Skip to main content

Stem Cell Therapy in Neurological and Neurodegenerative Disease

  • Chapter
  • First Online:
Neurological Regeneration

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

Abstract

Neurological diseases affect the worldwide population. However, few effective therapies exist, in part due to the complexity of the central nervous system. Because neuronal loss is a hallmark of neurological and neurodegenerative disease, the compensatory therapeutic use of stem cells has important potential as a treatment option. Implanted stem cells can migrate into lesions of disease and generate new neurons as well as glial cells in vivo. Stem cell transplants can also produce neuroprotective molecules such as neurotrophic factors as a mechanism to improve disease outcome. Therefore, stem cell transplantation has potential as a powerful therapy for the regeneration of damaged central nervous system tissue. In this review, we discuss the therapeutic utility of different stem cell types and recent advancements in their use for the treatment of neurological and neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboody KS, Najbauer J, Metz MZ, D’Apuzzo M, Gutova M, Annala AJ, Synold TW, Couture LA, Blanchard S, Moats RA, Garcia E, Aramburo S, Valenzuela VV, Frank RT, Barish ME, Brown CE, Kim SU, Badie B, Portnow J (2013) Neural stem cell-mediated enzyme/prodrug therapy for glioma: preclinical studies. Sci Trans Med 5:184ra159

    Article  Google Scholar 

  • Bantubungi K, Blum D, Cuvelier L, Wislet-Gendebien S, Rogister B, Brouillet E, Schiffmann SN (2008) Stem cell factor and mesenchymal and neural stem cell transplantation in a rat model of Huntington’s disease. Mol Cell Neurosci 37:454–470

    Article  CAS  PubMed  Google Scholar 

  • Beitz JM (2014) Parkinson’s disease: a review. Front Biosci (Schol Ed) 6:65–74

    Article  Google Scholar 

  • Bernier PJ, Vinet J, Cossette M, Parent A (2000) Characterization of the subventricular zone of the adult human brain: evidence for the involvement of bcl-2. Neurosci Res 37:67–78

    Article  CAS  PubMed  Google Scholar 

  • Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396–2402

    Article  CAS  PubMed  Google Scholar 

  • Cattaneo E, Zuccato C, Tartari M (2005) Normal huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci 6:919–930

    Article  CAS  PubMed  Google Scholar 

  • Cho MS, Lee YE, Kim JY, Chung S, Cho YH, Kim DS, Kang SM, Lee H, Kim MH, Kim JH, Leem JW, Oh SK, Choi YM, Hwang DY, Chang JW, Kim DW (2008) Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 105:3392–3397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung S, Moon JI, Leung A, Aldrich D, Lukianov S, Kitayama Y, Park S, Li Y, Bolshakov VY, Lamonerie T, Kim KS (2011) ES cell-derived renewable and functional midbrain dopaminergic progenitors. Proc Natl Acad Sci U S A 108:9703–9708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Filippis L, Binda E (2012) Concise review: self-renewal in the central nervous system: neural stem cells from embryo to adult. Stem Cells Transl Med 1:298–308

    Article  PubMed  PubMed Central  Google Scholar 

  • de Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109

    Article  PubMed  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  CAS  PubMed  Google Scholar 

  • Fan CG, Tang FW, Zhang QJ, Lu SH, Liu HY, Zhao ZM, Liu B, Han ZB, Han ZC (2005) Characterization and neural differentiation of fetal lung mesenchymal stemcells. Cell Transplant 14:311–321

    Article  PubMed  Google Scholar 

  • Friedenstein AJ, Gorskaja UF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Expl Hematol 4:267–274

    CAS  Google Scholar 

  • Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gage FH, Temple S (2013) Neural stem cells: generating and regenerating the brain. Neuron 80:588–601

    Article  CAS  PubMed  Google Scholar 

  • Golas MM, Sander B (2016) Use of human stem cells in Huntington disease modeling and translational research. Exp Neurol 278:76–90

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez R, Garitaonandia I, Crain A, Poustovoitov M, Abramihina T, Noskov A, Jiang C, Morey R, Laurent LC, Elsworth JD, Snyder EY, Redmond DE Jr, Semechkin R (2015) Proof of concept studies exploring the safety and functional activity of human parthenogenetic-derived neural stem cells for the treatment of Parkinson’s disease. Cell Transplant 24:681–690

    Article  PubMed  Google Scholar 

  • Gutova M, Shackleford GM, Khankaldyyan V, Herrmann KA, Shi XH, Mittelholtz K, Abramyants Y, Blanchard MS, Kim SU, Annala AJ, Najbauer J, Synold TW, D’Apuzzo M, Barish ME, Moats RA, Aboody KS (2013) Neural stem cell-mediated CE/CPT-11 enzyme/prodrug therapy in transgenic mouse model of intracerebellar medulloblastoma. Gene Ther 20:143–150

    Article  CAS  PubMed  Google Scholar 

  • Hargus G, Ehrlich M, Hallmann AL, Kuhlmann T (2014) Human stem cell models of neurodegeneration: a novel approach to study mechanisms of disease development. Acta Neuropathol 127:151–173

    Article  CAS  PubMed  Google Scholar 

  • Hashemian SJ, Kouhnavard M, Nasli-Esfahani E (2015) Mesenchymal stem cells: rising concerns over their application in treatment of type one diabetes mellitus. J Diabet Res 2015:675103

    Article  Google Scholar 

  • Hovatta O, Stojkovic M, Nogueira M, Varela-Nieto I (2010) European scientific, ethical, and legal issues on human stem cell research and regenerative medicine. Stem Cells 28:1005–1007

    Article  PubMed  Google Scholar 

  • Hovatta O, Rodin S, Antonsson L, Tryggvason K (2014) Concise review: animal substance-free human embryonic stem cells aiming at clinical applications. Stem Cells Transl Med 3:1269–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22:1338–1345

    Article  Google Scholar 

  • Jiang Y, Lv H, Huang S, Tan H, Zhang Y, Li H (2011) Bonemarrow mesenchymal stem cells can improve the motor function of a Huntington’s disease rat model. Neurol Res 33:331–337

    Article  CAS  PubMed  Google Scholar 

  • Joo KM, Park IH, Shin JY, Jin J, Kang BG, Kim MH, Lee SJ, Jo MY, Kim SU, Nam DH (2009) Human neural stem cells can target and deliver therapeutic genes to breast cancer brain metastases. Mol Ther 17:570–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang NH, Hwang KA, Yi BR, Lee HJ, Jeung EB, Kim SU, Choi KC (2012) Human amniotic fluid-derived stem cells expressing cytosine deaminase and thymidine kinase inhibits the growth of breast cancer cells in cellular and xenograft mouse models. Cancer Gene Ther 19:412–419

    Article  CAS  PubMed  Google Scholar 

  • Kang E, Wang X, Tippner-Hedges R, Ma H, Folmes CDL, Gutierrez NM, Lee Y, Dyken CV, Ahmed R, Li Y, Koski A, Hayama T, Luo S, Harding CO, Amato P, Jensen J, Battaglia D, Lee D, Wu D, Terzic A, Wolf DP, Huang T, Mitalipov S (2016) Age-related accumulation of somatic mitochondrial DNA mutations in adult-derived human iPSCs. Cell Stem Cell 18:1–12

    Article  Google Scholar 

  • Keene CD, Chang RC, Leverenz JB, Kopyov O, Perlman S, Hevner RF, Born DE, Bird TD, Montine TJ (2009) A patient with Huntington’s disease and long-surviving fetal neural transplants that developed mass lesions. Acta Neuropathol 117:329–338

    Article  PubMed  Google Scholar 

  • Kim M, Lee ST, Chu K, Kim SU (2008) Stem cell-based cell therapy for Huntington disease: a review. Neuropathology 28:1–9

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Kim DH, Kim JH, Lee D, Jeon HB, Kwon SJ, Kim SM, Yoo YJ, Lee EH, Choi SJ, Seo SW, Lee JI, Na DL, Yang YS, Oh W, Chang JW (2012) Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-β plaques. Cell Death Differ 19:680–691

    Article  CAS  PubMed  Google Scholar 

  • Kim SU, Lee HJ, Kim YB (2013) Neural stem cell-based treatment for neurodegenerative diseases. Neuropathology 33:491–504

    PubMed  Google Scholar 

  • Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A, Yang L, Beal MF, Surmeier DJ, Kordower JH, Tabar V, Studer L (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480:547–551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HJ, Kim KS, Kim EJ, Choi HB, Lee KH, Park IH, Ko Y, Jeong SW, Kim SU (2007) Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model. Stem Cells 25:1204–1212

    Article  CAS  PubMed  Google Scholar 

  • Lee JK, Jin HK, Bae JS (2009) Bone marrow-derived mesenchymal stem cells reduce brain amyloid-β deposition and accelerate the activation of microglia in an acutely induced Alzheimer’s disease mouse model. Neurosci Lett 450:136–141

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Lim IJ, Park SW, Ko Y, Kim SU (2012) Human neural stem cells genetically modified to express human nerve growth factor gene restore cognition in ibotenic acid-induced cognitive dysfunction. Cell Transplant 21:2487–2496

    Article  PubMed  Google Scholar 

  • Lee HJ, Doo SW, Kim DH, Cha YJ, Kim JH, Song YS, Kim SU (2013) Cytosine deaminase-expressing human neural stem cells inhibit tumor growth in prostate cancer-bearing mice. Cancer Lett 335:58–65

    Article  CAS  PubMed  Google Scholar 

  • Lim SH, Choi SA, Lee JY, Wang KC, Phi JH, Lee DH, Song SH, Song JH, Jin X, Kim H, Lee HJ, Lim I, Kim SU, Kim SK (2011) Therapeutic targeting of subdural medulloblastomas using human neural stem cells expressing carboxylesterase. Cancer Gene Ther 18(11):817–824

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Weick JP, Liu H, Krencik R, Zhang X, Ma L, Zhou GM, Ayala M, Zhang SC (2013) Medial ganglionic eminence-like cells derived from human embryonic stem cells correct learning and memory deficits. Nat Biotechnol 31:440–447

    Article  PubMed  PubMed Central  Google Scholar 

  • Lo B, Zettler P, Cedars MI, Gates E, Kriegstein AR, Oberman M, Reijo Pera R, Wagner RM, Wuerth MT, Wolf LE, Yamamoto KR (2005) A new era in the ethics of human embryonic stem cell research. Stem Cells 23:1454–1459

    Article  PubMed  Google Scholar 

  • Lois C, Alvarez-Buylla A (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A 90:2074–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowenthal J, Lipnick S, Rao M, Hull SC (2012) Specimen collection for induced pluripotent stem cell research: harmonizing the approach to informed consent. Stem Cells Transl Med 1:409–421

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma T, Gong K, Ao Q, Yan Y, Song B, Huang H, Zhang X, Gong Y (2013) Intracerebral transplantation of adipose-derived mesenchymal stem cells alternatively activates microglia and ameliorates neuropathological deficits in Alzheimer’s disease mice. Cell Transplant 22:S113–S126

    Article  PubMed  Google Scholar 

  • Martello G, Smith A (2014) The nature of embryonic stem cells. Annu Rev Cell Dev Biol 30:647–675

    Article  CAS  PubMed  Google Scholar 

  • Maucksch C, Vazey EM, Gordon RJ, Connor B (2013) Stem cell-based therapy for Huntington’s disease. J Cell Biochem 114:754–763

    Article  CAS  PubMed  Google Scholar 

  • Monni E, Cusulin C, Cavallaro M, Lindvall O, Kokaia Z (2014) Human fetal striatumderived neural stem (NS) cells differentiate to mature neurons in vitro and in vivo. Curr Stem Cell Res Ther 9:338–346

    Article  CAS  PubMed  Google Scholar 

  • Nikolic WV, Hou H, Town T, Zhu Y, Giunta B, Sanberg CD, Zeng J, Luo D, Ehrhart J, Mori T, Sanberg PR, Tan J (2008) Peripherally administered human umbilical cord blood cells reduce parenchymal and vascular beta-amyloid deposits in Alzheimer mice. Stem Cells Dev 17:423–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishio M, Nakahara M, Yuo A, Saeki K (2016) Human pluripotent stem cells: towards therapeutic development for the treatment of lifestyle diseases. World J Stem Cells 8:56–61

    Article  PubMed  PubMed Central  Google Scholar 

  • Noort WA, Kruisselbrink AB, in’t Anker PS, Kruger M, van Bezooijen RL, de Paus RA, Heemskerk MH, Löwik CW, Falkenburg JH, Willemze R, Fibbe WE (2002) Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34+ cells inNOD/SCID mice. Exp Hematol 30:870–878

    Article  PubMed  Google Scholar 

  • Paganini M, Biggeri A, Romoli AM, Mechi C, Ghelli E, Berti V, Pradella S, Bucciantini S, Catelan D, Saccardi R, Lombardini L, Mascalchi M, Massacesi L, Porfirio B, Di Lorenzo N, Vannelli GB, Gallina P (2014) Fetal striatal grafting slows motor and cognitive decline of Huntington’s disease. J Neurol Neurosurg Psychiatry 85:974–981

    Article  PubMed  Google Scholar 

  • Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V, Marro S, Südhof TC, Wernig M (2011) Induction of human neuronal cells by defined transcription factors. Nature 476:220–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park D, Yang YH, Bae DK, Lee SH, Yang G, Kyung J, Kim D, Choi EK, Lee SW, Kim GH, Hong JT, Choi KC, Lee HJ, Kim SU, Kim YB (2013a) Improvement of cognitive function and physical activity of aging mice by human neural stem cells over-expressing choline acetyltransferase. Neurobiol Aging 34:2639–2646

    Article  CAS  PubMed  Google Scholar 

  • Park D, Yang G, Bae DK, Lee SH, Yang YH, Kyung J, Kim D, Choi EK, Choi KC, Kim SU, Kang SK, Ra JC, Kim YB (2013b) Human adipose tissue-derived mesenchymal stem cells improve cognitive function and physical activity in ageing mice. J Neurosci Res 91:660–670

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Rhee YH, Ko JY, Chang MY, Yi SH, Kim D, Kim CH, Shim JW, Jo AY, Kim BW, Lee H, Lee SH, Suh W, Park CH, Koh HC, Lee YS, Lanza R, Kim KS, Lee SH (2011) Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. J Clin Invest 121:2326–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salem AM, Ahmed HH, Atta HM, Ghazy MA, Aglan HA (2014) Potential of bone marrow mesenchymal stem cells in management of Alzheimer’s disease in female rats. Cell Biol Int 38:1367–1383

    Article  CAS  PubMed  Google Scholar 

  • Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-Garcia Verdugo J, Berger MS, Alvarez-Buylla A (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744

    Article  CAS  PubMed  Google Scholar 

  • Schwarz SC, Schwarz J (2010) Translation of stem cell therapy for neurological diseases. Transl Res 156:155–160

    Article  CAS  PubMed  Google Scholar 

  • Seol HJ, Jin J, Seong DH, Joo KM, Kang W, Yang H, Kim J, Shin CS, Kim Y, Kim KH, Kong DS, Lee JI, Aboody KS, Lee HJ, Kim SU, Nam DH (2011) Genetically engineered human neural stem cells with rabbit carboxyl esterase can target brain metastasis from breast cancer. Cancer Lett 311(2):152–159

    Article  CAS  PubMed  Google Scholar 

  • Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A 95:13726–13731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimato S, Natsume A, Takeuchi H, Wakabayashi T, Fujii M, Ito M, Ito S, Park IH, Bang JH, Kim SU, Yoshida J (2007) Human neural stem cells target and deliver therapeutic gene to experimental leptomeningeal medulloblastoma. Gene Ther 14:1132–1142

    Article  CAS  PubMed  Google Scholar 

  • Shin JY, Park HJ, Kim HN, Oh SH, Bae JS, Ha HJ, Lee PH (2014) Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy 10:32–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sramka M, Rattaj M, Molina H, Vojtassák J, Belan V, Ruzický E (1992) Stereotactic technique and pathophysiological mechanisms of neurotransplantation in Huntington’s chorea. Stereotact Funct Neurosurg 58:79–83

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells frommouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Xu H, Fan X, Li D, Rancourt D, Zhou G, Li Z, Yang L (2008) Embryonic stem cell-derived neural precursor cells improve memory dysfunction in Aβ(1–40) injured rats. Neurosci Res 62:86–96

    Article  CAS  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Tsai MS, Lee JL, Chang YJ, Hwang SM (2004) Isolation of human multipotent mesenchymal stem cells from secondtrimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19:1450–1456

    Article  PubMed  Google Scholar 

  • van Strien ME, Sluijs JA, Reynolds BA, Steindler DA, Aronica E, Hol EM (2014) Isolation of neural progenitor cells from the human adult subventricular zone based on expression of the cell surface marker CD271. Stem Cells Transl Med 3:470–480

    Article  PubMed  PubMed Central  Google Scholar 

  • Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci U S A 105:5856–5861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H, Suzuki N (2011) Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet 20:4530–4539

    Article  CAS  PubMed  Google Scholar 

  • Yang AH, Kaushal D, Rehen SK, Kriedt K, Kingsbury MA, McConnell MJ, Chun J (2003) Chromosome segregation defects contribute to aneuploidy in normal neural progenitor cells. J Neurosci 23:10454–10462

    CAS  PubMed  Google Scholar 

  • Yi BR, Kim SU, Kim YB, Lee HJ, Cho MH, Choi KC (2012) Antitumor effects of genetically engineered stem cells expressing yeast cytosine deaminase in lung cancer brain metastases via their tumor-tropic properties. Oncol Rep 27:1823–1828

    CAS  PubMed  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Google Scholar 

Download references

Acknowledgement

This research was supported by a grant from the Korea Research Institute of Bioscience and Biotechnology (KRIBB) Research Initiative Program (KGM4611613).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong J. Lee PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lee, H.J., Choi, S.S., Lee, SR., Chang, KT. (2017). Stem Cell Therapy in Neurological and Neurodegenerative Disease. In: Pham, P. (eds) Neurological Regeneration. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-33720-3_1

Download citation

Publish with us

Policies and ethics