Skip to main content

Disaster Robotics

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Rescue robots have been used in at least 28 disasters in six countries since the first deployment to the 9/11 World Trade Center collapse. All types of robots have been used (land, sea, and aerial) and for all phases of a disaster (prevention, response, and recovery). This chapter will cover the basic characteristics of disasters and their impact on robotic design, and describe the robots actually used in disasters to date, with a special focus on Fukushima Daiichi, which is providing a rich proving ground for robotics. The chapter covers promising robot designs (e. g., snakes, legged locomotion) and concepts (e. g., robot teams or swarms, sensor networks), as well as progress and open issues in autonomy. The methods of evaluation in benchmarks for rescue robotics are discussed and the chapter concludes with a discussion of the fundamental problems and open issues facing rescue robotics, and their evolution from an interesting idea to widespread adoption.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

AAAI:

Association for the Advancement of Artificial Intelligence

AUV:

autonomous underwater vehicle

CBRNE:

chemical, biological, nuclear, radiological, or explosive

CMU:

Carnegie Mellon University

CPU:

central processing unit

CRASAR:

Center for Robot-Assisted Search and Rescue

DHS:

US Department of Homeland Security

GPS:

global positioning system

HRI:

human–robot interaction

IEEE:

Institute of Electrical and Electronics Engineers

JAEA:

Japan Atomic Energy Agency

MSHA:

US Mine Safety and Health Administration

NASA:

National Aeronautics and Space Agency

NERVE:

New England Robotics Validation and Experimentation

NIST:

National Institute of Standards and Technology

NZDF:

New Zealand Defence Force

OOTL:

human out of the loop control

RFID:

radio frequency identification

ROV:

remotely operated vehicle

SLAM:

simultaneous localization and mapping

SWRI:

Southwest Research Institute

UAV:

unmanned aerial vehicle

UGV:

unmanned ground vehicle

UMV:

unmanned marine vehicle

USAR:

urban search and rescue

USV:

unmanned surface vehicle

UUV:

unmanned underwater vehicle

WTC:

World Trade Center

References

  1. A. Davids: Urban search and rescue robots: from tragedy to technology, IEEE Trans. Intell. Syst. 17(2), 81–83 (2002)

    Article  Google Scholar 

  2. A. Davids: Urban search and rescue robots: from tragedy to technology, IEEE Trans. Intell. Syst. 17(2), 1541–1672 (2002)

    Google Scholar 

  3. D. McClean: World Disasters Report 2010. Focus on Urban Risks (IFCR, Geneva 2010)

    Google Scholar 

  4. National Fire Protection Association: Standard on Operations and Training for Technical Rescue Incidents (NFPA, Avon 1999)

    Google Scholar 

  5. United States Fire Administration: Technical Rescue Program Development Manual (USFA, Avon 1996)

    Google Scholar 

  6. R.R. Murphy, A. Kleiner: A community-driver roadmap for the adoption of safety security and rescue robot, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics, Linköping (2013) pp. 1–4

    Google Scholar 

  7. J.A. Barbera, C. DeAtley, A.G. Macintyre, D.H. Parks: Medical aspects of urban search and rescue, Fire Eng. 148, 88–92 (1995)

    Google Scholar 

  8. R. Murphy, D. Riddle, E. Rasmussen: Robot-assisted medical reachback: A survey of how medical personnel expect to interact with rescue robots, Proc. IEEE Int. Work. Human Robot Interact. Commun. (HRI) (2004) pp. 301–306

    Google Scholar 

  9. R. Murphy, M. Konyo, P. Davalas, G. Knezek, S. Tadokoro, K. Sawata, M. Van Zomeren: Preliminary observation of HRI in robot-assisted medical response, Proc. 4th ACM/IEEE Int. Conf. Human Robot Interact. (HRI) (2009) pp. 201–202

    Chapter  Google Scholar 

  10. R. Murphy, A. Rice, N. Rashidi, Z. Henkel, V. Srinivasan: A multi-disciplinary design process for affective robots: Case study of Survivor Buddy 2.0, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 701–706

    Google Scholar 

  11. A.C. Yoo, G.R. Gilbert, T.J. Broderick: Military robotics combat casualty extraction and care. In: Surgical Robotics. Applications and Visions, ed. by J. Rosen, B. Hannaford, R.M. Satava (Springer, New York 2011) pp. 13–32

    Chapter  Google Scholar 

  12. M. Yim, J. Laucharoen: Towards Small Robot Aided Victim Manipulation, J. Intell. Robotic Syst. 64, 119–139 (2011)

    Article  Google Scholar 

  13. A. Kleiner: Mapping and Exploration for Search and Rescue with Humans and Mobile Robots (University of Freiburg, Freiburg 2008)

    Google Scholar 

  14. R.R. Murphy, S. Stover: Gaps analysis for rescue robots, Proc. ANS Shar. Sol. Emerg. Hazard. Environ. (2006)

    Google Scholar 

  15. C. Schlenoff, E. Messina: A robot ontology for urban search and rescue, ACM Work. Res. Knowl. Represent. Auton. Syst., New York (2005) pp. 27–34

