Skip to main content

PACAP Expression and Plasticity in the Peripheral Nervous System

  • Chapter
  • First Online:
Pituitary Adenylate Cyclase Activating Polypeptide — PACAP

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 11))

Abstract

Pituitary adenylate cyclase activating polypeptide (Adcyap1; PACAP) is a well-studied neural and endocrine pleiotropic peptide important in development and the homeostatic regulation of many physiological systems. Accordingly, PACAP and its cognate PAC1 receptor (Adcyap1r1) are localized in many central nervous system (CNS) regions and widely distributed in the peripheral nervous system (PNS). PACAP has been identified in a population of small nociceptive neurons in the dorsal root ganglion (DRG) targeting many peripheral tissues. PACAP-immunoreactive preganglionic sympathetic and parasympathetic nerve fibers densely innervate a variety of autonomic and enteric ganglia. Furthermore, a small fraction of the autonomic and enteric postganglionic neurons also endogenously express PACAP. Notably, PACAP belongs to a cohort of neuroplasticity peptides, and PNS insult invariably induces PACAP expression in the affected neurons. Axotomy, nerve crush, inflammation, and neural tissue explant paradigms can dramatically induce neuronal PACAP transcripts, immunoreactivity, content, and cell numbers. This plasticity in PACAP expression has been best appreciated in studies using the PACAP-EGFP transgenic mouse line. The mechanisms driving PACAP expression after insults are not well understood, but likely reflect the aggregate effects of cytokine/inflammatory activation signals at the injury site and an abrogation of retrograde signaling from the target tissues. The few comparative studies suggest that the mechanistic signatures for peptide induction may differ among the various neural systems. This induction of PACAP expression in physiological insults has been implicated to participate in fiber regeneration and anti-inflammatory responses, but PACAP neuroplasticity may also have broader roles in maintaining neurocircuit homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hannibal J. Pituitary adenylate cyclase-activating peptide in the rat central nervous system: an immunohistochemical and in situ hybridization study. J Comp Neurol. 2002;453:389–417.

    Article  CAS  PubMed  Google Scholar 

  2. Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev. 2009;61:283–357.

    Article  CAS  PubMed  Google Scholar 

  3. Hashimoto H, Nogi H, Mori K, Ohishi H, Shigemoto R, Yamamoto K, et al. Distribution of the mRNA for a pituitary adenylate cyclase-activating polypeptide receptor in the rat brain: an in situ hybridization study. J Comp Neurol. 1996;371:567–77.

    Article  CAS  PubMed  Google Scholar 

  4. Jaworski DM, Proctor MD. Developmental regulation of pituitary adenylate cyclase-activating polypeptide and PAC(1) receptor mRNA expression in the rat central nervous system. Dev Brain Res. 2000;120:27–39.

    Article  CAS  Google Scholar 

  5. Moller K, Zhang YZ, Hakanson R, Luts A, Sjolund B, Uddman R, et al. Pituitary adenylate cyclase activating peptide is a sensory neuropeptide: immunocytochemical and immunochemical evidence. Neuroscience. 1993;57:725–32.

    Article  CAS  PubMed  Google Scholar 

  6. Mulder H, Uddman R, Moller K, Zhang YZ, Ekblad E, Alumets J, et al. Pituitary adenylate cyclase activating polypeptide expression in sensory neurons. Neuroscience. 1994;63:307–12.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Q, Shi TJ, Ji RR, Zhang YZ, Sundler F, Hannibal J, et al. Expression of pituitary adenylate cyclase-activating polypeptide in dorsal root ganglia following axotomy: time course and coexistence. Brain Res. 1995;705:149–58.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang YZ, Hannibal J, Zhao Q, Moller K, Danielsen N, Fahrenkrug J, et al. Pituitary adenylate cyclase activating peptide expression in the rat dorsal root ganglia: up-regulation after peripheral nerve injury. Neuroscience. 1996;74:1099–110.

    Article  CAS  PubMed  Google Scholar 

  9. Usoskin D, Furlan A, Islam S, Abdo H, Lonnerberg P, Lou D, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci. 2015;18:145–53.

    Article  CAS  PubMed  Google Scholar 

  10. Noguchi K, Dubner R, De Leon M, Senba E, Ruda MA. Axotomy induces preprotachykinin gene expression in a subpopulation of dorsal root ganglion neurons. J Neurosci Res. 1994;37:596–603.

    Article  CAS  PubMed  Google Scholar 

  11. Jongsma H, Danielsen N, Sundler F, Kanje M. Alteration of PACAP distribution and PACAP receptor binding in the rat sensory nervous system following sciatic nerve transection. Brain Res. 2000;853:186–96.

    Article  CAS  PubMed  Google Scholar 

  12. Mulder H, Uddman R, Moller K, Elsas T, Ekblad E, Alumets J, et al. Pituitary adenylate cyclase activating polypeptide is expressed in autonomic neurons. Regul Pept. 1995;59:121–8.

    Article  CAS  PubMed  Google Scholar 

  13. Rytel L, Palus K, Całka J. Co-expression of PACAP with VIP, SP and CGRP in the porcine nodose ganglion sensory neurons. Anat Histol Embryol. 2015;44:86–91.

    Article  CAS  PubMed  Google Scholar 

  14. Zvarova K, Dunleavy JD, Vizzard MA. Changes in pituitary adenylate cyclase activating polypeptide expression in urinary bladder pathways after spinal cord injury. Exp Neurol. 2005;192:46–59.

    Article  CAS  PubMed  Google Scholar 

  15. Hannibal J, Ekblad E, Mulder H, Sundler F, Fahrenkrug J. Pituitary adenylate cyclase activating polypeptide (PACAP) in the gastrointestinal tract of the rat: distribution and effects of capsaicin or denervation. Cell Tissue Res. 1998;291:65–79.

    Article  CAS  PubMed  Google Scholar 

  16. Edvinsson L, Elsas T, Suzuki N, Shimizu T, Lee TJ. Origin and co-localization of nitric oxide synthase, CGRP, PACAP, and VIP in the cerebral circulation of the rat. Microsc Res Tech. 2001;53:221–8.

    Article  CAS  PubMed  Google Scholar 

  17. Fahrenkrug J, Hannibal J. Pituitary adenylate cyclase activating polypeptide innervation of the rat female reproductive tract and the associated paracervical ganglia: effect of capsaicin. Neuroscience. 1996;73:1049–60.

    Article  CAS  PubMed  Google Scholar 

  18. Wang ZY, Alm P, Hakanson R. Distribution and effects of pituitary adenylate cyclase-activating peptide in the rabbit eye. Neuroscience. 1995;69:297–308.

    Article  CAS  PubMed  Google Scholar 

  19. Nielsen HS, Hannibal J, Fahrenkrug J. Embryonic expression of pituitary adenylate cyclase-activating polypeptide in sensory and autonomic ganglia and in spinal cord of the rat. J Comp Neurol. 1998;394:403–15.

    Article  CAS  PubMed  Google Scholar 

  20. Moller K, Reimer M, Ekblad E, Hannibal J, Fahrenkrug J, Kanje M, et al. The effects of axotomy and preganglionic denervation on the expression of pituitary adenylate cyclase activating peptide (PACAP), galanin and PACAP type 1 receptors in the rat superior cervical ganglion. Brain Res. 1997;775:166–82.

    Article  CAS  PubMed  Google Scholar 

  21. Beaudet MM, Braas KM, May V. Pituitary adenylate cyclase activating polypeptide (PACAP) expression in sympathetic preganglionic projection neurons to the superior cervical ganglion. J Neurobiol. 1998;36:325–36.

    Article  CAS  PubMed  Google Scholar 

  22. Pettersson LM, Heine T, Verge VM, Sundler F, Danielsen N. PACAP mRNA is expressed in rat spinal cord neurons. J Comp Neurol. 2004;471:85–96.

    Article  CAS  PubMed  Google Scholar 

  23. Braas KM, May V. Pituitary adenylate cyclase-activating polypeptides directly stimulate sympathetic neuron neuropeptide Y release through PAC(1) receptor isoform activation of specific intracellular signaling pathways. J Biol Chem. 1999;274:27702–10.

    Article  CAS  PubMed  Google Scholar 

  24. May V, Braas KM. Pituitary adenylate cyclase-activating polypeptide (PACAP) regulation of sympathetic neuron neuropeptide Y and catecholamine expression. J Neurochem. 1995;65:978–87.

    Article  CAS  PubMed  Google Scholar 

  25. Zalecki M. Localization and neurochemical characteristics of the extrinsic sympathetic neurons projecting to the pylorus in the domestic pig. J Chem Neuroanat. 2012;43:1–13.

    Article  CAS  PubMed  Google Scholar 

  26. Ermilov LG, Schmalz PF, Miller SM, Szurszewski JH. PACAP modulation of the colon-inferior mesenteric ganglion reflex in the guinea pig. J Physiol. 2004;560:231–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stroth N, Kuri BA, Mustafa T, Chan SA, Smith CB, Eiden LE. PACAP controls adrenomedullary catecholamine secretion and expression of catecholamine biosynthetic enzymes at high splanchnic nerve firing rates characteristic of stress transduction in male mice. Endocrinology. 2013;154:330–9.

    Article  CAS  PubMed  Google Scholar 

  28. Hamelink C, Tjurmina O, Damadzic R, Young WS, Weihe E, Lee HW, et al. Pituitary adenylate cyclase-activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis. Proc Natl Acad Sci U S A. 2002;99:461–6.

    Article  CAS  PubMed  Google Scholar 

  29. Brandenburg CA, May V, Braas KM. Identification of endogenous sympathetic neuron pituitary adenylate cyclase-activating polypeptide (PACAP): depolarization regulates production and secretion through induction of multiple propeptide transcripts. J Neurosci. 1997;17:4045–55.

    CAS  PubMed  Google Scholar 

  30. Calupca MA, Vizzard MA, Parsons RL. Origin of pituitary adenylate cyclase-activating polypeptide (PACAP)-immunoreactive fibers innervating guinea pig parasympathetic cardiac ganglia. J Comp Neurol. 2000;423:26–39.

    Article  CAS  PubMed  Google Scholar 

  31. Braas KM, May V, Harakall SA, Hardwick JC, Parsons RL. Pituitary adenylate cyclase-activating polypeptide expression and modulation of neuronal excitability in guinea pig cardiac ganglia. J Neurosci. 1998;18:9766–79.

    CAS  PubMed  Google Scholar 

  32. Tompkins JD, Lawrence YT, Parsons RL. Enhancement of Ih, but not inhibition of IM, is a key mechanism underlying the PACAP-induced increase in excitability of guinea pig intrinsic cardiac neurons. Am J Physiol Regul Integr Comp Physiol. 2009;297:R52–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoover DB, Tompkins JD, Parsons RL. Differential activation of guinea pig intrinsic cardiac neurons by the PAC1 agonists maxadilan and pituitary adenylate cyclase-activating polypeptide 27 (PACAP27). J Pharmacol Exp Ther. 2009;331:197–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Girard BM, Galli JR, Young BA, Vizzard MA, Parsons RL. PACAP expression in explant cultured mouse major pelvic ganglia. J Mol Neurosci. 2010;42:370–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Demarque M, Spitzer NC. Neurotransmitter phenotype plasticity: an unexpected mechanism in the toolbox of network activity homeostasis. Dev Neurobiol. 2012;72:22–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Spitzer NC. Activity-dependent neurotransmitter respecification. Nat Rev Neurosci. 2012;18:94–106.

    Google Scholar 

  37. Spitzer NC, Borodinsky LN, Root CM. Homeostatic activity-dependent paradigm for neurotransmitter specification. Cell Calcium. 2005;37:417–23.

    Article  CAS  PubMed  Google Scholar 

  38. Dulcis D, Jamshidi P, Leutgeb S, Spitzer NC. Neurotransmitter switching in the adult brain regulates behavior. Science. 2013;340:449–53.

    Article  CAS  PubMed  Google Scholar 

  39. Francis NJ, Landis SC. Cellular and molecular determinants of sympathetic neuron development. Annu Rev Neurosci. 1999;22:541–66.

