Skip to main content

Sensitivity Study on 2013: Tropical Cyclones Using Different Cloud Microphysical and Planetary Boundary Layer Parameterisation Schemes in WRF Model

  • Chapter
  • First Online:
Tropical Cyclone Activity over the North Indian Ocean

Abstract

The Indian subcontinent is the worst affected part of the world due to tropical cyclones (TCs). This region account for ~7 % 0.of the total number of global TCs (Gray 1968). The formation of TCs is more pronounced over Bay of Bengal (BOB) compared to Arabian Sea. A large number of TCs form over the BOB region generally move in the north and north-west directions and make landfall along the coastal regions of India, Bangladesh, and Myanmar (Tyagi et al. 2010; Mohapatra et al. 2012, 2015). These TCs have been responsible for the damage of property, loss of agriculture crops, and thousands of human lives (Paul 2010). In the BOB, TC genesis is highly seasonal with primary maximum in the post-monsoon season (October to December) and secondary maximum during pre-monsoon season (April and May). Hence, there is a need to improve the understanding and the forecast of TC over the Indian Ocean region. Several dynamic models have been used for the forecasting of the track and intensity of TC over specific regions. There has been significant improvement in recent years in terms of track, intensity and landfall forecasts (Mohapatra et al. 2013a,b,c). However, the accurate track and intensity predictions of TCs remain a challenging task for atmospheric scientists and the research community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bhaskar Rao, D.V. and Hari Prasad, D. (2006). Numerical prediction of the Odisha super-TC: Sensitivity to the parameterization of convection, boundary layer and explicitmoisture processes. Mausam, 57, 61–78

    Google Scholar 

  • Bhaskar Rao, D.V. and Hari Prasad, D. (2007). Sensitivity of tropical TC intensification to boundary layer and convective processes. Natural Hazards, 41, 429–445, doi:10.1007/s11069-006-9052-7

    Article  Google Scholar 

  • Braun, S.A. and Tao, W.-K. (2000). Sensitivity of high resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Monthly Weather Review, 128, 3941–3961, doi:10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO2.

  • Brown, P.R.A. and Swann, H.A. (1997). Evaluation of key microphysical parameters in three-dimensional cloud-model simulations using aircraft and multiparameter radar data. Quarterly Journal of the Royal Meteorological Society, 123 , 2245–2275.

    Article  Google Scholar 

  • Chandrasekar, R. and Balaji, C. (2012). Sensitivity of tropical TC Jal simulations to physics parameterizations. Journal of Earth System Science, 121, pp. 923–946.

    Article  Google Scholar 

  • Deshpande, M, Pattnaik, S. and Salvekar, P.S. (2010). Impact of physical parameterization schemes of numerical simulation of super TC Gonu. Natural Hazards, 55, 211–231, doi:10.1007/s11069-010-9521-x

    Article  Google Scholar 

  • Deshpande, M.S, Pattnaik, S. and Salvekar, P.S. (2012). Impact of cloud parameterization on the numerical simulation of a super TC. Annals of Geophysics, 30, 775–795, doi:10.5194/angeo-30-775-2012

    Article  Google Scholar 

  • Dudhia, J. (1989). Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of Atmospheric Science, 46, 3077–3107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO2.

  • Emanuel, K.A. (1986). An air-sea interaction theory for tropical TCs: Part I: Steady state maintenance. Journal of Atmospheric Science, 43, 585–605.

    Article  Google Scholar 

  • Emanuel, K. A. (1999). Thermodynamic control of hurricane intensity. Nature, 401, 665–669.

    Article  Google Scholar 

  • Ferrier, B.S, Jin, Y, Lin, Y, Black, T, Rogers, E. and DiMego, G. (2002). Implementation of a new grid-scale cloud and rainfall scheme in the NCEP Eta Model, Preprints, 15th Conf. on Numerical Weather Prediction, San Antonio, TX, American Meteorological Society, pp. 280–283.

    Google Scholar 

  • Fovell, R.G, Corbosiero, K.L, Seifert, A. and Liou, K.N. (2010a). Impact of cloudradiative processes on hurricane track. Geophysical Research Letters, 37, L07808, doi:10.1029/2010GL042691

    Article  Google Scholar 

  • Fovell, R.G, Corbosiero, K. L. and Kuo, H.-C. (2010b). Influence of cloud-radiative feedback on tropical TC motion: Symmetric contributions. Preprints, 29th Conf. on Hurricanes and Tropical Meteorology,Tucson, AZ, American Meteorological Society, 13C.5.

    Google Scholar 

  • Gray, W.M. (1968). Global view of the origin of tropical disturbances and storms. Monthly Weather Review, 96, 669–700.

    Article  Google Scholar 

  • Hong, S.-H. and Pan, H.-L. (1996). Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Monthly Weather Review, 124, 2322–2339.

    Article  Google Scholar 

  • Hong, S.-Y. and Lim, J.-O.J. (2006). The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society, 42, 129–151.

    Google Scholar 

  • Hong, S.-Y, Dudhia, J. and Chen, S.-H. (2004). A revised approach to ice microphysical processes for the parameterization of clouds and precipitation. Monthly Weather Review, 132, 103–120.

    Article  Google Scholar 

  • Janjić, Z.I. (1994). The step-mountain eta coordinate model: Further developments of the convection, viscous sub layer and turbulence closure schemes. Monthly Weather Review, 122, 927–945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO2.

  • Janjic, Z.I, Black, T.L, Rogers, E, Chuang, H. and DiMego, G. (2003a). The NCEP Nonhydrostatic Meso Model (NMM) and First Experiences with Its Applications. EGS/EGU/AGU Joint Assembly, Nice, France, 6–11 April.

    Google Scholar 

  • Janjic, Z.I, Black, T.L, Rogers, E, Chuang, H. and DiMego, G. (2003b). The NCEP Nonhydrostatic Mesoscale Forecasting Model. 12.1, Extended Abstract, 10th Conference on Mesoscale Processes, Portland, OR, American Meteorological Society (Available Online).

    Google Scholar 

  • Kain, J.S. (2004). The Kain–Fritsch convective parameterization: An update. Journal of Applied Meteorology, 43, 170–181.

    Article  Google Scholar 

  • Kubota, M, Iwasaka, N, Kizu, S, Konda, M. and Kutsuwada, K. (2002). Japanese ocean flux data sets with use of remote sensing observations (J-OFURO), Journal of Oceanography, 58, 213–225.

    Article  Google Scholar 

  • Lin, Y.-L, Farley, R.D. and Orville, H.D. (1983). Bulk parameterization of the snow field in a cloud model, Journal of Climate and Applied Meteorology, 22, 1065–1092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

  • Liu, C. and Moncrieff, M.W. (2007). Sensitivity of cloud-resolving simulations of warm-season convection to cloud microphysics parameterizations. Monthly Weather Review, 135, 2854–2868.

    Article  Google Scholar 

  • Loh, W, Juneng, L. and Tandang, F. (2010). Sensitivity of Typhoon Vamei (2001) simulation to planetary boundary layer parameterization using PSU/NCAR MM5. Pure and Applied Geophysics, 168, 1799–1811.

    Article  Google Scholar 

  • Lord, S.J, Willoughby, H.W. and Piotrowicz, J.M. (1984). Role of a parameterized ice-phase microphysics in an axisymmetric tropical TC model. Journal of Atmospheric Science, 41, 2836–2848.

    Article  Google Scholar 

  • Mellor, G.L. and Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics, 20, 851–875.

    Article  Google Scholar 

  • Mlawer, E.J, Taubman, S.J, Brown, P.D, Iacono, M.J. and Clough, S.A. (1997). Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long wave. Journal of Geophysical Research, 102, 16,663–16,682, doi:10.1029/97JD00237

    Article  Google Scholar 

  • Mohanty, U.C. and Gupta, A. (1997). Deterministic methods for prediction of tropical TC tracks, Mausam, 48, 257–272.

    Google Scholar 

  • Mohanty, U.C, Mandal, M. and Raman, S. (2004). Simulation of Odisha Super TC (1999) using PSU/NCAR Mesoscale Model. Natural Hazards, 31, 373–390, doi:10.1023/B:NHAZ.0000023358.38536.5d

    Article  Google Scholar 

  • Mohanty, U.C, Osuri, K.K, Routray, A, Mohapatra, M. and Pattanayak, S. (2010). Simulation of Bay of Bengal tropical cyclones with WRF modeling system: Impact of initial value and boundary conditions. Marine Geodesy, 33, 294–314.

    Google Scholar 

  • Mohapatra, M. and Sharma, M. (2015). Characteristics of surface wind structure of tropical cyclones over the North Indian Ocean. Journal of Earth System Sciences, 124, 1573–1598.

    Google Scholar 

  • Mohapatra, M, Mandal, G.S, Bandyopadhyay, B.K, Tyagi, A. and Mohanty, U.C. (2012). Classification of cyclone hazard prone districts of India. Natural Hazards, 63, 1601–1620.

    Google Scholar 

  • Mohapatra, M, Nayak, D.P, Sharma, R.P. and Bandopadhyay, B.K. (2013a). Evaluation of official tropical cyclone track forecast over North Indian Ocean issued by India Meteorological Department. Journal of Earth System Sciences, 122, 589–601.

    Google Scholar 

  • Mohapatra, M, Bandyopadhyay, B.K. and Nayak, D.P. (2013b). Evaluation of official tropical cyclone intensity forecast over North Indian Ocean Issued by India Meteorological Department. Natural Hazards, 68, 433–451.

    Google Scholar 

  • Mohapatra, M, Nayak D.P, Sharma, M, Sharma, R.P. and Bandyopadhyay, B.K. (2015). Evaluation of landfall forecast over North Indian Ocean issued by India Meteorological Department. Journal of Earth System Sciences, 124, 861–874.

    Google Scholar 

  • Mukhopadhyay, P, Taraphdar, S. and Goswami, B.N. (2011). Influence of moist processes on track and intensity forecast of TCs over the north Indian Ocean. Journal of Geophysical Research, 116, D05116, 21 pp. doi:10.1029/2010JD014700

  • Osuri, K.K, Mohanty, U.C, Routray, A. and Mohapatra, M. (2012). Impact of satellite derived wind data assimilation on track, intensity and structure of tropical cyclones over North Indian Ocean. International Journal of Remote Sensing, 33, 1627–1652.

    Google Scholar 

  • Osuri, K.K, Mohanty, U.C, Routray, A, Mohapatra, M. and Dev, N. (2013). Real-time track prediction of tropical cyclones over the North Indian Ocean Using the ARW Model. Journal of the Applied Meteorology and Climatology, 52, 2476–2492. doi: http://dx.doi.org/10.1175/JAMC-D-12-0313.1

  • Osuri, K.K, Mohanty, U.C, Routray, A, Mohapatra, M. and Niyogi, D. (2014). Real-time track prediction of tropical cyclones over the North Indian Ocean using the ARW Model. Journal of Applied Meteorology and Climatology, 52, 2476–2492.

    Google Scholar 

  • Pattnaik, S. and Krishnamurti, T. N. (2007a). Impact of cloud microphysical process on hurricane intensity. Part 1: Control run. Meteorology and Atmospheric Physics, 97, 117–126, doi:10.1007/s00703-006-0247-y

    Article  Google Scholar 

  • Pattnaik, S. and Krishnamurti, T.N. (2007b). Impact of cloud microphysical process on hurricane intensity. Part 2: Sensitivity experiments. Meteorology and Atmospheric Physics, 97, 127–147, doi:10.1007/s00703-006-0248-x

    Article  Google Scholar 

  • Pattanaik, S. and Mohanty, U.C. (2008). A comparative study on performance of MM5 andWRF models in simulation of tropical TCs over Indian seas. Current Science, 95, 923–936.

    Google Scholar 

  • Pattanaik, D.R. and Rama Rao, Y.V. (2009). Track prediction of very severe TC ‘Nargis’ using high resolution weather research forecasting (WRF) model. Journal of Earth System Science, 118, 309–329.

    Article  Google Scholar 

  • Pattanayak, S, Mohanty, U.C. and Gopalakrishnan, S.G. (2012). Simulation of very severe TC Mala over Bay of Bengal with HWRF modeling system. Natural Hazards, 63, 1413–1437.

    Article  Google Scholar 

  • Paul, B. (2010). Human injuries caused by Bangladesh’s TC Sidr: An empirical study. Natural Hazards, 54, 483–495.

    Article  Google Scholar 

  • Prater, B. and Evans, J.L. (2002). Sensitivity of modeled tropical TC track and structure of Hurricane Irene (1999) to the convection parameterization scheme. Meteorology and Atmospheric Physics, 80, 103–115.

    Article  Google Scholar 

  • Qiang Sun, Y, Yuxin Jiang and Benkui Tan. and Fuqing Zhang (2013). The Governing Dynamics of the Secondary Eyewall Formation of Typhoon Sinlaku (2008). Journal of Atmospheric Science, 70, doi:10.1175/JAS-D-13-044.1

  • Rahaman, H. and Ravichandran, M. (2013). Evaluation of near-surface air temperature and specific humidity from hybrid global products and their impact on latent heat flux in the North Indian Ocean. Journal of Geophysical Research: Oceans, 118, 1034–1047, doi:10.1002/jgrc.20085

    Google Scholar 

  • Raju, P.V.S, Jayaraman, P. and Mohanty, U.C. (2011a). Prediction of severe tropical TCs over the Bay of Bengal during 2007–2010 using highresolution mesoscale model. Natural Hazards, doi: 10.1007/s11069-011-9918-1

  • Raju, P.V.S, Jayaraman, P. and Mohanty, U.C. (2011b). Sensitivity of physical parameterizations on prediction of tropical TC Nargis over the Bay of Bengal using WRF model. Meteorology and Atmospheric Physics, 113, 125–137, doi: 10.1007/s00703-011-0151-y

    Article  Google Scholar 

  • Rozoff, C.M, Nolan, D.S, Kossin, J.P, Zhang, F. and Fang, J. (2012). The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. Journal of Atmospheric Science, 69, 2621–2643.

    Article  Google Scholar 

  • RSMC, New Delhi (2014) Report on Cyclonic Disturbances over north Indian Ocean during, 2013.

    Google Scholar 

  • Sathi Devi, K, Hari Prasad, D. and Bhaskar Rao, D.V. (2006). The evaluation of Kain–Fritsch scheme in tropical cyclone simulation. Mausam, 57, 395–410.

    Google Scholar 

  • Sikka, D.R. and Suryanarayana, R. (1972). Forecasting the movement of tropical storms/depressions in the Indian region by computer oriented technique wing climatology and persistence. Indian Journal of Meteorology and Geophysics, 23, 35–40.

    Google Scholar 

  • Skamarock, W.C. (2008). A Description of the Advanced Research WRF Version 3. – NCAR Tech. Note, June 2008/W.C. Skamarock. Available at: http://www.mmm.ucar.edu/wrf/users/docs (accessed at: 11.01.2013).

  • Srinivas, C.V, Bhaskar Rao, D.V, Yesubabu, V, Baskaran, R. and Venkatraman, B. (2012). Tropical TC predictions over the Bay of Bengal using the high-resolution advanced research weather research and forecasting model. Quarterly Journal of the Royal Meteorological Society, doi:10.1002/qj.2064

  • Srinivas, C.V, Venkatesan, R, Bhaskar Rao, D.V. and Hari Prasad, D. (2007). Numerical simulation of Andhra severe TC (2003): Model sensitivity to the boundary layer and convective parameterization. Pure and Applied Geophysics, 164, 1465–1487.

    Article  Google Scholar 

  • Thompson, G, Rasmussen, R.M. and Manning, K. (2004). Explicit forecast of winter precipitation using an improved bulk microphysical scheme. Part I: Description and sensitivity analysis. Monthly Weather Review, 132, 519–542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

  • Thompson, G, Field, P.R, Rasmussen, R.M. and Hall, W.D. (2008). Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Monthly Weather Review, 136, 5095–5115.

    Article  Google Scholar 

  • Trivedi, D.K, Sanjay, J. and Singh, S.S. (2002). Numerical simulation of a super CS, Odisha (1999), Impact of initial conditions. Meteorological Applications, 9, 367–376, doi:10.1017/S1350482702003109

    Article  Google Scholar 

  • Venkatarami Reddy, M, Surendra Prasad, S.B, Murali Krishna, U.V. and Krishna Reddy, K. (2014). Effect of cumulus and microphysical parameteri-zations on the JAL TC prediction. Indian Journal of Radio and Space Physics, 43, 103–123.

    Google Scholar 

  • Wang, Y. (2002). An explicit simulation of tropical TCs with a triply nested movable mesh primitive equation model: TCM3. Part II: Model refinements and sensitivity to cloud micro physics parameterization. Monthly Weather Review, 130, 3022–3036.

    Article  Google Scholar 

  • Wang, Y. (2009). How do outer spiral rain bands affect tropical cyclone structure and intensity? Journal of Atmospheric Science, 66, 1250–1273, doi:10.1175/2008JAS2737.1

    Article  Google Scholar 

  • Wu, L. and Wang, B. (2001). Effects of convective heating on movement and vertical coupling of tropical TCs: A numerical study. Journal of Atmospheric Science, 58, 3639–3649.

    Article  Google Scholar 

  • Zhu, T. and Zhang, D.-L. (2006). Numerical simulation of Hurricane Bonnie (1998). Part II: sensitivity to varying cloud microphysical processes. Journal of Atmospheric Science, 63, 109–126.

    Google Scholar 

Download references

Acknowledgement

We acknowledge to the India Meteorological Department (IMD), Govt. of India, for providing the TCs track information. We acknowledge to Indian Space Research Organization (ISRO), Govt. of India for providing the financial support to carry out this research work. We acknowledge to National Center for Environmental Prediction, USA, for providing real-time GFS analysis/forecast data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Krishna Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Capital Publishing Company

About this chapter

Cite this chapter

Reddy, M.V., Prasad, S.B.S., Krishna, U.V.M., Reddy, K.K. (2017). Sensitivity Study on 2013: Tropical Cyclones Using Different Cloud Microphysical and Planetary Boundary Layer Parameterisation Schemes in WRF Model. In: Mohapatra, M., Bandyopadhyay, B., Rathore, L. (eds) Tropical Cyclone Activity over the North Indian Ocean. Springer, Cham. https://doi.org/10.1007/978-3-319-40576-6_23

Download citation

Publish with us

Policies and ethics