Skip to main content

Computing in Perfect Euclidean Frameworks

  • Chapter
  • First Online:
Advances in Unconventional Computing

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 22))

Abstract

This chapter presents what kind of computation can be carried out using an Euclidean space—as input, memory, output...—with dedicated primitives. Various understandings of computing are encountered in such a setting allowing classical (Turing, discrete) computations as well as, for some, hyper and analog computations thanks to the continuity of space. The encountered time scales are discrete or hybrid (continuous evolution between discrete transitions). The first half of the chapter presents three models of computation based on geometric concepts—namely: ruler and compass, local constrains and emergence of polyhedra and piece-wise constant derivative. The other half concentrates on signal machines: line segments are extended; when they meet, they are replaced by others. Not only are these machines capable of classical computation but moreover, using the continuous nature of space and time they can also perform hyper-computation and analog computation. It is possible to build fractals and to go one step further on to use their partial generation to solve, e.g., quantified SAT in “constant space and time”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\varSigma _{0}\) is the recursive sets, \(\varSigma _{1}\) is recursively enumerable sets, e.g. the Halting problem.

  2. 2.

    Extension of the arithmetical hierarchy to ordinal indices.

  3. 3.

    The author is not satisfied enough with its code to put it on the internet but send it on request.

References

  1. Andréka, H., Németi, I., Németi, P.: General relativistic hypercomputing and foundation of mathematics. Nat. Comput. 8(3), 499–516 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asarin, E., Maler, O.: Achilles and the Tortoise climbing up the arithmetical hierarchy. In: FSTTCS ’95. LNCS, vol. 1026, pp. 471–483 (1995)

    Google Scholar 

  3. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having piecewise-constant derivatives. Theor. Comp. Sci. 138(1), 35–65 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Becker, F., Chapelle, M., Durand-Lose, J., Levorato, V., Senot, M.: Abstract geometrical computation 8: small machines, accumulations & rationality (2013, submitted)

    Google Scholar 

  5. Bennett, C.H.: Notes on the history of reversible computation. IBM J. Res. Dev. 32(1), 16–23 (1988)

    Article  MathSciNet  Google Scholar 

  6. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, New York (1998)

    Book  MATH  Google Scholar 

  7. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bull. Am. Math. Soc. 21(1), 1–46 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bournez, O.: Some bounds on the computational power of piecewise constant derivative systems (extended abstract). In: ICALP ’97. LNCS, vol. 1256, pp. 143–153 (1997)

    Google Scholar 

  9. Bournez, O.: Achilles and the Tortoise climbing up the hyper-arithmetical hierarchy. Theor. Comp. Sci. 210(1), 21–71 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bournez, O.: Some bounds on the computational power of piecewise constant derivative systems. Theory Comput. Syst. 32(1), 35–67 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Calude, C.S.: Information and Randomness: An Algorithmic Perspective. Texts in Theoretical Computer Science. An EATCS Series, 2nd edn. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  12. Conway, J.H., Guy, R.L.: The Book of Numbers. Copernicus Series. Springer, Heidelberg (1996)

    Book  MATH  Google Scholar 

  13. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15, 1–40 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Duchier, D., Durand-Lose, J., Senot, M.: Fractal parallelism: solving SAT in bounded space and time. In: Otfried, C., Chwa, K.-Y., Park, K. (eds.) International Symposium on Algorithms and Computation (ISAAC ’10). LNCS, vol. 6506, pp. 279–290. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Duchier, D., Durand-Lose, J., Senot, M.: Computing in the fractal cloud: modular generic solvers for SAT and Q-SAT variants. In: Agrawal, M., Cooper, B.S., Li, A. (eds.) Theory and Applications of Models of Computations (TAMC ’12). LNCS, vol. 7287, pp. 435–447. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Durand-Lose, J.: Calculer géométriquement sur le plan - machines à signaux. Habilitation à Diriger des Recherches, École Doctorale STIC, Université de Nice-Sophia Antipolis. In French (2003)

    Google Scholar 

  17. Durand-Lose, J.: Abstract geometrical computation for black hole computation (extended abstract). In: Margenstern, M. (ed.) Machines, Computations, and Universality (MCU ’04). LNCS, vol. 3354, pp. 176–187. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Durand-Lose, J.: Abstract geometrical computation 1: embedding black hole computations with rational numbers. Fund. Inf. 74(4), 491–510 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Durand-Lose, J.: Abstract geometrical computation and the linear Blum, Shub and Smale model. In: Cooper, B.S., Löwe, B., Sorbi, A. (eds.) Computation and Logic in the Real World, 3rd Conference on Computability in Europe (CiE ’07). LNCS, vol. 4497, pp. 238–247. Springer, Heidelberg (2007)

    Google Scholar 

  20. Durand-Lose, J.: The signal point of view: from cellular automata to signal machines. In: Durand, B. (ed.) Journées Automates cellulaires (JAC ’08), pp. 238–249 (2008)

    Google Scholar 

  21. Durand-Lose, J.: Abstract geometrical computation and computable analysis. In: Costa, J .F., Dershowitz, N. (eds.) International Conference on Unconventional Computation 2009 (UC ’09). LNCS, vol. 5715, pp. 158–167. Springer, Heidelberg (2009)

    Google Scholar 

  22. Durand-Lose, J.: Abstract geometrical computation 4: small Turing universal signal machines. Theor. Comp. Sci. 412, 57–67 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Durand-Lose, J.: Abstract geometrical computation 5: embedding computable analysis. Nat. Comput. 10(4), 1261–1273 (2011). Special issue on Unconv. Comp. ’09

    Article  MathSciNet  MATH  Google Scholar 

  24. Durand-Lose, J.: Geometrical accumulations and computably enumerable real numbers (extended abstract). In: Calude, C .S., Kari, J., Petre, I., Rozenberg, G. (eds.) International Conference on Unconventional Computation 2011 (UC ’11). LNCS, vol. 6714, pp. 101–112. Springer, Heidelberg (2011)

    Google Scholar 

  25. Durand-Lose, J.: Abstract geometrical computation 6: a reversible, conservative and rational based model for black hole computation. Int. J. Unconv. Comput. 8(1), 33–46 (2012)

    Google Scholar 

  26. Durand-Lose, J.: Irrationality is needed to compute with signal machines with only three speeds. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE ’13, The Nature of Computation. LNCS, vol. 7921, pp. 108–119. Springer, Heidelberg (2013). Invited talk for special session Computation in nature

    Google Scholar 

  27. Etesi, G., Németi, I.: Non-Turing computations via Malament-Hogarth space-times. Int. J. Theor. Phys. 41(2), 341–370 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hagiya, M.: Discrete state transition systems on continuous space-time: a theoretical model for amorphous computing. In: Calude, C., Dinneen, M .J., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G. (eds.) Proceedings of the 4th International Conference on Unconventional Computation, UC ’05, Sevilla, Spain, October 3–7, 2005. LNCS, vol. 3699, pp. 117–129. Springer, Heidelberg (2005)

    Google Scholar 

  29. Hogarth, M.L.: Deciding arithmetic using SAD computers. Br. J. Philos. Sci. 55, 681–691 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Huckenbeck, U.: Euclidian geometry in terms of automata theory. Theor. Comp. Sci. 68(1), 71–87 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Huckenbeck, U.: A result about the power of geometric oracle machines. Theor. Comp. Sci. 88(2), 231–251 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jacopini, G., Sontacchi, G.: Reversible parallel computation: an evolving space-model. Theor. Comp. Sci. 73(1), 1–46 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lecerf, Y.: Machines de Turing réversibles. Récursive insolubilité en \(n\in \mathbb{N} \) de l’équation \(u = \theta ^nu\), où \(\theta \) est un isomorphisme de codes. Comptes rendus des séances de l’académie des sciences 257, 2597–2600 (1963)

    MathSciNet  MATH  Google Scholar 

  34. Meer, K., Michaux, C.: A survey on real structural complexity theory. Bull. Belg. Math. Soc. 4, 113–148 (1997)

    MathSciNet  MATH  Google Scholar 

  35. Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine. Trans. IEICE E 72(3), 223–228 (1989)

    Google Scholar 

  36. Senot, M.: Geometrical Model of Computation: Fractals and Complexity Gaps. Thèse de doctorat, Université d’Orléans (2013)

    Google Scholar 

  37. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Co, Boston (1997)

    MATH  Google Scholar 

  38. Takeuti, I.: Transition systems over continuous time-space. Electron. Notes Theor. Comput. Sci. 120, 173–186 (2005)

    Article  MathSciNet  Google Scholar 

  39. Weihrauch, K.: Introduction to Computable Analysis. Texts in Theoretical Computer Science. Springer, Berlin (2000)

    MATH  Google Scholar 

  40. Woods, D., Neary, T.: The complexity of small universal Turing machines: a survey. Theor. Comp. Sci. 410(4–5), 443–450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Durand-Lose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Durand-Lose, J. (2017). Computing in Perfect Euclidean Frameworks. In: Adamatzky, A. (eds) Advances in Unconventional Computing. Emergence, Complexity and Computation, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-33924-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33924-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33923-8

  • Online ISBN: 978-3-319-33924-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics