Skip to main content

Exploration of Plant Virus Replication Inside a Surrogate Host, Saccharomyces cerevisiae, Elucidates Complex and Conserved Mechanisms

  • Chapter
  • First Online:
Current Research Topics in Plant Virology

Abstract

Plant RNA viruses are intracellular infectious agents with limited coding capacity. Therefore, these viruses have developed sophisticated ways to co-opt numerous cellular factors to facilitate the viral infectious cycle. To understand virus-host interactions, it is necessary to identify all the host components that are co-opted for viral infections. Development of yeast (Saccharomyces cerevisiae) as a host greatly facilitated the progress in our understanding of plant virus, such as brome mosaic virus (BMV) and tomato bushy stunt virus (TBSV), interactions with the host cells. Systematic genome-wide screens using yeast genomic libraries have led to the identification of a large number of host factors affecting (+)RNA virus replication. In combination with proteomic approaches, both susceptibility and restriction factors for BMV and TBSV have been identified using yeast. More detailed biochemical and cellular studies then led to the dissection of molecular functions of many host factors that promote each step of the viral replication process. The development of in vitro systems with TBSV, such as yeast cell-free extract and purified active replicase assays, together with proteomics, lipidomics and artificial vesicle-based assays helped to comprehend the complex nature of virus replication. Subsequently, comparable pro- or antiviral functions of several of the characterized yeast host factors have been validated in plant hosts. Overall, yeast is an advanced model organism that has emerged as an attractive host to gain insights into the intricate interactions of plant viruses with host cells. This chapter describes our current understanding of virus-host interactions, based mostly on TBSV-yeast system. Many of the pioneering findings with TBSV are likely applicable to other plant and animal viruses and their interactions with their hosts. The gained knowledge on host factors could lead to novel specific or broad-range antiviral tools against viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barajas D, Jiang Y, Nagy PD (2009a) A unique role for the host ESCRT proteins in replication of tomato bushy stunt virus. PLoS Pathog 5(12):e1000705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barajas D, Li Z, Nagy PD (2009b) The Nedd4-type Rsp5p ubiquitin ligase inhibits tombusvirus replication by regulating degradation of the p92 replication protein and decreasing the activity of the tombusvirus replicase. J Virol 83(22):11751–11764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barajas D, Martin IF, Pogany J, Risco C, Nagy PD (2014a) Noncanonical role for the host Vps4 AAA+ ATPase ESCRT protein in the formation of tomato bushy stunt virus replicase. PLoS Pathog 10(4):e1004087

    Article  PubMed  PubMed Central  Google Scholar 

  • Barajas D, Xu K, de Castro Martin IF, Sasvari Z, Brandizzi F, Risco C, Nagy PD (2014b) Co-opted oxysterol-binding ORP and VAP proteins channel sterols to RNA virus replication Sites via membrane contact sites. PLoS Pathog 10(10):e1004388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barajas D, Xu K, Sharma M, Wu CY, Nagy PD (2014c) Tombusviruses upregulate phospholipid biosynthesis via interaction between p33 replication protein and yeast lipid sensor proteins during virus replication in yeast. Virology 471–473C:72–80

    Google Scholar 

  • Barajas D, Kovalev N, Qin J, Nagy PD (2015) Novel mechanism of regulation of tomato bushy stunt virus replication by cellular WW-domain proteins. J Virol 89(4):2064–2079

    Article  PubMed  CAS  Google Scholar 

  • Braun RJ, Buttner S, Ring J, Kroemer G, Madeo F (2010) Nervous yeast: modeling neurotoxic cell death. Trends Biochem Sci 35(3):135–144

    Article  CAS  PubMed  Google Scholar 

  • Brinton MA (2014) Replication cycle and molecular biology of the West Nile virus. Viruses 6(1):13–53

    Article  CAS  Google Scholar 

  • Chuang C, Prasanth KR, Nagy PD (2015) Coordinated function of cellular DEAD-Box helicases in suppression of viral RNA recombination and maintenance of viral genome integrity. PLoS Pathog 11(2):e1004680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daugaard M, Rohde M, Jaattela M (2007) The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett 581(19):3702–3710

    Article  CAS  PubMed  Google Scholar 

  • den Boon JA, Ahlquist P (2010) Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories. Annu Rev Microbiol 64:241–256

    Article  CAS  Google Scholar 

  • Diamond MS, Gale M Jr (2012) Cell-intrinsic innate immune control of West Nile virus infection. Trends Immunol 33(10):522–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz A, Wang X, Ahlquist P (2010). Membrane-shaping host reticulon proteins play crucial roles in viral RNA replication compartment formation and function. Proc Natl Acad Sci USA 107(37):16291–16296

    Google Scholar 

  • Diaz A, Zhang J, Ollwerther A, Wang X, Ahlquist P (2015) Host ESCRT proteins are required for bromovirus RNA replication compartment assembly and function. PLoS Pathog 11(3):e1004742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gamarnik AV, Andino R (1998) Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev 12(15):2293–2304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gammie AE, Erdeniz N, Beaver J, Devlin B, Nanji A, Rose MD (2007) Functional characterization of pathogenic human MSH2 missense mutations in Saccharomyces cerevisiae. Genetics 177(2):707–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gancarz BL, Hao L, He Q, Newton MA, Ahlquist P (2011) Systematic identification of novel, essential host genes affecting bromovirus RNA replication. PLoS One 6(8):e23988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelperin DM, White MA, Wilkinson ML, Kon Y, Kung LA, Wise KJ, Lopez-Hoyo N, Jiang L, Piccirillo S, Yu H, Gerstein M, Dumont ME, Phizicky EM, Snyder M, Grayhack EJ (2005) Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev 19(23):2816–2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegemann JH, Heick SB (2011) Delete and repeat: a comprehensive toolkit for sequential gene knockout in the budding yeast Saccharomyces cerevisiae. Methods Mol Biol 765:189–206

    Article  CAS  PubMed  Google Scholar 

  • Huang TS, Nagy PD (2011) Direct inhibition of tombusvirus plus-strand RNA synthesis by a dominant negative mutant of a host metabolic enzyme, glyceraldehyde-3-phosphate dehydrogenase, in yeast and plants. J Virol 85(17):9090–9102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686–691

    Article  CAS  PubMed  Google Scholar 

  • Hurley JH (2015) ESCRTs are everywhere. EMBO J 34(19): 2398–2407

    Google Scholar 

  • Jaag HM, Pogany J, Nagy PD (2010) A host Ca2+/Mn2+ ion pump is a factor in the emergence of viral RNA recombinants. Cell Host Microbe 7(1):74–81

    Article  CAS  PubMed  Google Scholar 

  • Janda M, Ahlquist P (1993) RNA-dependent replication, transcription, and persistence of brome mosaic virus RNA replicons in S. cerevisiae. Cell 72(6):961–970

    Article  CAS  PubMed  Google Scholar 

  • Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, Schwob E, Schiebel E, Knop M (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21(11):947–962

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Serviene E, Gal J, Panavas T, Nagy PD (2006) Identification of essential host factors affecting tombusvirus RNA replication based on the yeast Tet promoters Hughes collection. J Virol 80(15):7394–7404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonczyk M, Pathak KB, Sharma M, Nagy PD (2007) Exploiting alternative subcellular location for replication: tombusvirus replication switches to the endoplasmic reticulum in the absence of peroxisomes. Virology 362(2):320–330

    Article  CAS  PubMed  Google Scholar 

  • Kovalev N, Nagy PD (2013) Cyclophilin a binds to the viral RNA and replication proteins, resulting in inhibition of tombusviral replicase assembly. J Virol 87(24):13330–13342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovalev N, Nagy PD (2014) The expanding functions of cellular helicases: The Tombusvirus RNA replication enhancer co-opts the plant eIF4AIII-Like AtRH2 and the DDX5-Like AtRH5 DEAD-Box RNA helicases to promote viral asymmetric RNA replication. PLoS Pathog 10(4):e1004051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kovalev N, Barajas D, Nagy PD (2012a) Similar roles for yeast Dbp2 and Arabidopsis RH20 DEAD-box RNA helicases to Ded1 helicase in tombusvirus plus-strand synthesis. Virology 432(2):470–484

    Article  CAS  PubMed  Google Scholar 

  • Kovalev N, Pogany J, Nagy PD (2012b) A co-ppted DEAD-Box RNA helicase enhances Tombusvirus plus-strand synthesis. PLoS Pathog 8(2):e1002537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovalev N, Pogany J, Nagy PD (2014) Template role of double-stranded RNA in tombusvirus replication. J Virol 88(10):5638–5651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kushner DB, Lindenbach BD, Grdzelishvili VZ, Noueiry AO, Paul SM, Ahlquist P (2003) Systematic, genome-wide identification of host genes affecting replication of a positive-strand RNA virus. Proc Natl Acad Sci U S A 100(26):15764–15769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahiri S, Toulmay A, Prinz WA (2015) Membrane contact sites, gateways for lipid homeostasis. Curr Opin Cell Biol 33:82–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laliberte JF, Sanfacon H (2010) Cellular remodeling during plant virus infection. Annu Rev Phytopathol 48:69–91

    Article  CAS  PubMed  Google Scholar 

  • Lasserre JP, Dautant A, Aiyar RS, Kucharczyk R, Glatigny A, Tribouillard-Tanvier D, Rytka J, Blondel M, Skoczen N, Reynier P, Pitayu L, Rotig A, Delahodde A, Steinmetz LM, Dujardin G, Procaccio V, di Rago JP (2015) Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies. Dis Models Mech 8(6):509–526

    Article  CAS  Google Scholar 

  • Li Z, Barajas D, Panavas T, Herbst DA, Nagy PD (2008) Cdc34p ubiquitin-conjugating enzyme is a component of the tombusvirus replicase complex and ubiquitinates p33 replication protein. J Virol 82(14):6911–6926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Pogany J, Panavas T, Xu K, Esposito AM, Kinzy TG, Nagy PD (2009) Translation elongation factor 1A is a component of the tombusvirus replicase complex and affects the stability of the p33 replication co-factor. Virology 385(1):245–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Pogany J, Tupman S, Esposito AM, Kinzy TG, Nagy PD (2010) Translation elongation factor 1A facilitates the assembly of the tombusvirus replicase and stimulates minus-strand synthesis. PLoS Pathog 6(11):e1001175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Z, Gonzalez PA, Sasvari Z, Kinzy TG, Nagy PD (2014) Methylation of translation elongation factor 1A by the METTL10-like See1 methyltransferase facilitates tombusvirus replication in yeast and plants. Virology 448C:43–54

    Article  CAS  Google Scholar 

  • Lin JY, Mendu V, Pogany J, Qin J, Nagy PD (2012) The TPR domain in the host Cyp40-like cyclophilin binds to the viral replication protein and inhibits the assembly of the tombusviral replicase. PLoS Pathog 8(2):e1002491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateyak MK, Kinzy TG (2010) eEF1A: thinking outside the ribosome. J Biol Chem 285(28):21209–21213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCartney AW, Greenwood JS, Fabian MR, White KA, Mullen RT (2005) Localization of the tomato bushy stunt virus replication protein p33 reveals a peroxisome-to-endoplasmic reticulum sorting pathway. Plant Cell 17(12):3513–3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendu V, Chiu M, Barajas D, Li Z, Nagy PD (2010) Cpr1 cyclophilin and Ess1 parvulin prolyl isomerases interact with the tombusvirus replication protein and inhibit viral replication in yeast model host. Virology 406(2):342–351

    Article  CAS  PubMed  Google Scholar 

  • Miller DJ, Schwartz MD, Dye BT, Ahlquist P (2003) Engineered retargeting of viral RNA replication complexes to an alternative intracellular membrane. J Virol 77(22):12193–12202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyashita S, Ishibashi K, Kishino H, Ishikawa M (2015) Viruses roll the dice: the stochastic behavior of viral genome molecules accelerates viral adaptation at the cell and tissue levels. PLoS Biol 13(3):e1002094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monkewich S, Lin HX, Fabian MR, Xu W, Na H, Ray D, Chernysheva OA, Nagy PD, White KA (2005) The p92 polymerase coding region contains an internal RNA element required at an early step in Tombusvirus genome replication. J Virol 79(8):4848–4858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy PD (2008) Yeast as a model host to explore plant virus-host interactions. Annu Rev Phytopathol 46:217–242

    Article  CAS  PubMed  Google Scholar 

  • Nagy PD (2011) The roles of host factors in tombusvirus RNA recombination. Adv Virus Res 81:63–84

    Article  CAS  PubMed  Google Scholar 

  • Nagy PD, Pogany J (2000) Partial purification and characterization of Cucumber necrosis virus and Tomato bushy stunt virus RNA-dependent RNA polymerases: similarities and differences in template usage between tombusvirus and carmovirus RNA-dependent RNA polymerases. Virology 276(2):279–288

    Article  CAS  PubMed  Google Scholar 

  • Nagy PD, Pogany J (2006) Yeast as a model host to dissect functions of viral and host factors in tombusvirus replication. Virology 344(1):211–220

    Article  CAS  PubMed  Google Scholar 

  • Nagy PD, Pogany J (2010) Global genomics and proteomics approaches to identify host factors as targets to induce resistance against Tomato bushy stunt virus. Adv Virus Res 76:123–177

    Article  CAS  PubMed  Google Scholar 

  • Nagy PD, Pogany J (2012) The dependence of viral RNA replication on co-opted host factors. Nat Rev Microbiol 10(2):137–149

    CAS  Google Scholar 

  • Nagy PD, Wang RY, Pogany J, Hafren A, Makinen K (2011) Emerging picture of host chaperone and cyclophilin roles in RNA virus replication. Virology 411(2):374–382

    Article  CAS  PubMed  Google Scholar 

  • Nagy PD, Pogany J, Lin JY (2014) How yeast can be used as a genetic platform to explore virus-host interactions: from ‘omics’ to functional studies. Trends Microbiol 22(6):309–316

    Article  CAS  PubMed  Google Scholar 

  • Navarro B, Russo M, Pantaleo V, Rubino L (2006) Cytological analysis of Saccharomyces cerevisiae cells supporting cymbidium ringspot virus defective interfering RNA replication. J Gen Virol 87(Pt 3):705–714

    Article  CAS  PubMed  Google Scholar 

  • Nicholson BL, White KA (2014) Functional long-range RNA-RNA interactions in positive-strand RNA viruses. Nat Rev Microbiol 12(7):493–504

    Article  CAS  PubMed  Google Scholar 

  • Noueiry AO, Chen J, Ahlquist P (2000) A mutant allele of essential, general translation initiation factor DED1 selectively inhibits translation of a viral mRNA. Proc Natl Acad Sci U S A 97(24):12985–12990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panavas T, Nagy PD (2003) Yeast as a model host to study replication and recombination of defective interfering RNA of Tomato bushy stunt virus. Virology 314(1):315–325

    Article  CAS  PubMed  Google Scholar 

  • Panavas T, Nagy PD (2005) Mechanism of stimulation of plus-strand synthesis by an RNA replication enhancer in a tombusvirus. J Virol 79(15):9777–9785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panavas T, Hawkins CM, Panaviene Z, Nagy PD (2005a) The role of the p33:p33/p92 interaction domain in RNA replication and intracellular localization of p33 and p92 proteins of Cucumber necrosis tombusvirus. Virology 338(1):81–95

    Article  CAS  PubMed  Google Scholar 

  • Panavas T, Serviene E, Brasher J, Nagy PD (2005b) Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses. Proc Natl Acad Sci U S A 102(20):7326–7331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panavas T, Stork J, Nagy PD (2006) Use of double-stranded RNA templates by the tombusvirus replicase in vitro: Implications for the mechanism of plus-strand initiation. Virology 352(1):110–120

    Article  CAS  PubMed  Google Scholar 

  • Panaviene Z, Panavas T, Serva S, Nagy PD (2004) Purification of the cucumber necrosis virus replicase from yeast cells: role of coexpressed viral RNA in stimulation of replicase activity. J Virol 78(15):8254–8263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panaviene Z, Panavas T, Nagy PD (2005) Role of an internal and two 3′-terminal RNA elements in assembly of tombusvirus replicase. J Virol 79(16):10608–10618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantaleo V, Rubino L, Russo M (2003) Replication of Carnation Italian ringspot virus defective interfering RNA in Saccharomyces cerevisiae. J Virol 77(3):2116–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak KB, Nagy PD (2009) Defective interfering RNAs: Foes of viruses and friends of virologists. Viruses 1(3):895–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak KB, Sasvari Z, Nagy PD (2008) The host Pex19p plays a role in peroxisomal localization of tombusvirus replication proteins. Virology 379(2):294–305

    Article  CAS  PubMed  Google Scholar 

  • Pathak KB, Pogany J, Nagy PD (2011) Non-template functions of the viral RNA in plant RNA virus replication. Curr Opin Virol 1(5):332–338

    Article  CAS  PubMed  Google Scholar 

  • Pathak KB, Pogany J, Xu K, White KA, Nagy PD (2012) Defining the roles of cis-acting RNA elements in tombusvirus replicase assembly in vitro. J Virol 86(1):156–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogany J, Nagy PD (2008) Authentic replication and recombination of Tomato bushy stunt virus RNA in a cell-free extract from yeast. J Virol 82(12):5967–5980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogany J, Nagy PD (2012) p33-independent activation of a truncated p92 RNA-dependent RNA polymerase of tomato bushy stunt virus in yeast cell-free extract. J Virol 86(22):12025–12038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogany J, Nagy PD (2015) Activation of tomato bushy stunt virus RNA-dependent RNA polymerase by cellular heat shock protein 70 is enhanced by phospholipids in vitro. J Virol 89(10):5714–5723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogany J, Fabian MR, White KA, Nagy PD (2003) A replication silencer element in a plus-strand RNA virus. EMBO J 22(20):5602–5611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogany J, White KA, Nagy PD (2005) Specific binding of tombusvirus replication protein p33 to an internal replication element in the viral RNA is essential for replication. J Virol 79(8):4859–4869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogany J, Stork J, Li Z, Nagy PD (2008) In vitro assembly of the Tomato bushy stunt virus replicase requires the host Heat shock protein 70. Proc Natl Acad Sci U S A 105(50):19956–19961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogany J, Panavas T, Serviene E, Nawaz-Ul-Rehman MS, Nagy PD (2010) A high-throughput approach for studying virus replication in yeast. Curr Protoc Microbiol 19:16J.1.1–16J.1.15

    Article  Google Scholar 

  • Price BD, Rueckert RR, Ahlquist P (1996) Complete replication of an animal virus and maintenance of expression vectors derived from it in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93(18):9465–9470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin J, Barajas D, Nagy PD (2012) An inhibitory function of WW domain-containing host proteins in RNA virus replication. Virology 426(2):106–119

    Article  CAS  PubMed  Google Scholar 

  • Qu B, Jia Y, Liu Y, Wang H, Ren G (2015) The detection and role of heat shock protein 70 in various nondisease conditions and disease conditions: a literature review. Cell Stress Chaperones 20(6):885–892

    Google Scholar 

  • Rajendran KS, Nagy PD (2006) Kinetics and functional studies on interaction between the replicase proteins of Tomato Bushy Stunt Virus: requirement of p33:p92 interaction for replicase assembly. Virology 345(1):270–279

    Article  CAS  PubMed  Google Scholar 

  • Rao AL, Chaturvedi S, Garmann RF (2014) Integration of replication and assembly of infectious virions in plant RNA viruses. Curr Opin Virol 9:61–66

    Article  CAS  PubMed  Google Scholar 

  • Richardson LG, Clendening EA, Sheen H, Gidda SK, White KA, Mullen RT (2014) A unique N-terminal sequence in the Carnation Italian ringspot virus p36 replicase-associated protein interacts with the host cell ESCRT-I component Vps23. J Virol 88(11):6329–6344

    Article  PubMed  PubMed Central  Google Scholar 

  • Romero-Brey I, Bartenschlager R (2014) Membranous replication factories induced by plus-strand RNA viruses. Viruses 6(7):2826–2857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubino L, Navarro B, Russo M (2007) Cymbidium ringspot virus defective interfering RNA replication in yeast cells occurs on endoplasmic reticulum-derived membranes in the absence of peroxisomes. J Gen Virol 88(Pt 5):1634–1642

    Article  CAS  PubMed  Google Scholar 

  • Russo M, Burgyan J, Martelli GP (1994) Molecular biology of tombusviridae. Adv Virus Res 44:381–428

    Article  CAS  PubMed  Google Scholar 

  • Sasvari Z, Izotova L, Kinzy TG, Nagy PD (2011) Synergistic roles of eukaryotic translation elongation factors 1Bgamma and 1A in stimulation of tombusvirus minus-strand synthesis. PLoS Pathog 7(12):e1002438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasvari Z, Gonzalez PA, Rachubinski RA, Nagy PD (2013a) Tombusvirus replication depends on Sec39p endoplasmic reticulum-associated transport protein. Virology 447(1–2):21–31

    Article  CAS  PubMed  Google Scholar 

  • Sasvari Z, Kovalev N, Nagy PD (2013b) The GEF1 proton-chloride exchanger affects tombusvirus replication via regulation of copper metabolism in yeast. J Virol 87(3):1800–1810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sasvari Z, Alatriste Gonzalez P, Nagy PD (2014) Tombusvirus-yeast interactions identify conserved cell-intrinsic viral restriction factors. Front Plant Sci 5:383

    Article  PubMed  PubMed Central  Google Scholar 

  • Serva S, Nagy PD (2006) Proteomics analysis of the tombusvirus replicase: Hsp70 molecular chaperone is associated with the replicase and enhances viral RNA replication. J Virol 80(5):2162–2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serviene E, Shapka N, Cheng CP, Panavas T, Phuangrat B, Baker J, Nagy PD (2005) Genome-wide screen identifies host genes affecting viral RNA recombination. Proc Natl Acad Sci U S A 102(30):10545–10550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serviene E, Jiang Y, Cheng CP, Baker J, Nagy PD (2006) Screening of the yeast yTHC collection identifies essential host factors affecting tombusvirus RNA recombination. J Virol 80(3):1231–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah Nawaz-Ul-Rehman M, Martinez-Ochoa N, Pascal H, Sasvari Z, Herbst C, Xu K, Baker J, Sharma M, Herbst A, Nagy PD (2012) Proteome-wide overexpression of host proteins for identification of factors affecting tombusvirus RNA replication: an inhibitory role of protein kinase C. J Virol 86(17):9384–9395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shah Nawaz-Ul-Rehman M, Reddisiva Prasanth K, Baker J, Nagy PD (2013) Yeast screens for host factors in positive-strand RNA virus replication based on a library of temperature-sensitive mutants. Methods 59(2):207–216

    Article  CAS  Google Scholar 

  • Sharma M, Sasvari Z, Nagy PD (2010) Inhibition of sterol biosynthesis reduces tombusvirus replication in yeast and plants. J Virol 84(5):2270–2281

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Sasvari Z, Nagy PD (2011) Inhibition of phospholipid biosynthesis decreases the activity of the tombusvirus replicase and alters the subcellular localization of replication proteins. Virology 415(2):141–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirover MA (2014) Structural analysis of glyceraldehyde-3-phosphate dehydrogenase functional diversity. Int J Biochem Cell Biol 57:20–26

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Diaz Z, Fang X, Hart MP, Chesi A, Shorter J, Gitler AD (2011) Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol 9(4):e1000614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thivierge K, Cotton S, Dufresne PJ, Mathieu I, Beauchemin C, Ide C, Fortin MG, Laliberte JF (2008) Eukaryotic elongation factor 1A interacts with Turnip mosaic virus RNA-dependent RNA polymerase and VPg-Pro in virus-induced vesicles. Virology 377(1):216–225

    Article  CAS  PubMed  Google Scholar 

  • Tomita Y, Mizuno T, Diez J, Naito S, Ahlquist P, Ishikawa M (2003) Mutation of host DnaJ homolog inhibits brome mosaic virus negative-strand RNA synthesis. J Virol 77(5):2990–2997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294(5550):2364–2368

    Article  CAS  PubMed  Google Scholar 

  • Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M, Chen Y, Cheng X, Chua G, Friesen H, Goldberg DS, Haynes J, Humphries C, He G, Hussein S, Ke L, Krogan N, Li Z, Levinson JN, Lu H, Menard P, Munyana C, Parsons AB, Ryan O, Tonikian R, Roberts T, Sdicu AM, Shapiro J, Sheikh B, Suter B, Wong SL, Zhang LV, Zhu H, Burd CG, Munro S, Sander C, Rine J, Greenblatt J, Peter M, Bretscher A, Bell G, Roth FP, Brown GW, Andrews B, Bussey H, Boone C (2004) Global mapping of the yeast genetic interaction network. Science 303(5659):808–813

    Article  CAS  PubMed  Google Scholar 

  • Walter BL, Parsley TB, Ehrenfeld E, Semler BL (2002) Distinct poly(rC) binding protein KH domain determinants for poliovirus translation initiation and viral RNA replication. J Virol 76(23):12008–12022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang A (2015) Dissecting the molecular network of virus-plant interactions: The complex roles of host factors. Annu Rev Phytopathol 53:45–66

    Article  CAS  PubMed  Google Scholar 

  • Wang RY, Nagy PD (2008) Tomato bushy stunt virus co-opts the RNA-binding function of a host metabolic enzyme for viral genomic RNA synthesis. Cell Host Microbe 3(3):178–187

    Article  CAS  PubMed  Google Scholar 

  • Wang RY, Stork J, Nagy PD (2009a) A key role for heat shock protein 70 in the localization and insertion of tombusvirus replication proteins to intracellular membranes. J Virol 83(7):3276–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RY, Stork J, Pogany J, Nagy PD (2009b) A temperature sensitive mutant of heat shock protein 70 reveals an essential role during the early steps of tombusvirus replication. Virology 394(1):28–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber-Lotfi F, Dietrich A, Russo M, Rubino L (2002) Mitochondrial targeting and membrane anchoring of a viral replicase in plant and yeast cells. J Virol 76(20):10485–10496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeks SA, Miller DJ (2008) The heat shock protein 70 cochaperone YDJ1 is required for efficient membrane-specific flock house virus RNA replication complex assembly and function in Saccharomyces cerevisiae. J Virol 82(4):2004–2012

    Article  CAS  PubMed  Google Scholar 

  • Weeks SA, Shield WP, Sahi C, Craig EA, Rospert S, Miller DJ (2010) A targeted analysis of cellular chaperones reveals contrasting roles for heat shock protein 70 in flock house virus RNA replication. J Virol 84(1):330–339

    Article  CAS  PubMed  Google Scholar 

  • White KA, Morris TJ (1994) Nonhomologous RNA recombination in tombusviruses: generation and evolution of defective interfering RNAs by stepwise deletions. J Virol 68(1):14–24

    CAS  PubMed  PubMed Central  Google Scholar 

  • White KA, Nagy PD (2004) Advances in the molecular biology of tombusviruses: gene expression, genome replication, and recombination. Prog Nucleic Acid Res Mol Biol 78:187–226

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Pogany J, Na H, Nicholson BL, Nagy PD, White KA (2009) A discontinuous RNA platform mediates RNA virus replication: building an integrated model for RNA-based regulation of viral processes. PLoS Pathog 5(3):e1000323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu B, Grigull J, Ore MO, Morin S, White KA (2013) Global organization of a positive-strand RNA virus genome. PLoS Pathog 9(5):e1003363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, Nagy PD (2014) Expanding use of multi-origin subcellular membranes by positive-strand RNA viruses during replication. Curr Opin Virol 9C:119–126

    Article  CAS  Google Scholar 

  • Xu K, Nagy PD (2015) RNA virus replication depends on enrichment of phosphatidylethanolamine at replication sites in subcellular membranes. Proc Natl Acad Sci U S A 112(14):E1782–E1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, Huang TS, Nagy PD (2012) Authentic in vitro replication of two tombusviruses in isolated mitochondrial and endoplasmic reticulum membranes. J Virol 86(23):12779–12794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yofe I, Zafrir Z, Blau R, Schuldiner M, Tuller T, Shapiro E, Ben-Yehezkel T (2014) Accurate, model-based tuning of synthetic gene expression using introns in S. cerevisiae. PLoS Genet 10(6):e1004407

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (MCB-1122039), and the Kentucky Science Foundation to PDN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsuzsanna Sasvari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sasvari, Z., Nagy, P.D. (2016). Exploration of Plant Virus Replication Inside a Surrogate Host, Saccharomyces cerevisiae, Elucidates Complex and Conserved Mechanisms. In: Wang, A., Zhou, X. (eds) Current Research Topics in Plant Virology. Springer, Cham. https://doi.org/10.1007/978-3-319-32919-2_2

Download citation

Publish with us

Policies and ethics