Skip to main content

Compliant Actuator Dedicated for Humanoidal Robot—Design Concept

  • Conference paper
  • First Online:
ROMANSY 21 - Robot Design, Dynamics and Control (ROMANSY21 2016)

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 569))

Included in the following conference series:

Abstract

The design concept of compliant actuator dedicated for humanoid robot is presented. Actuator consists of DC motor with serial and parallel springs. Evaluation of motor parameters and selection of springs’ parameters was performed considering human motion data. Correctness of proposed design was justified by simulation. The following the reference trajectories for knee joint was investigated. Obtained results confirmed that the proposed concept of compliant actuator performs well with decreasing the motor power demand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Data used for gait reconstruction were collected at Pracownia Diagnostyki Narzadu Ruchu at Warsaw children’s hospital Instytut Pomnik—Centrum Zdrowia Dziecka. Authors thank to professor Malgorzata Syczewska, the hospital’s Director, for her help and support during experiments.

References

  • Bhounsule, P. A., Cortell, J., & Ruina, A. (2012). Design and control of ranger: an energy-efficient, dynamic walking robot. In Proceedings of the Fifteenth International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (pp. 441–448).

    Google Scholar 

  • Grimmer, M., Eslamy, M., Gleich, S., & Seyfarth, A. (2012). A comparison of parallel-and series elastic elements in an actuator for mimicking human ankle joint in walking and running. In IEEE International Conference on Robotics and Automation.

    Google Scholar 

  • Hashimoto, K., Takezaki, Y., Hattori, K., Kondo, H., Takashima, T., Lim, H., et al. (2010). A study of function of the human’s foot arch structure using biped humanoid robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2206–2211).

    Google Scholar 

  • Hashimoto, K., Motohashi, H., Takashima, T., Lim, H., & Takanishi, A. (2013). Shoes-wearable foot mechanism mimicking characteristics of human’s foot arch and skin. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (pp. 678–683).

    Google Scholar 

  • Hauser, H., Neumann, G., & Ijspeert, A. J. (2007). Biologically inspired kinematic synergies provide a new paradigm for balance control of humanoid robots. In IEEE-RAS International Conference on Humanoid Robots (pp. 73–80).

    Google Scholar 

  • Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., & Hirukawa, H. (2001). The 3D linear inverted pendulum mode: A simple modeling for a biped walking pattern generation. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 239–246).

    Google Scholar 

  • Komura, T., Nagano, A., Leung, H., & Shinagawa, Y. (2005). Simulating pathological gait using the enhanced linear inverted pendulum model (pp. 1502–1513).

    Google Scholar 

  • Kondo, H., Morishima, A., Ogura, Y., Momoki, S., Shimizu, J., Lim, H., et al. (2008). Algorithm of pattern generation for mimicking disabled person’s gaitl. In IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (pp. 724–729).

    Google Scholar 

  • McGeer, T. (1990). Passive dynamic walking. The International Journal of Robotics Research.

    Google Scholar 

  • Otani, T., Iizuka, A., Takamoto, D., Motohashi, H., Kishi, T., Kryczka, P., et al. (2013). Algorithm of pattern generation for mimicking disabled person’s gaitl. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (pp. 659–664).

    Google Scholar 

  • Pratt, G. A., & Williamson, M. M. (1995). Series elastic actuators.

    Google Scholar 

  • Tsagarakis, N. G., Laffranchi, M., Vanderborght, B., & Caldwell, D. G. (2009). A compact soft actuator unit for small scale human friendly robots (pp. 4356–4362).

    Google Scholar 

  • Vasilescu, M., & Alex, O. (2002). Human motion signatures: Analysis, synthesis, recognition. In International Conference on Pattern Recognition (pp. 456–460).

    Google Scholar 

  • Wensing, P. M., & Orin, D. E. (2013). High-speed humanoid running through control with a 3D-slip model. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 5134–5140).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksymilian Szumowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 CISM International Centre for Mechanical Sciences

About this paper

Cite this paper

Zurawska, M.S., Szumowski, M., Zielinska, T. (2016). Compliant Actuator Dedicated for Humanoidal Robot—Design Concept. In: Parenti-Castelli, V., Schiehlen, W. (eds) ROMANSY 21 - Robot Design, Dynamics and Control. ROMANSY21 2016. CISM International Centre for Mechanical Sciences, vol 569. Springer, Cham. https://doi.org/10.1007/978-3-319-33714-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33714-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33713-5

  • Online ISBN: 978-3-319-33714-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics