Skip to main content
Log in

Abstract geometrical computation 5: embedding computable analysis

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

Extended Signal machines are proven capable to compute any computable function in the understanding of recursive/computable analysis (CA), represented here with type-2 Turing machines (T2-TM) and signed binary. This relies on a mixed representation of any real number as an integer (in signed binary) plus an exact value in (−1, 1). This permits to have only finitely many signals present simultaneously. Extracting a (signed) bit, improving the precision by one bit and iterating a T2-TM only involve standard signal machines. For exact CA-computations, T2-TM have to deal with an infinite entry and to run through infinitely many iterations to produce an infinite output. This infinite duration can be provided by an infinite acceleration construction. Extracting/encoding an infinite sequence of bits is achieved as the limit of the approximation process with a careful handling of accumulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Blum L, Shub M, Smale S (1989) On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bull Am Math Soc 21(1):1–46

    Article  MathSciNet  MATH  Google Scholar 

  • Bournez O, Campagnolo ML, Graça DS, Hainry E (2007) Polynomial differential equations compute all real computable functions on computable compact intervals. J Complex 23(3):317–335

    Article  MATH  Google Scholar 

  • Chadzelek T, Hotz G (1999) Analytic machines. Theor Comput Sci 219(1–2):151–167. doi:10.1016/S0304-3975(98)00287-4

    Article  MathSciNet  MATH  Google Scholar 

  • Durand-Lose J (2006) Abstract geometrical computation 1: embedding black hole computations with rational numbers. Fund Inf 74(4):491–510

    MathSciNet  MATH  Google Scholar 

  • Durand-Lose J (2007) Abstract geometrical computation and the linear Blum, Shub and Smale model. In: Cooper SB, Löwe B, Sorbi A (eds) Computation and logic in the real world, 3rd conference on Computability in Europe (CiE ’07), number 4497 in LNCS. Springer, Berlin, pp 238–247. doi:10.1007/978-3-540-73001-9_25

  • Durand-Lose J (2008) Abstract geometrical computation with accumulations: beyond the Blum, Shub and Smale model. In: Beckmann A, Dimitracopoulos C, Löwe B (eds) Logic and theory of algorithms, 4th conference on Computability in Europe (CiE ’08) (abstracts and extended abstracts of unpublished papers), pp 107–116. University of Athens, Athens

  • Durand-Lose J (2009a) Abstract geometrical computation 3: black holes for classical and analog computing. Nat Comput 8(3):455–572. doi:10.1007/s11047-009-9117-0

    Article  MathSciNet  MATH  Google Scholar 

  • Durand-Lose J (2009b) Abstract geometrical computation and computable analysis. In: Costa JF, Dershowitz N (eds), International conference on Unconventional computation 2009 (UC ’09), number 5715 in LNCS. Springer, Berlin, pp 158–167. doi:10.1007/978-3-642-03745-0_20

  • Durand-Lose J (2010) Abstract geometrical computation 4: small Turing universal signal machines. TCS. doi:10.1016/j.tcs.2010.07.013

  • Etesi G, Németi I (2002) Non-Turing computations via Malament–Hogarth space–times. Int J Theor Phys 41(2):341–370 gr-qc/0104023

    Article  MATH  Google Scholar 

  • Grzegorczyk A (1957) On the definitions of computable real continuous functions. Fundam Math 44:61–77

    MathSciNet  MATH  Google Scholar 

  • Hogarth ML (1994) Non-Turing computers and non-Turing computability. In: Biennial meeting of the Philosophy of Science Association, East Lansing, pp 126–138

  • Ko K-I (1991) Computational complexity of real functions. Birkhäuser, Boston

    Google Scholar 

  • Turing AM (1936) On computable numbers, with an application to the entscheidungsproblem. Proc Lond Math Soc 42(2):230–265

    Google Scholar 

  • Weihrauch K (2000) Introduction to computable analysis. Texts in theoretical computer science. Springer, Berlin

    Google Scholar 

  • Ziegler M (2007) (Short) Survey of real hypercomputation. In: Cooper SB, Löwe B, Sorbi A (ed) Computation and logic in the real world, 3rd conference on Computability in Europe, CiE ’07, vol 4497 of LNCS. Springer, Berlin, pp 809–824. doi:10.1007/978-3-540-73001-9_86

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Durand-Lose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durand-Lose, J. Abstract geometrical computation 5: embedding computable analysis. Nat Comput 10, 1261–1273 (2011). https://doi.org/10.1007/s11047-010-9229-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-010-9229-6

Keywords

Navigation