Skip to main content

LEA: A 128-Bit Block Cipher for Fast Encryption on Common Processors

  • Conference paper
  • First Online:
Information Security Applications (WISA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8267))

Included in the following conference series:

Abstract

We propose a new block cipher LEA, which has 128-bit block size and 128, 192, or 256-bit key size. It provides a high-speed software encryption on general-purpose processors. Our experiments show that LEA is faster than AES on Intel, AMD, ARM, and ColdFire platforms. LEA can be also implemented to have tiny code size. Its hardware implementation has a competitive throughput per area. It is secure against all the existing attacks on block ciphers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    On the other hand, round key XORs and rotations work as nonlinear functions for the adversary using add-differences.

  2. 2.

    We leave the fifth mode, ‘Encrypt-then-MAC’ in [33] out of the discussion because it uses general notions of encryption and MAC.

References

  1. Aoki, K., Sasaki, Y.: Meet-in-the-middle preimage attacks against reduced SHA-0 and SHA-1. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 70–89. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE. Submission to NIST (Round 3) (2010)

    Google Scholar 

  3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clar, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers. IACR Cryptology ePrint Archive. Report 2013/404 (2013)

    Google Scholar 

  4. Bernstein, D.J.: The salsa20 stream cipher. In: SKEW 2005 — Symmetric Key Encryption Workshop (2005)

    Google Scholar 

  5. Biham, E.: New types of cryptanalytic attacks using related keys. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg (1994)

    Google Scholar 

  6. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

    Google Scholar 

  7. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack - rectangling the serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Biham, E., Dunkelman, O., Keller, N.: Enhancing differential-linear cryptanalysis. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 254–266. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer, Heidelberg (1993)

    Book  MATH  Google Scholar 

  10. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 231–249. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 245–259. Springer, Heidelberg (1999)

    Google Scholar 

  13. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, Ch., Poschmann, A., Robshaw, M., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)

    Google Scholar 

  14. Bogdanov, A., Khovratovich, D., Rechberger, Ch.: Biclique cryptanalysis of the full AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 344–371. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Bogdanov, A., Wang, M.: Zero correlation linear cryptanalysis with reduced data complexity. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 29–48. Springer, Heidelberg (2012)

    Google Scholar 

  16. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S., Yalçın, T.: PRINCE - A low-latency block cipher for pervasive computing applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in a linear code: application to McEliece’s cryptosystem and to narrow-sense BCH codes of length 511. IEEE Trans. Inf. Theory 44(1), 367–378 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Certicom White Paper Series. Critical infrastructure protection for AMI using a comprehensive security platform, Februrary 2009

    Google Scholar 

  19. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. COSIC. Final Report: Security Evaluation of the Block Cipher LEA (2011)

    Google Scholar 

  21. Daemen, J., Rijmen, V.: The Design of Rijndael: AES. In: The Advanced Encryption Standard. Springer (2002)

    Google Scholar 

  22. Darnall, M., Kuhlman, D.: AES software implementations on ARM7TDMI. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 424–435. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Diffie, W., Hellman, M.: Exhaustive cryptanalysis of the NBS data encryption standard. Computer 10(6), 74–84 (1977)

    Article  Google Scholar 

  24. Dunkelman, O., Keller, N., Shamir, A.: A practical-time related-key attack on the KASUMI cryptosystem used in GSM and 3G telephony. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 393–410. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  25. eBACS: ECRYPT Benchmarking of Cryptographic Systems, bench.cr.yp.to.

    Google Scholar 

  26. Ferguson, N., Lucks, S., Schneier, B., DougWhiting, Bellare, M., Tadayoshi Kohno, Callas, J., Jesse Walker, : The skein hash function family, Submission to NIST (Round 3) (2010)

    Google Scholar 

  27. ADVANCED ENCRYPTION STANDARD, (AES), Federal Information Processing Standards, Publication 197, 26 November 2001)

    Google Scholar 

  28. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: A new family of lightweight block ciphers. In: Juels, A., Paar, Ch. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer, Heidelberg (2012)

    Google Scholar 

  29. Mukhopadhyay, D.: An improved fault based attack of the advanced encryption standard. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 421–434. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  30. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer, Heidelberg (2011)

    Google Scholar 

  31. Hong, D., Sung, J., Hong, S.H., Lim, J.-I., Lee, S.-J., Koo, B.-S., Lee, C.-H., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J.-S., Chee, S.: HIGHT: A new block cipher suitable for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

    Google Scholar 

  32. Hong, D., Koo, B., Kwon, D.: Biclique attack on the full HIGHT. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 365–374. Springer, Heidelberg (2012)

    Google Scholar 

  33. ISO/IEC 19772, Information technology — Security techniques — Authenticated encryption (2009)

    Google Scholar 

  34. Jakimoski, G., Desmedt, Y.: Related-key differential cryptanalysis of 192-bit key AES variants. In: Matsui, M., Zuccherato, R. (eds.) SAC 2004. LNCS, vol. 3006, pp. 208–221. Springer, Heidelberg (2004)

    Google Scholar 

  35. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–27. Springer, Heidelberg (2009)

    Google Scholar 

  36. Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-round MARS and serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2001)

    Google Scholar 

  37. Kelsey, J., Schneier, B., Wagner, D.: Related-key cryptanalysis of 3-WAY, biham-DES, CAST, DES-X, newDES, RC2, and TEA. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)

    Google Scholar 

  38. Khovratovich, D., Nikolić, I.: Rotational cryptanalysis of ARX. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 333–346. Springer, Heidelberg (2010)

    Google Scholar 

  39. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

    Google Scholar 

  40. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

    Google Scholar 

  41. Koo, B., Hong, D., Kwon, D.: Related-key attack on the full HIGHT. In: Rhee, K.-H., Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 49–67. Springer, Heidelberg (2011)

    Google Scholar 

  42. Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties of addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer, Heidelberg (2002)

    Google Scholar 

  43. Matsuda, S., Moriai, S.: Lightweight cryptography for the cloud: exploit the power of bitslice implementation. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 408–425. Springer, Heidelberg (2012)

    Google Scholar 

  44. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

    Google Scholar 

  45. Moradi, A., Poschmann, A., Ling, S., Paar, Ch., Wang, H.: Pushing the limits: a very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  46. Needham, R.M., Wheeler, D.J.: TEA extensions. computer laboratory, University of Cambridge, Technical report, October 1997

    Google Scholar 

  47. Osvik, D.A., Bos, J.W., Stefan, D., Canright, D.: Fast software AES encryption. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 75–93. Springer, Heidelberg (2010)

    Google Scholar 

  48. https://realtimelogic.com/products/sharkssl/Coldfire-80Mhz/

  49. Rivest, R.L., Robshaw, M.J.B., Sidney, R., Yin, Y.L.: Thr RC6 block cipher (1998)

    Google Scholar 

  50. Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 282–296. Springer, Heidelberg (2009)

    Google Scholar 

  51. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

    Google Scholar 

  52. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockcipher CLEFIA (Extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007)

    Google Scholar 

  53. Suzaki, T., Minematsu, K., Morioka, S., Kobayasi, E.: Twine: A lightweight, versatile block cipher. In: Proceedings of ECRYPT Workshop on Lightweight Cryptography (2011)

    Google Scholar 

  54. Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

    Google Scholar 

  55. Wallén, J.: On the differential and linear properties of addition, Master’s thesis, Helsinki University of Technology, Laboratory for Theoretical Computer Science, November 2003

    Google Scholar 

  56. Wheeler, D.J., Needham, R.M.: TEA, a tiny encryption algorithm. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)

    Google Scholar 

  57. Wheeler, D.J., Needham, R.M.: Correction of XTEA. Computer Laborarory, University of Cambridge, Technical report (October 1998)

    Google Scholar 

  58. Yarrkov, E.: Cryptanalysis of XXTEA, IACR Cryptology ePrint Archive 2010/254 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deukjo Hong .

