coherent masses of tumor clusters migrating around and within the lymphatic network. Our findings are in line with recent experimental evidence that associate cluster formation with the minimization of cell loss favoring high local extracellular matrix proteolysis and thus protecting cancer invading cells from an immunological assault driven by the lymphatic network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedman A, Lolas G (2005) Analysis of a mathematical model of tumor lymphangiogenesis. Math Models Methods Appl Sci 15(01):95–107

    Article  Google Scholar 

  2. Pepper MS, Lolas G (2008) Selected topics in cancer modeling: genesis, evolution, immune competition, and therapy. In: The lymphatic vascular system in lymphangiogenesis invasion and metastasis a mathematical approach. Birkhäuser Boston, Boston, pp 1–22

    Google Scholar 

  3. Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2014) Molecular biology of the cell. Garland, New York

    Google Scholar 

  4. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  5. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458

    Article  CAS  PubMed  Google Scholar 

  6. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  7. Pepper MS (2001) Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res 7(3):462–468

    CAS  PubMed  Google Scholar 

  8. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21): 1182–1186

    Article  CAS  PubMed  Google Scholar 

  9. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257

    Article  CAS  PubMed  Google Scholar 

  10. Plate K (2001) From angiogenesis to lymphangiogenesis. Nat Med 7(2):151–152

    Article  CAS  PubMed  Google Scholar 

  11. Alitalo K, Carmeliet P (2002) Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1(3):219–227

    Article  CAS  PubMed  Google Scholar 

  12. Brown P (2005) Lymphatic system: unlocking the drains. Nature 436(7050):456–458

    Article  CAS  PubMed  Google Scholar 

  13. Holopainen T, Bry M, Alitalo K, Saaristo A (2011) Perspectives on lymphangiogenesis and angiogenesis in cancer. J Surg Oncol 103(6):484–488

    Article  CAS  PubMed  Google Scholar 

  14. Duong T, Koopman P, Francois M (2012) Tumor lymphangiogenesis as a potential therapeutic target. J Oncol 2012:204946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG (2014) Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer 14(3):159–172

    Article  CAS  PubMed  Google Scholar 

  16. Hartveit E (1990) Attenuated cells in breast stroma: the missing lymphatic system of the breast. Histopathology 16(6):533–543

    Article  CAS  PubMed  Google Scholar 

  17. Karkkainen MJ, Makinen T, Alitalo K (2002) Lymphatic endothelium: a new frontier of metastasis research. Nat Cell Biol 4(1):2–5

    Article  CAS  Google Scholar 

  18. Pepper MS, Tille JC, Nisato R, Skobe M (2003) Lymphangiogenesis and tumor metastasis. Cell Tissue Res 314(1):167–177

    Article  CAS  PubMed  Google Scholar 

  19. Nisato RE, Tille JC, Pepper MS (2003) Lymphangiogenesis and tumor metastasis. Thromb Haemost 90(4):591–597

    CAS  PubMed  Google Scholar 

  20. Jussila L, Alitalo K (2002) Vascular growth factors and lymphangiogenesis. Physiol Rev 82(3):673–700

    Article  CAS  PubMed  Google Scholar 

  21. Oliver G, Detmar M (2002) The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev 16(7):773–783

    Article  CAS  PubMed  Google Scholar 

  22. Oliver G (2004) Lymphatic vasculature development. Nat Rev Immunol 4(1):35–45

    Article  CAS  PubMed  Google Scholar 

  23. Schulte-Merker S, Sabine A, Petrova TV (2011) Lymphatic vascular morphogenesis in development, physiology, and disease. J Cell Biol 193(4):607–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reis-Filho JS, Schmitt FC (2003) Lymphangiogenesis in tumors: what do we know? Microsc Res Tech 60(2):171–180

    Article  PubMed  Google Scholar 

  25. Shayan R, Achen MG, Stacker SA (2006) Lymphatic vessels in cancer metastasis: bridging the gaps. Carcinogenesis 27(9):1729–1738

    Article  CAS  PubMed  Google Scholar 

  26. Cao Y (2008) Why and how do tumors stimulate lymphangiogenesis? Lymphat Res Biol 6(3–4):145–148

    Article  PubMed  Google Scholar 

  27. Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476

    Article  CAS  PubMed  Google Scholar 

  28. Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, Alitalo K (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92(8):3566–3570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, Jeltsch M, Jackson DG, Talikka M, Rauvala H, Betsholtz C, Alitalo K (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5(1):74–80

    Article  CAS  PubMed  Google Scholar 

  30. Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N, Alitalo K (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J, 15(2):290–298

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lymboussaki A, Partanen TA, Olofsson B, Thomas-Crusells J, Fletcher CD, de Waal RM, Kaipainen A, Alitalo K (1998) Expression of the vascular endothelial growth factor C receptor VEGFR-3 in lymphatic endothelium of the skin and in vascular tumors. Am J Pathol 153(2):395–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Partanen TA, Paavonen K (2001) Lymphatic versus blood vascular endothelial growth factors and receptors in humans. Microsc Res Tech 55(2):108–121

    Article  CAS  PubMed  Google Scholar 

  33. Su JL, Yen CJ, Chen PS, Chuang SE, Hong CC, Kuo IH, Chen HY, Hung MC, Kuo ML (2007) The role of the VEGF-C/VEGFR-3 axis in cancer progression. Br J Cancer 96(4):541–545

    Article  CAS  PubMed  Google Scholar 

  34. Jackson DG, Prevo R, Clasper S, Banerji S (2001) LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends Immunol 22(6):317–321

    Article  CAS  PubMed  Google Scholar 

  35. Sleeman JP, Krishnan J, Kirkin V, and Baumann P (2001) Markers for the lymphatic endothelium: in search of the holy grail? Microsc Res Tech 55(2):61–69

    Article  CAS  PubMed  Google Scholar 

  36. Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, Jackson DG, Oliver G (2002) An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 21(7):1505–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hong YK, Detmar M (2003) Prox1, master regulator of the lymphatic vasculature phenotype. Cell Tissue Res 314(1):85–92

    Article  PubMed  Google Scholar 

  38. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6):464–478

    Article  CAS  PubMed  Google Scholar 

  39. Ruoslahti E (1996) How cancer spreads. Sci Am 275(3):72–77

    Article  CAS  PubMed  Google Scholar 

  40. Chang L, Kaipainen A, Folkman J (2002) Lymphangiogenesis new mechanisms. Ann N Y Acad Sci 979:111–119

    Article  CAS  PubMed  Google Scholar 

  41. Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, Jackson DG, Nishikawa S, Kubo H, Achen MG (2001) VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 7(2):186–191

    Article  CAS  PubMed  Google Scholar 

  42. Stacker SA, Hughes RA, Achen MG (2004) Molecular targeting of lymphatics for therapy. Curr Pharm Des 10(1):65–74

    Article  CAS  PubMed  Google Scholar 

  43. Achen MG, McColl BK, Stacker SA (2005) Focus on lymphangiogenesis in tumor metastasis. Cancer Cell 7(2):121–127

    Article  CAS  PubMed  Google Scholar 

  44. Achen MG, Stacker SA (2006) Tumor lymphangiogenesis and metastatic spread-new players begin to emerge. Int J Cancer 119(8):1755–1760

    Article  CAS  PubMed  Google Scholar 

  45. Ji RC (2006) Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: new insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev 25(4):677–694

    Article  PubMed  Google Scholar 

  46. Achen MG, Stacker SA (2008) Molecular control of lymphatic metastasis. Ann N Y Acad Sci 1131:225–234

    Article  CAS  PubMed  Google Scholar 

  47. Swartz MA, Skobe M (2001) Lymphatic function, lymphangiogenesis, and cancer metastasis. Microsc Res Tech 55(2):92–99

    Article  CAS  PubMed  Google Scholar 

  48. Podgrabinska S, Braun P, Velasco P, Kloos B, Pepper MS, Skobe M (2002) Molecular characterization of lymphatic endothelial cells. Proc Natl Acad Sci USA 99(25):16069–16074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mehes G, Witt A, Kubista E, Ambros PF (2001) Circulating breast cancer cells are frequently apoptotic. Am J Pathol 159(1):17–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cao R, Ji H, Feng N, Zhang Y, Yang X, Andersson P, Sun Y, Tritsaris K, Hansen AJ, Dissing S, Cao Y (2012) Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis. Proc Natl Acad Sci USA 109(39): 15894–15899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ji H, Cao R, Yang Y, Zhang Y, Iwamoto H, Lim S, Nakamura M, Andersson P, Wang J, Sun Y, Dissing S, He X, Yang X, Cao Y (2014) TNFR1 mediates TNF-α-induced tumour lymphangiogenesis and metastasis by modulating VEGF-C-VEGFR3 signalling. Nat Commun 5:4944

    Article  CAS  PubMed  Google Scholar 

  52. Cao Y (2005) Opinion: emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nat Rev Cancer 5(9):735–743

    Article  CAS  PubMed  Google Scholar 

  53. Le Guen L, Karpanen T, Schulte D, Harris NC, Koltowska K, Roukens G, Bower NI, van Impel A, Stacker SA, Achen MG, Schulte-Merker S, Hogan BM (2014) Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis. Development 141(6):1239–1249

    Article  PubMed  CAS  Google Scholar 

  54. Lolas G (2003) Mathematical modelling of the urokinase plasminogen activation system and its role in cancer invasion of tissue. Ph.D. thesis, Department of Mathematics, University of Dundee

    Google Scholar 

  55. Sidenius N, Blasi F (2003) The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy. Cancer Metastasis Rev 22(2–3):205–222

    Article  CAS  PubMed  Google Scholar 

  56. Chaplain MAJ, Lolas (2006) Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Netw Heterog Media 1(3):399–439

    Google Scholar 

  57. Blasi F, Vassalli JD, DanøK (1987) Urokinase-type plasminogen activator: proenzyme, receptor, and inhibitors. J Cell Biol 104(4):801–804

    Google Scholar 

  58. Shirasuna K, Saka M, Hayashido Y, Yoshioka H, Sugiura T, Matsuya T (1993) Extracellular matrix production and degradation by adenoid cystic carcinoma cells: participation of plasminogen activator and its inhibitor in matrix degradation. Cancer Res 53(1):147–152

    CAS  PubMed  Google Scholar 

  59. Wolf K, Friedl P (2011) Extracellular matrix determinants of proteolytic and non-proteolytic cell migration. Trends Cell Biol 21(12):736–744

    Article  CAS  PubMed  Google Scholar 

  60. Scianna M, Bell CG, Preziosi L (2013) A review of mathematical models for the formation of vascular networks. J Theor Biol 333:174–209

    Article  CAS  PubMed  Google Scholar 

  61. Aznavoorian S, Murphy AN, Stetler-Stevenson WG, Liotta LA (1993) Molecular aspects of tumor cell invasion and metastasis. Cancer 71(4):1368–1383

    Article  CAS  PubMed  Google Scholar 

  62. Wolf K, Friedl P (2009) Mapping proteolytic cancer cell-extracellular matrix interfaces. Clin Exp Metastasis 26(4):289–298

    Article  CAS  PubMed  Google Scholar 

  63. McCarthy JB, Palm SL, Furcht LT (1983) Migration by haptotaxis of a Schwann cell tumor line to the basement membrane glycoprotein laminin. J Cell Biol 97(3):772–777

    Article  CAS  PubMed  Google Scholar 

  64. McCarthy JB, Furcht LT (1984) Laminin and fibronectin promote the haptotactic migration of B16 mouse melanoma cells in vitro. J Cell Biol 98(4):1474–1480

    Article  CAS  PubMed  Google Scholar 

  65. McCarthy JB, Hagen ST, Furcht LT (1986) Human fibronectin contains distinct adhesion- and motility-promoting domains for metastatic melanoma cells. J Cell Biol 102(1):179–188

    Article  CAS  PubMed  Google Scholar 

  66. Taraboletti G, Roberts DD, Liotta LA (1987) Thrombospondin-induced tumor cell migration: haptotaxis and chemotaxis are mediated by different molecular domains. J Cell Biol 105(5):2409–2415

    Article  CAS  PubMed  Google Scholar 

  67. Aznavoorian S, Stracke ML, Krutzsch H, Schiffmann E, Liotta LA (1990) Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells. J. Cell Biol 110(4):1427–1438

    Article  CAS  PubMed  Google Scholar 

  68. Aznavoorian S, Stracke ML, Parsons J, McClanahan J, Liotta LA (1996) Integrin alphavbeta3 mediates chemotactic and haptotactic motility in human melanoma cells through different signaling pathways. J Biol Chem 271(6):3247–3254

    Article  CAS  PubMed  Google Scholar 

  69. Carter SB (1967) Haptotaxis and the mechanism of cell motility. Nature 213(5073):256–260

    Article  CAS  PubMed  Google Scholar 

  70. Carter SB (1965) Principles of cell motility: the direction of cell movement and cancer invasion. Nature 208(5016):1183–1187

    Article  CAS  PubMed  Google Scholar 

  71. Andreasen PA, Kjøller L, Christensen L, Duffy MJ (1997) The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 72(1):1–22

    Article  CAS  PubMed  Google Scholar 

  72. Andreasen PA, Egelund R, and Petersen HH (2000) The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci 57(1):25–40

    Article  CAS  PubMed  Google Scholar 

  73. Wiig H, Keskin D, Kalluri R (2010) Interaction between the extracellular matrix and lymphatics: consequences for lymphangiogenesis and lymphatic function. Matrix Biol 29(8):645–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Makinen T, Veikkola T, Mustjoki S, Karpanen T, Catimel B, Nice EC, Wise L, Mercer A, Kowalski H, Kerjaschki D, Stacker SA, Achen MG, Alitalo K (2001) Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 20(17):4762–4773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Helm CL, Fleury ME, Zisch AH, Boschetti F, Swartz MA (2005) Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc Natl Acad Sci USA 102(44): 15779–15784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rutkowski JM, Swartz MA (2007) A driving force for change: interstitial flow as a morphoregulator. Trends Cell Biol 17(1):44–50

    Article  CAS  PubMed  Google Scholar 

  77. Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA (2007) Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11(6):526–538

    Article  CAS  PubMed  Google Scholar 

  78. Kodama M, Kitadai Y, Tanaka M, Kuwai T, Tanaka S, Oue N, Yasui W, Chayama K (2008) Vascular endothelial growth factor C stimulates progression of human gastric cancer via both autocrine and paracrine mechanisms. Clin Cancer Res 14(22):7205–7214

    Article  CAS  PubMed  Google Scholar 

  79. Oh SJ, Jeltsch MM, Birkenhager R, McCarthy JE, Weich HA, Christ B, Alitalo K, Wilting J (1997) VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev Biol 188(1):96–109

    Article  CAS  PubMed  Google Scholar 

  80. Joukov V, Sorsa T, Kumar V, Jeltsch M, Claesson-Welsh L, Cao Y, Saksela O, Kalkkinen N, Alitalo K (1997) Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J 16(13):3898–3911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McColl BK, Baldwin ME, Roufail S, Freeman C, Moritz RL, Simpson RJ, Alitalo K, Stacker SA, Achen MG (2003) Plasmin activates the lymphangiogenic growth factors VEGF-C and VEGF-D. J Exp Med 198(6):863–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Harris NC, Paavonen K, Davydova N, Roufail S, Sato T, Zhang YF, Karnezis T, Stacker SA, Achen MG (2011) Proteolytic processing of vascular endothelial growth factor-D is essential for its capacity to promote the growth and spread of cancer. FASEB J 25(8):2615–2625

    Article  CAS  PubMed  Google Scholar 

  83. Harris NC, Achen MG (2014) The proteolytic activation of angiogenic and lymphangiogenic growth factors in cancer–its potential relevance for therapeutics and diagnostics. Curr Med Chem 21(16):1821–1842

    Article  CAS  PubMed  Google Scholar 

  84. Oh CW, Hoover-Plow J, Plow EF (2003) The role of plasminogen in angiogenesis in vivo. J Thromb Haemost 1(8):1683–1687

    Article  CAS  PubMed  Google Scholar 

  85. Pepper MS, Mandriota SJ, Jeltsch M, Kumar V, Alitalo K (1998) Vascular endothelial growth factor (VEGF)-C synergizes with basic fibroblast growth factor and VEGF in the induction of angiogenesis in vitro and alters endothelial cell extracellular proteolytic activity. J Cell Physiol 177(3):439–452

    Article  CAS  PubMed  Google Scholar 

  86. Pepper MS, Ferrara N, Orci L, Montesano R (1991) Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem Biophys Res Commun 181(2):902–906

    Article  CAS  PubMed  Google Scholar 

  87. Pepper MS, Wasi S, Ferrara N, Orci L, Montesano R (1994) In vitro angiogenic and proteolytic properties of bovine lymphatic endothelial cells. Exp Cell Res 210(2):298–305

    Article  CAS  PubMed  Google Scholar 

  88. Tille JC, Wang X, Lipson KE, McMahon G, Ferrara N, Zhu Z, Hicklin DJ, Sleeman JP, Eriksson U, Alitalo K, Pepper MS (2003) Vascular endothelial growth factor (VEGF) receptor-2 signaling mediates VEGF-C(deltaNdeltaC)- and VEGF-A-induced angiogenesis in vitro. Exp Cell Res 285(2):286–298

    Article  CAS  PubMed  Google Scholar 

  89. Chaplain MAJ, Lolas G (2005) Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system. Math Models Methods Appl Sci 15(11):1685–1734. dc.publisher: World Scientific

    Google Scholar 

  90. Bray D (2000) Cell movements: from molecules to motility. Garland Science, New York

    Google Scholar 

  91. Orme ME, Chaplain MA (1997) Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. IMA J Math Appl Med Biol 14(3):189–205

    Article  CAS  PubMed  Google Scholar 

  92. Anderson AR, Chaplain MA (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60(5):857–899

    Article  CAS  PubMed  Google Scholar 

  93. Chaplain MAJ, Lolas G (2005) Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system. Math Models Methods Appl Sci 15(11):1685–1734

    Article  CAS  Google Scholar 

  94. Del Monte U (2009) Does the cell number 10(9) still really fit one gram of tumor tissue? Cell Cycle 8(3):505–506

    Article  PubMed  Google Scholar 

  95. Mochan E and Keler T (1984) Plasmin degradation of cartilage proteoglycan. Biochim. Biophys. Acta 800(3):312–315

    Article  CAS  PubMed  Google Scholar 

  96. Haessler U, Pisano M, Wu M, Swartz MA (2011) Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19. Proc Natl Acad Sci USA 108(14):5614–5619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Stacker SA, Stenvers K, Caesar C, Vitali A, Domagala T, Nice E, Roufail S, Simpson RJ, Moritz R, Karpanen T, Alitalo K, Achen MG (1999) Biosynthesis of vascular endothelial growth factor-D involves proteolytic processing which generates non-covalent homodimers. J Biol Chem 274(45):32127–32136

    Article  CAS  PubMed  Google Scholar 

  98. Yonemura Y, Endo Y, Tabata K, Kawamura T, Yun HY, Bandou E, Sasaki T, Miura M (2005) Role of VEGF-C and VEGF-D in lymphangiogenesis in gastric cancer. Int J Clin Oncol 10(5):318–327

    Article  CAS  PubMed  Google Scholar 

  99. Issa A, Le TX, Shoushtari AN, Shields JD, Swartz MA (2009) Vascular endothelial growth factor-C and C-C chemokine receptor 7 in tumor cell-lymphatic cross-talk promote invasive phenotype. Cancer Res 69(1):349–357

    Article  CAS  PubMed  Google Scholar 

  100. Tissot JD, Schneider P, Hauert J, Ruegg M, Kruithof EK, Bachmann F (1982) Isolation from human plasma of a plasminogen activator identical to urinary high molecular weight urokinase. J Clin Invest 70(6):1320–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wun TC, Schleuning WD, Reich E (1982) Isolation and characterization of urokinase from human plasma. J Biol Chem 257(6):3276–3283

    CAS  PubMed  Google Scholar 

  102. Vassalli JD, Baccino D, Belin D (1985) A cellular binding site for the Mr 55,000 form of the human plasminogen activator, urokinase. J Cell Biol 100(1):86–92

    Article  CAS  PubMed  Google Scholar 

  103. Markus G, Camiolo SM, Kohga S, Madeja JM, Mittelman A (1983) Plasminogen activator secretion of human tumors in short-term organ culture, including a comparison of primary and metastatic colon tumors. Cancer Res 43(11):5517–5525

    CAS  PubMed  Google Scholar 

  104. Barlow GH (1976) Proteolytic enzymes, part B (methods in enzymology). Academic Press, New York

    Google Scholar 

  105. Ellis V (1996) Functional analysis of the cellular receptor for urokinase in plasminogen activation. Receptor binding has no influence on the zymogenic nature of pro-urokinase. J Biol Chem 271(25):14779–14784

    CAS  PubMed  Google Scholar 

  106. Wu HL, Shi GY, and Bender ML (1987) Preparation and purification of microplasmin. Proc Natl Acad Sci USA 84(23):8292–8295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sherratt JA, Murray JD (1990) Models of epidermal wound healing. Proc Biol Sci 241(1300):29–36

    Article  CAS  PubMed  Google Scholar 

  108. Stokes CL, Lauffenburger DA, Williams SK (1991) Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J Cell Sci 99(Pt 2):419–430

    PubMed  Google Scholar 

  109. Robbins KC, Summaria L, Elwyn D, Barlow GH (1965) Further studies on the purification and characterization of human plasminogen and plasmin. J Biol Chem 240:541–550

    CAS  PubMed  Google Scholar 

  110. Fleury ME, Boardman KC, Swartz MA (2006) Autologous morphogen gradients by subtle interstitial flow and matrix interactions. Biophys J 91(1):113–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chaplain MA (1995) The mathematical modelling of tumour angiogenesis and invasion. Acta Biotheor 43(4):387–402

    Article  CAS  PubMed  Google Scholar 

  112. Chaplain MAJ, Giles SM, Sleeman BD, Jarvis RJ (1995) A mathematical analysis of a model for tumor angiogenesis. J Math Biol 33: 744–770

    Article  CAS  PubMed  Google Scholar 

  113. White WF, Barlow GH, Mozen MM (1966) The isolation and characterization of plasminogen activators (urokinase) from human urine. Biochemistry 5(7):2160–2169

    Article  CAS  PubMed  Google Scholar 

  114. Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, Kamm RD, Chung S (2012) Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nat Protoc 7(7):1247–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yu W, Kim J, Ossowski L (1997) Reduction in surface urokinase receptor forces malignant cells into a protracted state of dormancy. J Cell Biol 137(3):767–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Stokes CL, Lauffenburger DA (1991) Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J Theor Biol 152(3):377–403

    Article  CAS  PubMed  Google Scholar 

  117. Chaplain MAJ (1996) Avascular growth, angiogenesis and vascular growth in solid ttumour: the mathematical modelling of the stages of tumour development. Math Comput Model 23(6):47–87

    Article  Google Scholar 

  118. Leak LV, Jones M (1993) Lymphatic endothelium isolation, characterization and long-term culture. Anat Rec 236(4):641–652

    Article  CAS  PubMed  Google Scholar 

  119. Nguyen VP, Chen SH, Trinh J, Kim H, Coomber BL, Dumont DJ (2007) Differential response of lymphatic, venous and arterial endothelial cells to angiopoietin-1 and angiopoietin-2. BMC Cell Biol 8:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Park JE, Keller GA, Ferrara N (1993) The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 4(12):1317–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Weich HA, Bando H, Brokelmann M, Baumann P, Toi M, Barleon B, Alitalo K, Sipos B, Sleeman J (2004) Quantification of vascular endothelial growth factor-C (VEGF-C) by a novel ELISA. J Immunol Methods 285(2):145–155

    Article  CAS  PubMed  Google Scholar 

  122. Bocci G, Fasciani A, Danesi R, Viacava P, Genazzani AR, Del Tacca M (2001) In-vitro evidence of autocrine secretion of vascular endothelial growth factor by endothelial cells from human placental blood vessels. Mol Hum Reprod 7(8):771–777

    Article  CAS  PubMed  Google Scholar 

  123. Bianchi A, Painter KJ, Sherratt JA (2015) A mathematical model for lymphangiogenesis in normal and diabetic wounds. J Theor Biol 383:61–86

    Article  CAS  PubMed  Google Scholar 

  124. Imoukhuede PI, Dokun AO, Annex BH, Popel AS (2013) Endothelial cell-by-cell profiling reveals the temporal dynamics of VEGFR1 and VEGFR2 membrane localization after murine hindlimb ischemia. Am J Physiol Heart Circ Physiol 304(8):H1085–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Baldwin ME, Catimel B, Nice EC, Roufail S, Hall NE, Stenvers KL, Karkkainen MJ, Alitalo K, Stacker SA, and Achen MG (2001) The specificity of receptor binding by vascular endothelial growth factor-d is different in mouse and man. J Biol Chem 276(22):19166–19171

    Article  CAS  PubMed  Google Scholar 

  126. Bando H, Brokelmann M, Toi M, Alitalo K, Sleeman JP, Sipos B, Grone HJ, Weich HA (2004) Immunodetection and quantification of vascular endothelial growth factor receptor-3 in human malignant tumor tissues. Int J Cancer 111(2):184–191

    Article  CAS  PubMed  Google Scholar 

  127. Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A, Adams S, Davy A, Deutsch U, Luthi U, Barberis A, Benjamin LE, Makinen T, Nobes CD, Adams RH (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465(7297):483–486

    Article  CAS  PubMed  Google Scholar 

  128. Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson DG, Orci L, Alitalo K, Christofori G, Pepper MS (2001) Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20(4):672–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Enholm B, Paavonen K, Ristimaki A, Kumar V, Gunji Y, Klefstrom J, Kivinen L, Laiho M, Olofsson B, Joukov V, Eriksson U, Alitalo K (1997) Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 14(20):2475–2483

    Article  CAS  PubMed  Google Scholar 

  130. Ristimaki A, Narko K, Enholm B, Joukov V, Alitalo K (1998) Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J Biol Chem 273(14):8413–8418

    Article  CAS  PubMed  Google Scholar 

  131. Atkins P, De Paula J (2006) Physical chemistry, 8th edn. Oxford University Press, Oxford

    Google Scholar 

  132. Estreicher A, Muhlhauser J, Carpentier JL, Orci L, Vassalli JD (1990) The receptor for urokinase type plasminogen activator polarizes expression of the protease to the leading edge of migrating monocytes and promotes degradation of enzyme inhibitor complexes. J Cell Biol 111(2):783–792

    Article  CAS  PubMed  Google Scholar 

  133. Stoppelli MP, Corti A, Soffientini A, Cassani G, Blasi F, Assoian RK (1985) Differentiation-enhanced binding of the amino-terminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes. Proc Natl Acad Sci USA 82(15):4939–4943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bajpai A, Baker JB (1985) Cryptic urokinase binding sites on human foreskin fibroblasts. Biochem Biophys Res Commun 133(2):475–482

    Article  CAS  PubMed  Google Scholar 

  135. Barnathan ES, Kuo A, Rosenfeld L, Kariko K, Leski M, Robbiati F, Nolli ML, Henkin J, Cines DB (1990) Interaction of single-chain urokinase-type plasminogen activator with human endothelial cells. J Biol Chem 265(5):2865–2872

    CAS  PubMed  Google Scholar 

  136. Sillaber C, Baghestanian M, Hofbauer R, Virgolini I, Bankl HC, Fureder W, Agis H, Willheim M, Leimer M, Scheiner O, Binder BR, Kiener HP, Bevec D, Fritsch G, Majdic O, Kress HG, Gadner H, Lechner K, Valent P (1997) Molecular and functional characterization of the urokinase receptor on human mast cells. J Biol Chem 272(12):7824–7832

    Article  CAS  PubMed  Google Scholar 

  137. Olson D, Pollanen J, Høyer-Hansen G, Rønne E, Sakaguchi K, Wun TC, Appella E, Danø K, Blasi F (1992) Internalization of the urokinase-plasminogen activator inhibitor type-1 complex is mediated by the urokinase receptor. J Biol Chem 267(13):9129–9133

    CAS  PubMed  Google Scholar 

  138. Mignatti P, Mazzieri R, Rifkin DB (1991) Expression of the urokinase receptor in vascular endothelial cells is stimulated by basic fibroblast growth factor. J Cell Biol 113(5):1193–1201

    Article  CAS  PubMed  Google Scholar 

  139. Grover WH, Bryan AK, Diez-Silva M, Suresh S, Higgins JM, Manalis SR (2011) Measuring single-cell density. Proc Natl Acad Sci USA 108(27):10992–10996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Camiolo SM, Markus G, Englander LS, Siuta MR, Hobika GH, Kohga S (1984) Plasminogen activator content and secretion in explants of neoplastic and benign human prostate tissues. Cancer Res 44(1):311–318

