Skip to main content

Yeast Polyphosphatases PPX1 and PPN1: Properties, Functions, and Localization

  • Chapter
  • First Online:
Inorganic Polyphosphates in Eukaryotic Cells

Abstract

The PPX1 and PPN1 genes of Saccharomyces cerevisiae encode the enzymes that hydrolyze inorganic polyphosphates (polyP) of different chain lengths including tripolyphosphate. They are divalent metal ion dependent. PPX1 is an exopolyphosphatase splitting Pi from polyP chain end. PPN1 displays exopolyphosphatase and endopolyphosphatase activities in the presence of cobalt and magnesium ions, respectively. PPN1 prefers long-chain polyP, while PPX1 prefers short-chain polyP. Commonly, PPX1 is localized in the cytoplasm and mitochondrial matrix, while PPN1 is localized in the vacuoles, nuclei, and mitochondrial membrane. PPN1 appears in the cytoplasm at the early growth stage under phosphate excess. The PPX1 or PPN1 knockouts increase polyP content in S. cerevisiae. ΔPPN1 mutants contain polyP with longer chains, while ΔPPX1 does not demonstrate polyP chain elongation. PPX1 overexpression has no effect on polyP content and chain length. In turn, PPN1 overexpression decreases polyP content. Both PPX1 and PPN1 catalyze the same reaction, but there is no similarity between the amino acid sequences of these enzymes. Furthermore, the human ortholog of PPX1, the prune protein, has an exopolyphosphatase activity, but neither functional nor structural homologs of PPN1 have been found in higher eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andreeva NA, Okorokov LA (1993) Purification and characterization of highly active and stable polyphosphatase from Saccharomyces cerevisiae cell envelope. Yeast 9:127–139

    Article  CAS  PubMed  Google Scholar 

  • Andreeva NA, Okorokov LA, Kulaev IS (1990) Purification and certain properties of cell envelope polyphosphatase of the yeast Saccharomyces carlsbergensis. Biochemistry (Mosc) 55:819–826

    Google Scholar 

  • Andreeva NA, Kulakovskaya TV, Kulaev IS (1996) Purification and characterization of polyphosphatase from Saccharomyces cerevisiae cytosol. Biochemistry (Mosc) 61:1213–1220

    Google Scholar 

  • Andreeva NA, Kulakovskaya TV, Kulaev IS (1998) Purification and properties of exopolyphosphatase isolated from Saccharomyces cerevisiae vacuoles. FEBS Lett 429:194–196

    Article  CAS  PubMed  Google Scholar 

  • Andreeva NA, Kulakovskaya TV, Kulaev IS (2001) Two exopolyphosphatases of the cytosol of the yeast S. cerevisiae: comparative characteristics. Biochemistry (Mosc) 66:147–153

    Article  CAS  Google Scholar 

  • Andreeva NA, Kulakovskaya TV, Kulaev IS (2004) Purification and properties of exopolyphosphatase from the cytosol of Saccharomyces cerevisiae not encoded by the PPX1 gene. Biochemistry (Mosc) 69:387–393

    Article  CAS  Google Scholar 

  • Andreeva NA, Kulakovskaya TV, Kulaev IS (2006) High molecular mass exopolyphosphatase from the cytosol of the yeast Saccharomyces cerevisiae is encoded by the PPN1 gene. Biochemistry (Mosc) 71:975–977

    Article  CAS  Google Scholar 

  • Andreeva NA, Kulakovskaya TV, Kulakovskaya EV et al (2008) Polyphosphates and exopolyphosphatases in cytosol and mitochondria of Saccharomyces cerevisiae during growth on glucose or ethanol under phosphate surplus. Biochemistry (Mosc) 73:65–69

    Article  CAS  Google Scholar 

  • Andreeva N, Trilisenko L, Eldarov M et al (2015a) Polyphosphatase PPN1 of Saccharomyces cerevisiae: switching of exopolyphosphatase and endopolyphosphatase activities. PLoS One 10(3):e0119594. doi:10.1371/journal.pone.0119594

    Article  PubMed  PubMed Central  Google Scholar 

  • Andreeva N, Trilisenko L, Kulakovskaya T et al (2015b) Purification and properties of recombinant exopolyphosphatase PPN1 and effects of its overexpression on polyphosphate in Saccharomyces cerevisiae. J Biosci Bioeng 119:52–56

    Article  CAS  PubMed  Google Scholar 

  • Carotenuto M, De Antonellis P, Liguori L et al (2014) H-Prune through GSK-3β interaction sustains canonical WNT/β-catenin signaling enhancing cancer progression in NSCLC. Oncotarget 5:5736–5749

    Article  PubMed  PubMed Central  Google Scholar 

  • Cunningham F, Amode MR, Barrell D et al (2015) Ensembl 2015. Nucleic Acids Res 43(Database issue):D662–D669. doi:10.1093/nar/gku1010

    Article  PubMed  Google Scholar 

  • Duan RD (2006) Alkaline sphingomyelinase: an old enzyme with novel implications. Biochim Biophys Acta 1761:281–291

    Article  CAS  PubMed  Google Scholar 

  • Eldarov MA, Baranov MV, Dumina MV et al (2013) Polyphosphates and exopolyphosphatase activities in the yeast Saccharomyces cerevisiae under overexpression of homologous and heterologous PPN1 genes. Biochemistry (Mosc) 78:946–953

    Article  CAS  Google Scholar 

  • Forrest ARR, Kawaji H, Rehli M et al (2014) A promoter-level mammalian expression atlas. Nature 507:462–470. doi:10.1038/nature13182

    Article  CAS  PubMed  Google Scholar 

  • Galasso A, Zollo M (2009) The Nm23-H1–h-Prune complex in cellular physiology: a ‘tip of the iceberg’ protein network perspective. Mol Cell Biochem 329:149–159

    Article  CAS  PubMed  Google Scholar 

  • Goujon M, McWilliam H, Li W et al (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38(Web Server issue):W695–W699. doi:10.1093/nar/gkq313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guranowski A, Starzynska E, Barnes LD et al (1998) Adenosine 5′-tetraphosphate phosphohydrolase activity is an inherent property of soluble exopolyphosphatase from Saccharomyces cerevisiae. Biochem Biophys Acta 1380:232–238

    Article  CAS  PubMed  Google Scholar 

  • Kitasato T (1928) Über Metaphosphatase. Biochem Z 197:251–258

    Google Scholar 

  • Kritsky MS, Chernysheva EK, Kulaev IS (1972) Polyphosphate depolymerase activity in cells of the fungus Neurospora crassa (in Russian). Biokhimiya 37:983–990

    Google Scholar 

  • Kulaev IS, Vagabov VM, Kulakovskaya TV (2004) The biochemistry of inorganic polyphosphates. Wiley, Chichester

    Book  Google Scholar 

  • Kulakovskaya TV, Andreeva NA, Kulaev IS (1997) Adenosine-5′-tetraphosphate and guanosine-5′-tetraphosphate–new substrates of the cytosol exopolyphosphatase of Saccharomyces cerevisiae. Biochemistry (Mosc) 62:1180–1184

    Google Scholar 

  • Kulakovskaya TV, Andreeva NA, Karpov AV et al (1999) Hydrolysis of tripolyphosphate by purified exopolyphosphatase of Saccharomyces cerevisiae cytosol: kinetic model. Biochemistry (Mosc) 64:990–993

    CAS  Google Scholar 

  • Kulakovskaya TV, Andreeva NA, Trilisenko LV et al (2004) Two exopolyphosphatases in Saccharomyces cerevisiae cytosol at different culture conditions. Proc Biochem 39:1625–1630

    Article  CAS  Google Scholar 

  • Kulakovskaya TV, Trilisenko LV, Lichko LP et al (2006) The effect of inactivation of the exo-and endopolyphosphatase genes PPX1 and PPN1 on the level of different polyphosphates in the yeast Saccharomyces cerevisiae. Microbiology (Transl Mikrobiol, Russ) 75:25–28

    CAS  Google Scholar 

  • Lichko LP, Kulakovskaya TV, Kulaev IS (1998) Membrane-bound and soluble polyphosphatases of mitochondria of Saccharomycres cerevisiae: identification and comparative characterization. Biochim Biophys Acta 1372:153–162

    Article  CAS  PubMed  Google Scholar 

  • Lichko LP, Kulakovskaya TV, Kulaev IS (2000) Purification and characterization of a soluble polyphosphatase from mitochondria of Saccharomyces cerevisiae. Biochemistry (Mosc) 65:355–361

    CAS  Google Scholar 

  • Lichko LP, Andreeva NA, Kulakovskaya TV et al (2003) Exopolyphosphatases of the yeast Saccharomyces cerevisiae. FEMS Yeast Res 3:233–238

    Article  CAS  PubMed  Google Scholar 

  • Lichko LP, Kulakovskaya TV, Kulaev IS (2004a) Partial purification and characterization of nuclear exopolyphosphatase from Saccharomyces cerevisiae strain with inactivated PPX1 gene encoding a major yeast exopolyphosphatase. Biochemistry (Mosc) 69:270–274

    Article  CAS  Google Scholar 

  • Lichko L, Kulakovskaya T, Kulaev I (2004b) Inactivation of endopolyphosphatase gene PPN1 results in inhibition of expression of exopolyphosphatase PPX1 and high-molecular-mass exopolyphosphatase not encoded by PPX1 in Saccharomyces cerevisiae. Biochim Biophys Acta 1674:98–102