Editor information

Editors and Affiliations

Appendices

Differential Characteristic

Let \(\varDelta X_{i}\) be the XOR difference of \(X_i\), and let \(p_i\) be the probability of \(\varDelta X_{i} \rightarrow \varDelta X_{i+1}\). The probability \(p\) of an \(r\)-round differential characteristic is computed as \(p = \prod _{i=0}^{r-1} p_i\).

Table 10 shows the 11-round differential characteristic with the probability of \(2^{-98}\). The differences in the table are denoted in hexadecimal.

Table 10. 11-round differential characteristic with the probability of \(2^{-98}\)

The 7-round differential characteristic with the probability of \(2^{-27}\), discarding the first two rounds and the last two rounds is used for constructing a 14-round boomerang characteristic.

Table 11. 11-round linear approximation with the bias \(\varepsilon = 2^{-62}\)
Table 12. 10-round impossible differential characteristic

Linear Approximation

Let \(\varGamma X_i\) be the mask of \(X_i\), and let \(\varepsilon _i = p_i - 1/2\) be the bias of the linear approximation

$$\begin{aligned} \varGamma X_i \cdot X_i \oplus \varGamma X_{i+1} \cdot X_{i+1} = \varGamma K_i \cdot RK. \end{aligned}$$
(2)

Equation (2) is XOR-sum of the following approximations:

$$\begin{aligned} \alpha _0^i \cdot (X_i[0] \oplus RK_i[0]) \oplus \alpha _1^i \cdot (X_i[1] \oplus RK_i[1])&= \alpha _2^i \cdot ROR_9(X_{i+1}[0]),\nonumber \\&\quad p_{\alpha ^i}= 1/2 + \varepsilon _{\alpha _i},\end{aligned}$$
(3)
$$\begin{aligned} \beta _0^i \cdot (X_i[1] \oplus RK_i[2]) \oplus \beta _1^i \cdot (X_i[2] \oplus RK_i[3])&= \beta _2^i \cdot ROL_5(X_{i+1}[1]),\nonumber \\&\quad p_{\beta ^i}= 1/2 + \varepsilon _{\beta _i},\end{aligned}$$
(4)
$$\begin{aligned} \gamma _0^i \cdot (X_i[2] \oplus RK_i[4]) \oplus \gamma _1^i \cdot (X_i[3] \oplus RK_i[5])&= \gamma _2^i \cdot ROL_3(X_{i+1}[2]),\nonumber \\&\quad p_{\gamma ^i}= 1/2 + \varepsilon _{\gamma _i}. \end{aligned}$$
(5)

Let \(\varepsilon \) be the bias of an \(r\)-round linear approximation. Note that \(\varepsilon _i = 4 \varepsilon _{\alpha ^i} \varepsilon _{\beta _i} \varepsilon _{\gamma ^i}\) and \(\varepsilon = 2^{r-1}\prod _{i=0}^{r-1} \varepsilon _i\) by Piling-Up Lemma [44].

Table 11 shows the 11-round linear approximation with the biases of \(2^{-62}\). The masks in the table are denoted in hexadecimal.

Impossible Differential Characteristic

Table 12 shows one of three 10-round impossible differential characteristic reported in [20]. ‘1’ and ‘0’ mean the single bits 1 and 0 in the XOR difference. ‘x’ means an unknown bit.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hong, D., Lee, JK., Kim, DC., Kwon, D., Ryu, K.H., Lee, DG. (2014). LEA: A 128-Bit Block Cipher for Fast Encryption on Common Processors. In: Kim, Y., Lee, H., Perrig, A. (eds) Information Security Applications. WISA 2013. Lecture Notes in Computer Science(), vol 8267. Springer, Cham. https://doi.org/10.1007/978-3-319-05149-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05149-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05148-2

  • Online ISBN: 978-3-319-05149-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics