Advertisement

Automatic Differential Analysis of ARX Block Ciphers with Application to SPECK and LEA

  • Ling Song
  • Zhangjie Huang
  • Qianqian Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9723)

Abstract

In this paper, we focus on the automatic differential cryptanalysis of ARX block ciphers with respect to XOR-difference, and develop Mouha et al.’s framework for finding differential characteristics by adding a new method to construct long characteristics from short ones. The new method reduces the searching time a lot and makes it possible to search differential characteristics for ARX block ciphers with large word sizes such as \(n=48,64\). What’s more, we take the differential effect into consideration and find that the differential probability increases by a factor of \(4 \sim 16\) for SPECK and more than \(2^{10}\) for LEA when multiple characteristics are counted in. The efficiency of our method is demonstrated by improved attacks of SPECK and LEA, which attack 1, 1, 4 and 6 more rounds of SPECK48, SPECK64, SPECK96 and SPECK128, respectively, and 2 more rounds of LEA than previous works.

Keywords

Differential cryptanalysis Automatic search ARX SPECK LEA 

Notes

Acknowledgement

The authors would like to thank Jian Guo for his valuable suggestions and thank the anonymous reviewers for their valuable comments and suggestions.

References

  1. 1.
    Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced simom and speck. In: Carlos, C., Christian, R. (eds.) Fast Software Encryption - FSE 2014. Lecture Notes in Computer Science, vol. 8540, pp. 525–545. Springer, Heidelberg (2014)Google Scholar
  2. 2.
    Aumasson, J.-P., Henzen, L., Meier, W., Phan, R.C.-W.: Sha-3 proposal blake. Technical report, Submission to the NIST SHA-3 Competition (Round 2) (2008)Google Scholar
  3. 3.
    Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The simon and speck families of lightweight block ciphers. Technical report, Cryptology ePrint Archive, Report 2013/404 (2013)Google Scholar
  4. 4.
    Bernstein, D.J.: The Salsa20 family of stream ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 546–570. Springer, Heidelberg (2015)Google Scholar
  7. 7.
    Biryukov, A., Velichkov, V.: Automatic search for differential trails in ARX ciphers. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 227–250. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  8. 8.
    Biryukov, A., Velichkov, V., Le Corre, Y.: Milp-based automatic search algorithms for differential and linear trails for speck. In: Peyrin, T. (ed.) Fast Software Encryption - FSE 2016 (2016). (to appear in FSE 2016)Google Scholar
  9. 9.
    Dinur, I.: Improved differential cryptanalysis of round-reduced speck. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 147–164. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  10. 10.
    Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: The skein hash function family. Technical report, Submission to the NIST SHA-3 Competition (Round 2) (2009)Google Scholar
  11. 11.
    Kai, F., Wang, M., Guo, Y., Sun, S., Lei, H.: Automatic search for the best trails in arx: application to block cipher speck. In: Peyrin, T. (ed.) Fast Software Encryption - FSE 2016 (2016). (to appear in FSE 2016)Google Scholar
  12. 12.
    Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Hong, D., Lee, J.-K., Kim, D.-C., Kwon, D., Ryu, K.H., Lee, D.-G.: LEA: A 128-bit block cipher for fast encryption on common processors. In: Kim, Y., Lee, H., Perrig, A. (eds.) WISA 2013. LNCS, vol. 8267, pp. 1–24. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  14. 14.
    Lai, X., Massey, J.L.: Markov ciphers and differential cryptanalysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991)Google Scholar
  15. 15.
    Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties of addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B., Verbauwhede, I.: Chaskey: an efficient mac algorithm for 32-bit microcontrollers. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306–323. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  17. 17.
    Mouha, N., Preneel, B.: Towards finding optimal differential characteristics for arx: Application to salsa20. Technical report, Cryptology ePrint Archive, Report 2013/328 (2013)Google Scholar
  18. 18.
    Song, L., Huang, Z., Yang, Q.: Automatic differential analysis of arx block ciphers with application to speck and lea. Technical report, Cryptology ePrint Archive, Report 2016/209 (2016)Google Scholar
  19. 19.
    Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (related-key) differential characteristic search: application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg (2014)Google Scholar
  21. 21.
    Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  22. 22.
    Wheeler, D.J., Needham, R.M.: TEA, a tiny encryption algorithm. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008. Springer, Heidelberg (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.Data Assurance and Communication Security Research CenterChinese Academy of SciencesBeijingChina
  3. 3.Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations