Skip to main content

Extreme Marine Environments (Brines, Seeps, and Smokers)

  • Chapter
  • First Online:
The Marine Microbiome

Abstract

Several different extreme environments—characterized by geochemical and physical extremes—are found in the ocean and in seas and many of them appeared to be hot spots for microbial abundance and diversity, thanks to the overwhelming presence of substrates and energy sources that support microbial metabolism. The most studied oceanic extreme environments are the vent ecosystems, such as the hot deep-sea hydrothermal vents (DSHVs) or cold seeps and mud volcanoes, and the hypersaline ecosystems such as the deep anoxic hypersaline lakes, brine lakes on mud volcanoes, and brines contained within sea ice. However, new fascinating extreme habitats for microbial life in the ocean are being discovered continuously such as water droplets entrapped in oil deposits. These environments comprise a large variety of extreme physicochemical conditions, which contribute importantly to the composition and shaping of the residing microbial communities and select for extremophile populations of microorganisms. These extremophiles are the key players of the element cycles in these environments, often responsible for primary productivity, and endemic. Many of the extremophiles have not yet been obtained in pure culture. The study of the microbiota associated with extreme marine environments confirmed that they constitute an important source of Bacteria and Archaea with biotechnological potential, producing enzymes and metabolites—“extremozymes” and “extremolytes”—that might find industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrevaya XC, Sacco N, Mauas PJD, Corton E (2011) Archaea-based microbial fuel cell operating at high ionic strength conditions. Extremophiles 15:633–642

    Article  CAS  PubMed  Google Scholar 

  • Ambati RR, Phang SM, Ravi S, Aswathanarayana RG (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications. Mar Drugs 12:128–152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson RE, Sogin ML, Baross JA (2015) Biogeography and ecology of the rare and abundant microbial lineages in deep-sea hydrothermal vents. FEMS Microbiol Ecol 91:1–11

    Article  PubMed  Google Scholar 

  • Anton J, Meseguer I, Rodriguez-Valera F (1988) Production of an extracellular polysaccharide by Haloferax mediterranei. Appl Environ Microbiol 54:2381–2386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Antunes A, Rainey FA, Wanner G, Taborda M, Patzold J, Nobre MF, da Costa MS, Huber R (2008) A new lineare of halophilic, wall-less, contractile bacteria from a brine-filled deep of the Red Sea. J Bacteriol 190:3580–3587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antunes A, Alam I, Bajic VB, Stingl U (2011) Genome sequence of Salinisphaera shabanensis, a gammaproteobacterium from the harsh, variable environment of the brine-seawater interface of the Shaban deep in the Red Sea. J Bacteriol 193:4555–4556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auguet J-C, Barberan A, Casamayor EO (2010) Global ecological patterns in uncultured Archaea. ISME J 4:182–190

    Article  PubMed  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:459–508

    Article  Google Scholar 

  • Bhattacharyya A, Saha J, Haldar S, Bhowmic A, Mukhopadhyay UK, Mukherjee J (2014) Production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei using rice-based ethanol stillage with simultaneous recovery and re-use of medium salts. Extremophiles 18:463–470

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya A, Jana K, Haldar S, Bhowmic A, Mukhopadhyay UK, Mukherjee J (2015) Integration of poly-3-(hydroxybutyrate-co-hydroxyvalerate) production by Haloferax mediterranei through utilization of stillage from rice-based ethanol manufacture in India and its techno-economic analysis. World J Microbiol Biotechnol 31:717–727

    Article  CAS  PubMed  Google Scholar 

  • Boetius A, Wenzhöfer F (2013) Seafloor oxygen consumption fuelled by methane from cold seeps. Nat Geosci 6:725–734

    Article  CAS  Google Scholar 

  • Borin S, Brusetti L, Mapelli F, D’Auria G, Brusa T, Marzorati M, Rizzi A, Yakimov M, Marty D, De Lange GJ, Van der Wielen PWJJ, Bolhuis H, McGenity TJ, Polymenakou PN, Malinverno E, Giuliano L, Corselli C, Daffonchio D (2009) Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin. Proc Natl Acad Sci USA 106:9151–9156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borin S, Mapelli F, Rolli E, Song B, Tobias C, Schmid MC, De Lange GJ, Reichart GJ, Schouten S, Jetten M, Daffonchio D (2013) Anammox bacterial populations in deep marine hypersaline gradient systems. Extremophiles. doi:10.1007/s00792-013-0516-x

    PubMed  Google Scholar 

  • Bougouffa S, Yang JK, Lee OO, Wang Y, Batang Z, Al-Suwailem A et al (2013) Distinctive microbial community structure in highly stratified deep-sea brine water columns. Appl Environ Microbiol 79:3425–3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camerlenghi A (1990) Anoxic basins of the eastern Mediterranean: geological framework. Mar Chem 31:1–19

    Article  CAS  Google Scholar 

  • Campbell BJ, Jeanthon C, Kostka JE, Luther GW 3rd, Cary SC (2001) Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Appl Environ Microbiol 67:4566–4572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell BJ, Smith JL, Hanson TE, Klotz MG, Stein LY, Lee CK, Wu D, Robinson JM, Khouri HM, Eisen JA, Cary SC (2009) Adaptations to submarine hydrothermal environments exemplified by the genome of Nautilia profundicola. PLoS Genet 5:e1000362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao H, Zhang W, Wang Y, Qiari P-Y (2015) Microbial community changed along the active seepage site of one cold seep in the Red Sea. Front Microbiol 6. doi:10.3389/fmicb.2015.00739

  • Capes MD, DasSarma P, DasSarma S (2012) The core and unique proteins of haloarchaea. BMC Genom 13:39–45

    Article  CAS  Google Scholar 

  • Cockell CS (2006) The origin and emergence of life under impact bombardment. Philos Trans R Soc B 361:1845–1856

    Article  CAS  Google Scholar 

  • Daffonchio D, Borin S, Brusa T, Brusetti L, van der Wielen PWJJ, Bolhuis H, Yakimov M, D’Auria G, Giuliano L, Marty D, Tamburini C, McGenity T, Hallsworth J, Sass A, Timmis KN, Tselepides A, de Lange G, Hübner H, Thomson J, Varnavas S, Gasparoni F, Gerber H, Malinverno E, Corselli C, Party The Biodeep Scientific (2006) Stratified prokaryote network in the oxic-anoxic transition of a deep sea halocline. Nature 440:203–207

    Article  CAS  PubMed  Google Scholar 

  • Dalmaso GZL, Ferreira D, Vermelho AB (2015) Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 13:1925–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Vitis V, Guidi B, Contente ML, Granato T, Conti P, Molinari F, Crotti E, Mapelli F, Borin S, Daffonchio D, Romano D (2015) Marine microorganisms as source of stereoselective esterases and ketoreductases: kinetic resolution of a prostaglandin intermediate. Mar Biotechnol 17:144–152

    Article  PubMed  CAS  Google Scholar 

  • Dick GJ, Tebo BM (2010) Microbial diversity and biogeochemistry of the Guaymas Basin deep-sea hydrothermal plume. Environ Microbiol 12:1334–1347

    Article  CAS  PubMed  Google Scholar 

  • Dick GJ, Anantharaman K, Baker BJ, Li M, Reed DC, Sheik CS (2013) The linkages to seafloor and water microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic column habitats. Front Microbiol 4:124

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickins HD, Van Vleet ES (1992) Archaebacterial activity in the Orca basin determined by the isolation of characteristic isopranyl ether-linked lipids. Deep-Sea Res 39:521–536

    Article  CAS  Google Scholar 

  • Díez B, Bergman B, Pedrós-Alió C et al (2012) High cyanobacterial nifH gene diversity in Arctic seawater and sea ice brine. Environ Microbiol Rep 4(3):360–366

    Article  PubMed  CAS  Google Scholar 

  • Domínguez de María P (2013) On the use of seawater as reaction media for large-scale applications in biorefineries. ChemCatChem 5:1643–1648

    Article  CAS  Google Scholar 

  • Dupré S, Woodside J, Foucher J-P, de Lange G, Mascle J, Boetius A, Mastalerz V, Stadnitskaia A, Ondréas H, Huguen C, Harmegnies F, Gontharet S, Loncke L, Deville E, Niemann H, Omoregie E, Olu-Le Roy K, Fiala-Medioni A, Dählmann A, Caprais J-C, Prinzhofer A, SibuetM, Pierre C, SinningheDamsté J & NAUTINIL scientific party (2007) Seafloor geological studies above active gas chimneys off Egypt (Central Nile Deep Sea Fan). Deep Sea Res Part I Oceanogr Res Pap 54(7):1146–1172

    Google Scholar 

  • Dupré S, Mascle M, Foucher JP, Harmegnies F, Woodside J, Pierre C (2014) Warm brine lakes in craters of active mud volcanoes, Menes caldera off NW Egypt: evidence for deep-rooted thermogenic processes. Geo-Mar Lett 34:153–168

    Article  CAS  Google Scholar 

  • Eder W, Ludwig W, Huber R (1999) Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of Kebrit Deep, Red Sea. Arch Microbiol 172:213–218

    Article  CAS  PubMed  Google Scholar 

  • Eder W, Jahnke LL, Schmidt M, Huber R (2001) Microbial diversity of the brine-seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods. Appl Environ Microbiol 67:3077–3085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eder W, Schmidt M, Koch M, Garbe-Shonberg D, Huber R (2002) Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep, Red Sea. Environ Microbiol 4:758–763

    Article  CAS  PubMed  Google Scholar 

  • Elderfield H, Schultz A (1996) Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Planet Sci 24:191–224

    Article  CAS  Google Scholar 

  • Ferrer M, Werner J, Chernikova TN, Bargiela R, Fernández L, La Cono V et al (2012) Unveiling microbial life in the new deep-sea hypersaline Lake Thetis. Part II: a metagenomic study. Environ Microbiol 14:268–281

    Article  CAS  PubMed  Google Scholar 

  • German CR, Bowen A, Coleman ML, Honig DL, Huber JA, Jakuba MV, Kinsey JC, Kurz MD, Leroy S, McDermott JM, de Lepinay BM, Nakamura K, Seewald JS, Smith JL, Sylva SP, van Dover CL, Whitcomb LL, Yoerger DR (2010) Diverse styles of submarine venting on the ultra-slow spreading Mid-Cayman rise. Proc Natl Acad Sci USA 107:14020–14025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannelli D, Ferriera S, Johnson J, Kravitz S, Pérez-Rodriguez I, Ricci J, O’Brien C, Voordeckers JW, Bini E, Vetriani C (2011) Draft genome sequence of Caminibacter mediatlanticus strain TB-2T, an epsiloproteobacterium isolated from a deep-sea hydrothermal vent. Stan Genomic Sci 5:135–143

    Article  CAS  Google Scholar 

  • Godet L, Zelnio KA, Van Dover CL (2011) Scientists as stakeholders in conservation of hydrothermal vents. Conserv Biol 25:214–222

    PubMed  Google Scholar 

  • Grünke S, Felden J, Lichtschlag A, Girnth A, De Beer D, Wenzhöfer F, Boetius A (2011) Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea). Geobiology 9:330–348

    Article  PubMed  CAS  Google Scholar 

  • Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JL, Auria D, de Lima G et al (2007) Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ Microbiol 9:801–813

    Article  CAS  PubMed  Google Scholar 

  • Hartmann M, Scholten JC, Stoffers P, Wehner F (1998) Hydrographic structure of brine-filled deeps in the Red Sea—new results from the Shaban Kebrit, Atlantis II, and Discovery Deep. Mar Geol 144:311–330

    Article  CAS  Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Han J, Cai L, Zhou J, Lü Y, Jin C, Liu J, Hua Xiang H (2014) Characterization of genes for chitin catabolism in Haloferax mediterranei. Appl Microbiol Biotechnol 98:1185–1194

    Article  CAS  PubMed  Google Scholar 

  • Hua NP, Kanekiyo A, Fujikura K, Yasuda H, Naganuma T (2007) Halobacillus profundi sp. nov. and Halobacillus kuroshimensis sp. nov., moderately halophilic bacteria isolated from a deep-sea methane cold seep. Int J Syst Evol Microbiol 57:1243–1249

    Article  CAS  PubMed  Google Scholar 

  • Huber JA, Welch DBM, Morrison HG, Huse SM, Neal PR, Butterfield DA, Sogin ML (2007) Microbial population structures in the deep marine biosphere. Science 318:97–100

    Article  CAS  PubMed  Google Scholar 

  • Jebbar M, Franzetti B, Girard E, Oger P (2015) Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles 19:721–740

    Article  CAS  PubMed  Google Scholar 

  • Joint I, Mühling M, Querellou J (2010) Culturing marine bacteria—an essential prerequisite for biodiscovery. Microb Biotechnol 3(5):564–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jongsma D, Fortuin AR, Huson W, Troelstra SR, Klaver GT, Peters JM, van Harten D, de Lange GJ, ten Haven L (1983) Discovery of an anoxic basin within the Strabo trench, eastern Mediterranean. Nature 305:795–797

    Article  Google Scholar 

  • Joye SB, MacDonald IR, Montoya JP, Piccini M (2005) Geophysical and geochemical signatures of Gulf of Mexico seafloor brines. Biogeosciences 2:295–309

    Article  CAS  Google Scholar 

  • Joye SB, Samarkin VA, Orcutt BN, MacDonald IR, Hinrichs KU, Elvert M, Teske AP, Lloyd KG, Lever MA, Montoya JP, Meile CD (2009) Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics. Nat Geosci 2:349–354

    Article  CAS  Google Scholar 

  • Junge K, Gosink JJ, Hoppe HG et al (1998) Arthrobacter, Brachybacterium and Planococcus isolates identified from Antarctic Sea ice brine. Description of Planococcus mcmeekinii, sp. nov. Syst Appl Microbiol 21:306–314

    Article  CAS  PubMed  Google Scholar 

  • Karan R, Capes MD, DasSarma P, DasSarma S (2013) Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi. BMC Biotechnol 13:3–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kathiresan K, Saravanakumar K, Senthilraja P (2011) Bio-ethanol production by marine yeasts isolated from coastal mangrove sediment. Int Multi Res J 1:19–24

    CAS  Google Scholar 

  • Kennedy SP, Ng WV, Salzberg SL, Hood L, DasSarma S (2001) Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genome Res 11:1641–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res I 49:2163–2181

    Article  CAS  Google Scholar 

  • Krembs C, Eicken H, Deming JW (2011) Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. Proc Natl Acad Sci USA 108(9):3653–3658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon KK, Woo JH, Yang SH, Kang JH, Kang SG, Kim SJ, Sato T, Kato C (2007) Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov. Int J Syst Evol Microbiol 57:2207–2211

    Google Scholar 

  • La Cono V, Smedile F, Bortoluzzi G, Arcadi E, Maimone G, Messina E et al (2011) Unveiling microbial life in new deep-sea hypersaline Lake Thetis. Part I: prokaryotes and environmental settings. Environ Microbiol 13:2250–2268

    Article  PubMed  Google Scholar 

  • LaRock PA, Lauer RD, Schwarz JR, Watanabe KK, Wiesenburg DA (1979) Microbial biomass and activity distribution in an anoxic hypersaline basin. Appl Environ Microbiol 37:466–470

    Article  Google Scholar 

  • Lazar CS, L’Haridon S, Pignet P, Toffin L (2011) Archaeal populations in hypersaline sediments underlying orange microbial mats in the Napoli mud volcano. Appl Environ Microbiol 77(9):3120–3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazar CS, Parkes JR, Cragg BA, L’Haridon S, Toffin L (2012) Methanogenic activity and diversity in the centre of the Amsterdam mud volcano, Eastern Mediterranean Sea. FEMS Microbiol Ecol 81:243–254

    Article  CAS  PubMed  Google Scholar 

  • Lentzen G, Schwarz T (2006) Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72:623–634

    Article  CAS  PubMed  Google Scholar 

  • Lesniewski RA, Jain S, Anantharaman K, Schloss PD, Dick GJ (2012) The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs. ISME J 6:2257–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin LA (2005) Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. Oceanogr Mar Biol Annu Rev 43:1–46

    Article  Google Scholar 

  • Litchfield CD (2011) Potential for industrial products from the halophilic Archaea. J Ind Microbiol Biotechnol 38:1635–1647

    Article  CAS  PubMed  Google Scholar 

  • Logan BE (2005) Simultaneous wastewater treatment and biological electricity generation. Water Sci Technol 52:31–37

    CAS  PubMed  Google Scholar 

  • Macelroy RD (1974) Some comments on the evolution of the extremophiles. Biosystems 6:74–75

    Article  Google Scholar 

  • Martinez-Checa F, Toledo FL, El Mabrouki K, Quesada E, Calvo C (2007) Characteristics of bioemulsiWer V2-7 synthesized in culture media added of hydrocarbons: chemical composition, emulsifying activity and rheological properties. Bioresour Technol 98:3130–3135

    Article  CAS  PubMed  Google Scholar 

  • Mathis BJ, Marshall CW, Milliken CE, Makkar RS, Creager SE, May HD (2008) Electricity generation by thermophilic microorganisms from marine sediment. Appl Microbiol Biotechnol 78:147–155

    Article  CAS  PubMed  Google Scholar 

  • Meckenstock RU, von Netzer F, Stumpp C, Lueders T, Himmelberg AM, Hertkorn N, Schmitt-Kopplin P, Harir M, Hosein R, Haque S, Schulze-Makuch D (2014) Water droplets in oil are microhabitats for microbial life. Science 345:673–676

    Article  CAS  PubMed  Google Scholar 

  • Mikucki JA, Priscu JC (2007) Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Appl Environ Microbiol 73:4029–4039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikucki JA, Pearson A, Johnston DT et al (2009) A contemporary microbially maintained subglacial ferrous ‘‘ocean’’. Science 324:397–400

    Article  CAS  PubMed  Google Scholar 

  • Mikucki JA, Auken E, Tulaczyk S et al (2015) Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley. Nat Commun 6:6831. doi:10.1038/ncomms7831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Møller AK, Barkay T, Al-Soud WA et al (2010) Diversity and characterization of mercury-resistant bacteria in snow, freshwater and sea-ice brine from the high Arctic. FEMS Microbiol Ecol 75(2011):390–401

    PubMed  Google Scholar 

  • Murray AE, Kenig F, Fritsen CH et al (2012) Microbial life at −13 & #xB0;C in the brine of an ice-sealed Antarctic lake. Proc Natl Acad Sci USA 109(50):20626–20631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa S, Takaki Y, Shimamura S, Reysenbach AL, Takai K, Horikoshi K (2007) Deep-sea vent ε-proteobacterial genomes provide insights into emergence of pathogens. Proc Natl Acad Sci USA 104:12146–12150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngugi DK, Blom J, Alam I, Rashid M, Ba-Alawi W, Zhang G, Hikmawan T, Guan Y, Antunes A, Siam R, El Dorry H, Bajic V, Stingl U (2015) Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea. ISME J 9:396–411

    Article  CAS  Google Scholar 

  • Niemann H, Linke P, Knittel K, MacPherson E, Boetius A, Brückmann W, Larvik G, Wallmann K, Schacht U, Omoregie E, Hilton D, Brown K, Rehder G (2013) Methane-carbon flow into the benthic food web at cold seeps—a case study from the Costa Rica subduction zone. PLoS ONE 8:e74894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogi Y, Kato C, Horikoshi K (2002) Psychromonas kaikoae sp nov., a novel piezophilic bacterium from the deepest cold-seep sediments in the Japan Trench. Int J Syst Evol Microbiol 52:1527–1532

    CAS  PubMed  Google Scholar 

  • Ogan A, Danis O, Gozuacik A, Cakmar E, Birbir M (2012) Production of cellulase by immobilized whole cells of Haloarcula. Appl Biochem Microbiol 48:440–453

    Article  CAS  Google Scholar 

  • Omoregie EO, Mastalerz V, de Lange G, Straub KL, Kappler A, Røy H, Stadnitskaia A, Foucher J-P, Boetius A (2008) Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the Chefren mud volcano (Nile Deep Sea Fan, Eastern Mediterranean). Appl Environ Microbiol 74(10):3198–3215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oren A (2013) Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Front Microbiol 4:315–321

    Article  PubMed  PubMed Central  Google Scholar 

  • Orsi WD, Edgcomb VP, Christman GD, Biddle JF (2013) Gene expression in the deep biosphere. Nature 499:205–208

    Article  CAS  PubMed  Google Scholar 

  • Pachiadaki MG, Kallionaki A, Dählmann A, De Lange GJ, Kormas KA (2011) Diversity and spatial distribution of prokaryotic communities along a sediment vertical profile of a deep-sea mud volcano. Microb Ecol 62:655–668

    Article  PubMed  Google Scholar 

  • Pérez-Rodríguez I, Bohnert KA, Cuebas M, Keddis R, Vetriani C (2013) Detection and phylogenetic analysis of the membrane-bound nitrate reductase (Nar) in pure cultures and microbial communities from deep-sea hydrothermal vents. FEMS Microbiol Ecol 86:256–267

    Article  PubMed  CAS  Google Scholar 

  • Pettit RK (2011) Culturability and secondary metabolite diversity of extreme microbes: expanding contribution of deep sea and deep-sea vent microbes to natural product discovery. Mar Biotechnol 13:1–11

    Article  CAS  PubMed  Google Scholar 

  • Prakash O, Shouche Y, Jangid K, Kostka JE (2013) Microbial cultivation and the role of microbial resource centers in the omics era. Appl Microbiol Biotechnol 97:51–62

    Article  CAS  PubMed  Google Scholar 

  • Quillaguaman J, Guzman H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Rateb ME, Ebel R (2011) Secondary metabolites of fungi from marine habitats. Nat Prod Rep 28:290–344

    Article  CAS  PubMed  Google Scholar 

  • Rédou V, Navarri M, Meslet-Cladière L, Barbier G, Burgaud G (2015) Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl Environ Microbiol 81:3571–3583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodríguez-Moya J, Argandoña M, Iglesias-Guerra F, Nieto JJ, Vargas C (2013) Temperature- and salinity-decoupled overproduction of hydroxyectoine by Chromohalobacter salexigens. Appl Environ Microbiol 79:1018–1023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruff SE, Biddle JF, Teske AP, Knittel K, Boetius A, Ramette A (2015) Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci USA 112:4015–4020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sass AM, Sass H, Coolen MJL, Cypionka H, Overmann J (2001) Microbial communities in the chemocline of a hypersaline deep-sea basin (Urania Basin, Mediterranean Sea). Appl Environ Microbiol 67:5392–5402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauer T, Galinski EA (1998) Bacterial milking: a novel bioprocess for production of compatible solutes. Biotechnol Bioeng 57:306–313

    Article  CAS  PubMed  Google Scholar 

  • Shao S, Luan X, Dang H, Zhou H, Zhao Y, Liu H, Zhang Y, Dai L, Ye Y, Klotz MG (2014) Deep-sea methane seep sediments in the Okhotsk Sea sustain diverse and abundant anammox bacteria. FEMS Microbiol Ecol 87:503–516

    Article  CAS  PubMed  Google Scholar 

  • Shock EL (1992) Chemical environments of submarine hydrothermal systems. Orig Life Evol Biosph 22:67–107

    Article  CAS  PubMed  Google Scholar 

  • Sievert SM, Vetriani C (2012) Chemoautotrophy at deep-sea vents: past, present, and future. Oceanography 25:218–233

    Article  Google Scholar 

  • Sorokin DY, Kublanov IV, Gavrilov SN, Rojo D, Roman P, Golyshin PN, Slepak VZ, Smedile F, Ferrer M, Messina E, La Cono V, Yakimov MM (2015) Elemental sulfur and acetate can support life of a novel strictly anaerobic haloarchaeon. ISME J. doi:10.1038/ismej.2015.79

    PubMed  Google Scholar 

  • Stokke R, Roalkvam I, Lanzen A, Haflidason H, Steen IH (2012) Integrated metagenomics and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. Environ Microbiol 14:1333–1346

    Article  CAS  PubMed  Google Scholar 

  • Stokke R, Dahle H, Roalkvam I, Wissuwa J, Daae FL, Tooming-Klunderud A, Thorseth IH, Pedersen RB, Steen IH (2015) Functional interactions among filamentous Epsilonproteobacteria and Bacteroidetes in a deep-sea hydrothermal vent biofilm. Environ Microbiol. doi:10.1111/1462-2920.12970

    PubMed  Google Scholar 

  • Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM (1999) Missing lithotroph identifed as new planctomycete. Nature 400:446–449

    Article  CAS  PubMed  Google Scholar 

  • Suess E (2014) Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions. Int J Earth Sci (Geol Rundsch) 103:1889–1916

    Article  CAS  Google Scholar 

  • Suzuki Y, Kojima S, Sasaki T, Suzuki M, Utsumi T, Watanabe H, Urakawa H, Tsuchida S, Nunoura T, Hirayama H, Takai K, Nealson KH, Horikoshi K (2006) Host-symbiont relationships in hydrothermal vent gastropods of the genus Alviniconcha from the Southwest Pacific. Appl Environ Microbiol 72:1388–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takai K, Nakamura K (2011) Archaeal diversity and community development in deep-sea hydrothermal vents. Curr Opin Microbiol 14:282–291

    Article  PubMed  Google Scholar 

  • Takai K, Moyer CL, Miyazaki M, Nogi Y, Hirayama H, Nealson KH, Horikoshi K (2005) Marinobacter alkaliphilus sp. nov., a novel alkaliphilic bacterium isolated from subseafloor alkaline serpentine mud from Ocean drilling program site 1200 at South Chamorro seamount, Mariana Forearc. Extremophiles 9:17–27

    Article  CAS  PubMed  Google Scholar 

  • Takai K, Nakagawa S, Reysenbach A-L, Hoek J (2006) Microbial ecology of mid-ocean ridges and back-arc basins. In: Christie DM, Fisher CR, Lee S-M, Givens S (eds) Back-arc spreading systems: geological, biological, chemical, and physical interactions. American Geophysical Union, Washington, DC. doi:10.1002/9781118666180.ch9

  • Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA 105:10949–10954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanimura K, Nakayama H, Tanaka T, Kondo A (2013) Ectoine production from lignocellulosic biomass-derived sugars by engineered Halomonas elongata. Bioresour Technol 142:523–529

    Article  CAS  PubMed  Google Scholar 

  • Thomas DN, Dieckmann GS (2002) Antarctic sea ice—a habitat for extremophiles. Science 295:641–644

    Article  CAS  PubMed  Google Scholar 

  • Trincone A (2011) Marine biocatalysts: enzymatic features and applications. Mar Drugs 9:478–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlig C, Kilpert F, Frickenhaus S et al (2015) In situ expression of eukaryotic ice-binding proteins in microbial communities of Arctic and Antarctic sea ice. ISME J. doi:10.1038/ismej.2015.43

    PubMed  PubMed Central  Google Scholar 

  • van der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, de Lange GJ, Varnavas SP, Thompson J, Tamburini C, Marty D, McGenity TJ, Timmis KN, Party The BioDeep Scientific (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123

    Article  PubMed  CAS  Google Scholar 

  • van der Wielen PW, Heijs SK (2007) Sulfate-reducing prokaryotic communities in two deep hypersaline anoxic basins in the Eastern Mediterranean deep sea. Environ Microbiol 9:1335–1340

    Google Scholar 

  • Van-Thuoc D, Guzman H, Quillaguaman J, Hatti-Kaul R (2010) High productivity of ectoines by Halomonas boliviensis using a combined two-step fed-batch culture and milking process. J Biotechnol 147:46–51

    Article  CAS  PubMed  Google Scholar 

  • Vetriani C, Speck MD, Ellor SV, Lutz RA, Starovoytov V (2004) Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate ammonifying bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 54:175–181

    Article  CAS  PubMed  Google Scholar 

  • Vetriani C, Voordeckers JW, Crespo-Medina M, O’Brien CE, Giovannelli D, Lutz RA (2014) Deep-sea hydrothermal vent Epsilonproteobacteria encode a conserved and widespread nitrate reduction pathway (Nap). ISME J 8:1510–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent WF (2010) Microbial ecosystem responses to rapid climate change in the Arctic. ISME J 4:1089–1091

    Article  Google Scholar 

  • Wallmann K, Aghib FS, Castradori D, Cita MB, Suess E, Greinert J, Rickert D (2002) Sedimentation and formation of secondary minerals in the hypersaline Discovery basin, eastern Mediterranean. Mar Geol 186:9–28

    Article  CAS  Google Scholar 

  • Werber J, Ferrer M, Michel G, Mann AJ, Huang S, Juarez S, Ciordia S, Albar JP, Alcaide M, La Cono V, Yakimov, MM, Antunes A, Taborda M, da Costa MS, Hai T, Glöckner FO, Golyshina OV, Golyshin PN, Teeling H, The MAMBA Consortium (2014) Halorhabdus tiamatea: proteogenomics and glycosidase activity measurements identify the first cultivated euryarchaeon from a deep-sea anoxic brine lake as potential polysaccharide degrader. Environ Microbiol 16(8):2525–2537

    Google Scholar 

  • Yakimov MM, Giuliano L, Cappello S, Denaro R, Golyshin PN (2007a) Microbial community of a hydrothermal mud vent underneath the deep-sea anoxic brine lake Urania (Eastern Mediterranean). Orig Life Evol Biosp 37:177–188

    Article  Google Scholar 

  • Yakimov MM, La Cono V, Denaro R, D’Auria G, Decembrini F, Timmis KN, Golyshin PN, Giuliano L (2007b) Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L’Atalante, Eastern Mediterranean Sea. ISME J 0:1–13

    Google Scholar 

  • Yakimov MM, La Cono V, Slepak VZ, La Spada G, Arcadi E, Messina E et al (2013) Microbial life in the Lake Medee, the largest deep-sea salt-saturated formation. Sci Rep 3:3554

    Article  PubMed  PubMed Central  Google Scholar 

  • Yakimov MM, La Cono V, La Spada G, Bortoluzzi G, Messina E, Smedile F, Arcadi E, Borghini M, Ferrer M, Schmitt-Kopplin P, Hertkorn N, Cray JA, Hallsworth JE, Golyshin PN, Giuliano L (2015) Microbial community of the deep-sea brine Lake Kryos seawater–brine interface is active below the chaotropicity limit of life as revealed by recovery of mRNA. Environ Microbiol 17(2):364–382

    Article  CAS  PubMed  Google Scholar 

  • Zaky AS, Tucker GA, Daw ZY, Du C (2014) Marine yeast isolation and industrial application. FEMS Yeast Res 1–13

    Google Scholar 

  • Zambelli P, Serra I, Fernandez-Arrojo L, Plou FJ, Tamborini L, Conti P, Contente ML, Molinari F, Romano D (2015) Sweet-and-salty biocatalysis: fructooligosaccharides production using Cladosporium cladosporioides in seawater. Process Biochem 50:1086–1090

    Article  CAS  Google Scholar 

  • Zeng X, Birrien J-L, Fouquet Y, Cherkashow G, Jebbar M, Querellou J, Oger P, Cambon-Bonavita M-A, Xiao X, Prieur D (2009) Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life. ISME J 3:873–876

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Zhang Z, Li X, Zhang X, Cao J, Jebbar M, Alain K, Shao Z (2015) Anoxybacter fermentans gen. nov., sp. nov., a piezophilic, thermophilic, anaerobic, fermentative bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 65:710–715

    Article  CAS  PubMed  Google Scholar 

  • Zitter TAC, Huguen C, Woodside JM (2005) Geology of mud volcanoes in the Eastern Mediterranean from combined sidescan sonar and submersible surveys. Deep-Sea Res I 52:457–475

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement n° 311975. This publication reflects the views only of the author, and the European Union cannot be held responsible for any use which may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Borin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mapelli, F., Crotti, E., Molinari, F., Daffonchio, D., Borin, S. (2016). Extreme Marine Environments (Brines, Seeps, and Smokers). In: Stal, L., Cretoiu, M. (eds) The Marine Microbiome. Springer, Cham. https://doi.org/10.1007/978-3-319-33000-6_9

Download citation

Publish with us

Policies and ethics