    Article  CAS  PubMed  Google Scholar 

  40. Walicke PA, Campenot RB, Patterson PH. Determination of transmitter function by neuronal activity. Proc Natl Acad Sci U S A. 1977;74:5767–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zigmond RE, Hyatt-Sachs H, Mohney RP, Schreiber RC, Shadiack AM, Sun Y, et al. Changes in neuropeptide phenotype after axotomy of adult peripheral neurons and the role of leukemia inhibitory factor. Perspect Dev Neurobiol. 1996;4:75–90.

    CAS  PubMed  Google Scholar 

  42. Hokfelt T, Zhang X, Wiesenfeld-Hallin Z. Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci. 1994;17:22–30.

    Article  CAS  PubMed  Google Scholar 

  43. Pettersson LM, Dahlin LB, Danielsen N. Changes in expression of PACAP in rat sensory neurons in response to sciatic nerve compression. Eur J Neurosci. 2004;20:1838–48.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Danielsen N, Sundler F, Mulder H. Pituitary adenylate cyclase-activating peptide is upregulated in sensory neurons by inflammation. Neuroreport. 1998;9:2833–6.

    Article  CAS  PubMed  Google Scholar 

  45. Vizzard MA. Up-regulation of pituitary adenylate cyclase-activating polypeptide in urinary bladder pathways after chronic cystitis. J Comp Neurol. 2000;420:335–48.

    Article  CAS  PubMed  Google Scholar 

  46. Jongsma Wallin H, Pettersson LM, Verge VM, Danielsen N. Effect of anti-nerve growth factor treatment on pituitary adenylate cyclase activating polypeptide expression in adult sensory neurons exposed to adjuvant induced inflammation. Neuroscience. 2003;120:325–31.

    Article  CAS  PubMed  Google Scholar 

  47. Larsen JO, Hannibal J, Knudsen SM, Fahrenkrug J. Expression of pituitary adenylate cyclase-activating polypeptide (PACAP) in the mesencephalic trigeminal nucleus of the rat after transection of the masseteric nerve. Mol Brain Res. 1997;46:109–17.

    Article  CAS  PubMed  Google Scholar 

  48. Hyatt-Sachs H, Bachoo M, Schreiber R, Vaccariello SA, Zigmond RE. Chemical sympathectomy and postganglionic nerve transection produce similar increases in galanin and VIP mRNA but differ in their effects on peptide content. J Neurobiol. 1996;30:543–55.

    Article  CAS  PubMed  Google Scholar 

  49. Shadiack AM, Vaccariello SA, Sun Y, Zigmond RE. Nerve growth factor inhibits sympathetic neurons’ response to an injury cytokine. Proc Natl Acad Sci U S A. 1998;95:7727–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mohney RP, Siegel RE, Zigmond RE. Galanin and vasoactive intestinal peptide messenger RNAs increase following axotomy of adult sympathetic neurons. J Neurobiol. 1994;25:108–18.

    Article  CAS  PubMed  Google Scholar 

  51. Girard BM, Young BA, Buttolph TR, White SL, Parsons RL. Regulation of neuronal pituitary adenylate cyclase-activating polypeptide expression during culture of guinea-pig cardiac ganglia. Neuroscience. 2007;146:584–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Girard BM, Galli JR, Vizzard MA, Parsons RL. Galanin expression in the mouse major pelvic ganglia during explant culture and following cavernous nerve transection. J Mol Neurosci. 2012;48:713–20.

    Article  CAS  PubMed  Google Scholar 

  53. Klimaschewski L. Regulation of galanin in rat sympathetic neurons in vitro. Neurosci Lett. 1997;234:87–90.

    Article  CAS  PubMed  Google Scholar 

  54. Sun Y, Rao MS, Landis SC, Zigmond RE. Depolarization increases vasoactive intestinal peptide- and substance P-like immunoreactivities in cultured neonatal and adult sympathetic neurons. J Neurosci. 1992;12:3717–28.

    CAS  PubMed  Google Scholar 

  55. Harakall SA, Brandenburg CA, Gilmartin GA, May V, Braas KM. Induction of multiple pituitary adenylate cyclase activating polypeptide (PACAP) transcripts through alternative cleavage and polyadenylation of proPACAP precursor mRNA. Ann N Y Acad Sci. 1998;865:367–74.

    Article  CAS  PubMed  Google Scholar 

  56. Pavelock KA, Girard BM, Schutz KC, Braas KM, May V. Bone morphogenetic protein down-regulation of neuronal pituitary adenylate cyclase-activating polypeptide and reciprocal effects on vasoactive intestinal peptide expression. J Neurochem. 2007;100:603–16.

    Article  CAS  PubMed  Google Scholar 

  57. Jongsma Wallin H, Danielsen N, Johnston JM, Gratto KA, Karchewski LA, Verge VM. Exogenous NT-3 and NGF differentially modulate PACAP expression in adult sensory neurons, suggesting distinct roles in injury and inflammation. Eur J Neurosci. 2001;14:267–82.

    Article  CAS  PubMed  Google Scholar 

  58. Hashimoto H, Hagihara N, Koga K, Yamamoto K, Shintani N, Tomimoto S, et al. Synergistic induction of pituitary adenylate cyclase-activating polypeptide (PACAP) gene expression by nerve growth factor and PACAP in PC12 cells. J Neurochem. 2000;74:501–7.

    Article  CAS  PubMed  Google Scholar 

  59. Sugawara H, Inoue K, Iwata S, Shimizu T, Yamada K, Mori N, et al. Neural-restrictive silencers in the regulatory mechanism of pituitary adenylate cyclase-activating polypeptide gene expression. Regul Pept. 2004;123:9–14.

    Article  CAS  PubMed  Google Scholar 

  60. Sugawara H, Tominaga A, Inoue K, Takeda Y, Yamada K, Miyata A. Functional characterization of neural-restrictive silencer element in mouse pituitary adenylate cyclase-activating polypeptide (PACAP) gene expression. J Mol Neurosci. 2014;54:526–34.

    Article  CAS  PubMed  Google Scholar 

  61. Zigmond RE. gp130 cytokines are positive signals triggering changes in gene expression and axon outgrowth in peripheral neurons following injury. Front Mol Neurosci. 2012;4:62.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kim MS, Hur MK, Son YJ, Park JI, Chun SY, D'Elia AV, et al. Regulation of pituitary adenylate cyclase-activating polypeptide gene transcription by TTF-1, a homeodomain-containing transcription factor. J Biol Chem. 2002;277:36863–71.

    Article  CAS  PubMed  Google Scholar 

  63. Guo Z, Zhao C, Huang M, Huang T, Fan M, Xie Z, et al. Tlx1/3 and Ptf1a control the expression of distinct sets of transmitter and peptide receptor genes in the developing dorsal spinal cord. J Neurosci. 2012;32:8509–20.

    Article  CAS  PubMed  Google Scholar 

  64. Banner LR, Patterson PH. Major changes in the expression of the mRNAs for cholinergic differentiation factor/leukemia inhibitory factor and its receptor after injury to adult peripheral nerves and ganglia. Proc Natl Acad Sci U S A. 1994;91:7109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Habecker BA, Sachs HH, Rohrer H, Zigmond RE. The dependence on gp130 cytokines of axotomy induced neuropeptide expression in adult sympathetic neurons. Dev Neurobiol. 2009;69:392–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sun Y, Rao MS, Zigmond RE, Landis SC. Regulation of vasoactive intestinal peptide expression in sympathetic neurons in culture and after axotomy: the role of cholinergic differentiation factor/leukemia inhibitory factor. J Neurobiol. 1994;25:415–30.

    Article  CAS  PubMed  Google Scholar 

  67. Rao MS, Sun Y, Escary JL, Perreau J, Tresser S, Patterson PH, et al. Leukemia inhibitory factor mediates an injury response but not a target-directed developmental transmitter switch in sympathetic neurons. Neuron. 1993;11:1175–85.

    Article  CAS  PubMed  Google Scholar 

  68. Armstrong BD, Hu Z, Abad C, Yamamoto M, Rodriguez WI, Cheng J, et al. Lymphocyte regulation of neuropeptide gene expression after neuronal injury. J Neurosci Res. 2003;74:240–7.

    Article  CAS  PubMed  Google Scholar 

  69. Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009;32:1–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139:267–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kuruvilla R, Zweifel LS, Glebova NO, Lonze BE, Valdez G, Ye H, et al. A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell Calcium. 2004;118:243–55.

    CAS  Google Scholar 

  72. Ye H, Kuruvilla R, Zweifel LS, Ginty DD. Evidence in support of signaling endosome-based retrograde survival of sympathetic neurons. Neuron. 2003;39:57–68.

    Article  CAS  PubMed  Google Scholar 

  73. Tsui-Pierchala BA, Ginty DD. Characterization of an NGF-P-TrkA retrograde-signaling complex and age-dependent regulation of TrkA phosphorylation in sympathetic neurons. J Neurosci. 1999;19:8207–18.

    CAS  PubMed  Google Scholar 

  74. Riccio A, Pierchala BA, Ciarallo CL, Ginty DD. An NGF-TrkA-mediated retrograde signal to transcription factor CREB in sympathetic neurons. Science. 1997;277:1097–100.

    Article  CAS  PubMed  Google Scholar 

  75. Woolf CJ. Phenotypic modification of primary sensory neurons: the role of nerve growth factor in the production of persistent pain. Philos Trans R Soc Lond B Biol Sci. 1996;351:441–8.

    Article  CAS  PubMed  Google Scholar 

  76. May V, Lutz E, MacKenzie C, Schutz KC, Dozark K, Braas KM. Pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1HOP1 receptor activation coordinates multiple neurotrophic signaling pathways: Akt activation through phosphatidylinositol 3-kinase and vesicle endocytosis for neuronal survival. J Biol Chem. 2010;285:9749–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Holmes FE, Mahoney S, King VR, Bacon A, Kerr NC, Pachnis V, et al. Targeted disruption of the galanin gene reduces the number of sensory neurons and their regenerative capacity. Proc Natl Acad Sci U S A. 2000;97:11563–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Armstrong BD, Abad C, Chhith S, Cheung-Lau G, Hajji OE, Nobuta H, et al. Impaired nerve regeneration and enhanced neuroinflammatory response in mice lacking pituitary adenylyl cyclase activating peptide. Neuroscience. 2008;151:63–73.

    Article  CAS  PubMed  Google Scholar 

  79. Merriam LA, Baran CN, Girard BM, Hardwick JC, May V, Parsons RL. Pituitary adenylate cyclase 1 receptor internalization and endosomal signaling mediate the pituitary adenylate cyclase activating polypeptide-induced increase in guinea pig cardiac neuron excitability. J Neurosci. 2013;33:4614–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tompkins JD, Hardwick JC, Locknar SA, Merriam LA, Parsons RL. Ca2+ influx, but not Ca2+ release from internal stores, is required for the PACAP-induced increase in excitability in guinea pig intracardiac neurons. J Neurophysiol. 2006;95:2134–42.

    Article  CAS  PubMed  Google Scholar 

  81. Tompkins JD, Merriam LA, Girard BM, May V, Parsons RL. Nickel suppresses the PACAP-induced increase in guinea pig cardiac neuron excitability. Am J Physiol Cell Physiol. 2015;308:C857–66.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Marek KW, Kurtz LM, Spitzer NC. cJun integrates calcium activity and tlx3 expression to regulate neurotransmitter specification. Nat Neurosci. 2010;13:944–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Galen Missig, Beatrice M. Girard, Anton Kurtz, and Kristin C. Schutz for technical support in some of the studies. This work was supported by grants NS-01636 (KMB), HD-27468 and MH-096764 (VM), DK-051369, DK-060481 and DK-065989 (MAV), NS-23978 and HL-65481 (RLP), and funds from the University of Vermont (UVM) Center of Biomedical Research Excellence (Neuroscience COBRE, NCRR P30 RR032135/NIGMS P30 GM103498).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor May .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Braas, K.M., Parsons, R.L., Vizzard, M.A., Waschek, J.A., May, V. (2016). PACAP Expression and Plasticity in the Peripheral Nervous System. In: Reglodi, D., Tamas, A. (eds) Pituitary Adenylate Cyclase Activating Polypeptide — PACAP. Current Topics in Neurotoxicity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-35135-3_33

Download citation

Publish with us

Policies and ethics