    Article  CAS  PubMed  Google Scholar 

  • Lichko L, Kulakovskaya T, Pestov N et al (2006) Inorganic polyphosphates and exopolyphosphatases in cell compartments of the yeast Saccharomyces cerevisiae under inactivation of PPX1 and PPN1 genes. Biosci Rep 26:45–54

    Article  CAS  PubMed  Google Scholar 

  • Lichko LP, Kulakovskaya TV, Kulakovskaya EV et al (2008) Inactivation of PPX1 and PPN1 genes encoding exopolyphosphatases of Saccharomyces cerevisiae does not prevent utilization of polyphosphates as phosphate reserve. Biochemistry (Mosc) 73:985–999

    Article  CAS  Google Scholar 

  • Lichko LP, Kulakovskaya TV, Kulaev IS (2010) Properties of partially purified endopolyphosphatase of the yeast Saccharomyces cerevisiae. Biochemistry (Mosc) 75:1404–1407

    Article  CAS  Google Scholar 

  • Lichko LP, MA Eldarov MA, MV Dumina MV et al (2014) PPX1 gene overexpression has no influence on polyphosphates in Saccharomyces cerevisiae. Biochemistry (Mosc) 79:1211–1215

    Article  CAS  Google Scholar 

  • Lonetti A, Szijgyarto Z, Bosch D et al (2011) Identification of an evolutionarily conserved family of inorganic polyphosphate endopolyphosphatases. J Biol Chem 286:31966–31974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malmgren H (1952) Enzymatic breackdown of polymetaphosphate. V. Purification and specificity of the enzyme. Acta Chem Scand 6:16–26

    Article  CAS  Google Scholar 

  • Marchler-Bauer A, Derbyshire MK, Gonzales et al (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43(Database issue):D222–D226. doi:10.1093/nar/gku1221

    Article  PubMed  Google Scholar 

  • Marino N, Marchall JP, Steeg P (2011) Protein-protein interactions a mechanism regulating the antimetastatic properties of Nm23-H1. Naunyn-Schmiedeberg’s Arch Pharmacol 384:351–362

    Article  CAS  Google Scholar 

  • Pestov NA, Kulakovskaya TV, Kulaev IS (2005) Effects of inactivation of the PPN1 gene on exopolyphosphatases, inorganic polyphosphates and function of mitochondria in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 5:823–828

    Article  CAS  PubMed  Google Scholar 

  • Sethuraman A, Rao NN, Kornberg A (2001) The endopolyphosphatase gene: essential in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 98:8542–8547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X, Kornberg A (2005) Endopolyphosphatase in Saccharomyces cerevisiae undergoes post-translational activations to produce short-chain polyphosphates. FEBS Lett 579:2014–2018

    Article  CAS  PubMed  Google Scholar 

  • Tammenkoski M, Moiseev VM, Lahti M et al (2007) Kinetic and mutational analyses of the major cytosolic exopolyphosphatase from Saccharomyces cerevisiae. J Biol Chem 282:9302–9311

    Article  CAS  PubMed  Google Scholar 

  • Tammenkoski M, Koivula K, Cusanelli E et al (2008) Human metastasis regulator protein H-prune is a short-chain exopolyphosphatase. Biochemistry 47:9707–9713

    Article  CAS  PubMed  Google Scholar 

  • Trilisenko LV, Kulakovskaya TV (2014) Polyphosphates as an energy source for growth of Saccharomyces cerevisiae. Biochemistry (Mosc) 79:478–482

    Article  CAS  Google Scholar 

  • Ugochukwu E, Lovering AL, Mather OC et al (2007) The crystal structure of the cytosolic exopolyphosphatase from Saccharomyces cerevisiae reveals the basis for substrate specificity. J Mol Biol 371:1007–1021

    Article  CAS  PubMed  Google Scholar 

  • Wurst H, Kornberg A (1994) A soluble exopolyphosphatase of Saccharomyces cerevisiae. J Biol Chem 269:10996–101001

    CAS  PubMed  Google Scholar 

  • Wurst H, Shiba T, Kornberg A (1995) The gene for a major exopolyphosphatase of Saccharomyces cerevisiae. J Bacteriol 177:898–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors were supported by the Russian Foundation for Basic Research (grant 14-04-00515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Kulakovskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Andreeva, N., Lichko, L., Trilisenko, L., Kulakovskiy, I.V., Kulakovskaya, T. (2016). Yeast Polyphosphatases PPX1 and PPN1: Properties, Functions, and Localization. In: Kulakovskaya, T., Pavlov, E., Dedkova, E. (eds) Inorganic Polyphosphates in Eukaryotic Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-41073-9_2

Download citation

Publish with us

Policies and ethics