    CAS  PubMed  Google Scholar 

  141. Harvey SR, Lawrence DD, Madeja JM, Abbey SJ, Markus G (1988) Secretion of plasminogen activators by human colorectal and gastric tumor explants. Clin Exp Metastasis 6(6):431–450

    Article  CAS  PubMed  Google Scholar 

  142. Werb Z, Bainton DF, Jones PA (1980) Degradation of connective tissue matrices by macrophages. III. Morphological and biochemical studies on extracellular, pericellular, and intracellular events in matrix proteolysis by macrophages in culture. J Exp Med 152(6):1537–1553

    Article  CAS  PubMed  Google Scholar 

  143. Allen LE, Dubeau L, Alvarez O, Jones PA (1990) Rapid degradation of extracellular matrix proteins by normal human uroepithelial cells. Cancer Res 50(6):1897–1904

    CAS  PubMed  Google Scholar 

  144. Jones PA, Werb Z (1980) Degradation of connective tissue matrices by macrophages. II. Influence of matrix composition on proteolysis of glycoproteins, elastin, and collagen by macrophages in culture. J Exp Med 152(6):1527–1536

    Article  CAS  PubMed  Google Scholar 

  145. Pins GD, Collins-Pavao ME, Van De Water L, Yarmush ML, Morgan JR (2000) Plasmin triggers rapid contraction and degradation of fibroblast-populated collagen lattices. J Invest Dermatol 114(4):647–653

    Article  PubMed  Google Scholar 

  146. Jones PA, Scott-Burden T, Gevers W (1979) Glycoprotein, elastin, and collagen secretion by rat smooth muscle cells. Proc Natl Acad Sci USA 76(1):353–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Miyashita C, Wenzel E, Heiden M (1988) Plasminogen: a brief introduction into its biochemistry and function. Haemostasis 18(1):7–13

    CAS  PubMed  Google Scholar 

  148. Skeel RD, Berzins M (1990) A method for the spatial discretization of parabolic equations in one space variable. SIAM J Sci Stat Comput 11(1): 1–32

    Article  Google Scholar 

  149. Kramer RH, Bensch KG, Wong J (1986) Invasion of reconstituted basement membrane matrix by metastatic human tumor cells. Cancer Res 46(4 Pt 2):1980–1989

    CAS  PubMed  Google Scholar 

  150. Fidler IJ (1978) Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res 38(9):2651–2660

    CAS  PubMed  Google Scholar 

  151. Friedl P, Noble PB, Walton PA, Laird DW, Chauvin PJ, Tabah RJ, Black M, Zanker KS (1995) Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Cancer Res 55(20):4557–4560

    CAS  PubMed  Google Scholar 

  152. Friedl P, Brocker EB (2000) The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol Life Sci 57(1):41–64

    Article  CAS  PubMed  Google Scholar 

  153. Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, Yu M, Pely A, Engstrom A, Zhu H, Brannigan BW, Kapur R, Stott SL, Shioda T, Ramaswamy S, Ting DT, Lin CP, Toner M, Haber DA, Maheswaran S (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158(5):1110–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kolega J (1981) The movement of cell clusters in vitro: morphology and directionality. J Cell Sci 49:15–32

    CAS  PubMed  Google Scholar 

  155. Liotta LA, Saidel MG, Kleinerman J (1976) The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res 36(3): 889–894

    CAS  PubMed  Google Scholar 

  156. Menashi S, Dehem M, Souliac I, Legrand Y, Fridman R (1998) Density-dependent regulation of cell-surface association of matrix metalloproteinase-2 (MMP-2) in breast-carcinoma cells. Int J Cancer 75(2):259–265

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Lolas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lolas, G., Jensen, L., Bourantas, G.C., Tsikourkitoudi, V., Syrigos, K. (2016). Modeling Proteolytically Driven Tumor Lymphangiogenesis. In: Rejniak, K. (eds) Systems Biology of Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 936. Springer, Cham. https://doi.org/10.1007/978-3-319-42023-3_6

Download citation

Publish with us

Policies and ethics