    Google Scholar 

  16. R. Murphy, J. Casper, J. Hyams, M. Micire, B. Minten: Mobility and sensing demands in USAR, Proc. IECON Sess. Rescue Eng., Vol. 1 (2000) pp. 138–142

    Google Scholar 

  17. M. Angermann, M. Frassl, M. Lichtenstern: Mission review of aerial robotic assessment – ammunition explosion Cyprus 2011, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2012) pp. 1–6

    Google Scholar 

  18. S. Kawatsuma, M. Fukushima, T. Okada: Emergency response to Fukushima-Daiichi accident: summary and lessons learned, Ind. Robot 39(5), 428–435 (2012)

    Article  Google Scholar 

  19. S. Tadokoro, T. Takamori, S. Tsurutani, K. Osuka: On robotic rescue facilities for disastrous earthquakes – from the great Hanshin-Awaji (Kobe) earthquake, J. Robotics Mechatron. 9(1), 46–56 (1997)

    Article  Google Scholar 

  20. R. Murphy: Human-robot interaction in rescue robotics, IEEE Trans. Syst. Man Cybern. 34(2), 138–153 (2004)

    Article  Google Scholar 

  21. M.J. Micire: Evolution and field performance of a rescue robot, J. Field Robotics 25(1-2), 17–30 (2008)

    Article  Google Scholar 

  22. R.R. Murphy: Disaster Robotics (MIT Press, Cambridge 2014)

    Book  Google Scholar 

  23. K. Pratt, R. Murphy, S. Stover, C. Griffin: Conops and autonomy recommendations for vtol small unmanned aerial systems based on Hurricane Katrina operations, J. Field Robotics 26(8), 636–650 (2009)

    Article  Google Scholar 

  24. R. Murphy, E. Steimle, E. Griffin, C. Cullins, M. Hall, K. Pratt: Cooperative use of unmanned sea surface and micro aerial vehicle at hurricane Wilma, J. Field Robotics 25(3), 164–180 (2008)

    Article  Google Scholar 

  25. V.G. Ambrosia, S. Wegener, T. Zajkowski, D.V. Sullivan, S. Buechel, F. Enomoto, B. Lobitz, S. Johan, J. Brass, E. Hinkley: The Ikhana unmanned airborne system (UAS) western states fire imaging missions: From concept to reality (2006–2010), Geocarto Int. 26(2), 85–101 (2011)

    Article  Google Scholar 

  26. R.R. Murphy, E. Steimle, M. Hall, M. Lindemuth, D. Trejo, S. Hurlebas, Z. Medina-Cetina, D. Slocum: Robot-assisted bridge inspection, J. Intell. Robotic Syst. 64(1), 77–95 (2011)

    Article  Google Scholar 

  27. P. Srivaree-Ratana: Lessons learned from the great Thailand flood 2011: How a UAV helped scientists with emergency response and disaster aversion, Proc. AUVSI Unmanned Syst. North Am. (2012)

    Google Scholar 

  28. R. Murphy, S. Stover, H. Choset: Lessons learned on the uses of unmanned vehicles from the 2004 Florida hurricane season, AUVSI Unmanned Syst. North Am. (2005)

    Google Scholar 

  29. J. Lester, A. Brown, J. Ingham: Christchurch cathedral of the blessed sacrament: Lessons learnt on the Stabilization of a significant heritage building, Proc. Annu. Conf. N. Z. Soc. for Earthq. Eng. (NZSEE) (2012) pp. 1–11

    Google Scholar 

  30. N. Michael, S. Shen, K. Mohta, Y. Mulgaonkar, V. Kumar, K. Nagatani, Y. Okada, S. Kiribayashi, K. Otake, K. Yoshida, K. Ohno, E. Takeuchi, S. Tadokoro: Collaborative mapping of an earthquake-damaged building via ground and aerial robots, J. Field Robotics 29(5), 832–841 (2012)

    Article  Google Scholar 

  31. R.R. Murphy, K.L. Dreger, S. Newsome, J. Rodocker, B. Slaughter, R. Smith, E. Steimle, T. Kimura, K. Makabe, F. Matsuno, S. Tadokoro, K. Kon: Marine heterogeneous multi-robot systems at the great eastern japan tsunami recovery, J. Field Robotics 29(5), 819–831 (2012)

    Article  Google Scholar 

  32. F. Ferreira: ICRA Japan Forum: Preliminary report on the disaster and robotics in Japan, IEEE Robotics Autom. Mag. 18(3), 116 (2011)

    Google Scholar 

  33. M. Shibuya: Using micro-rov's in the aftermath of japan's tsunami. Underwater Intervention (2012)

    Google Scholar 

  34. G.-J. Kruijff, V. Tretyakov, T. Linder, F. Pirri, M. Gianni, P. Papadakis, M. Pizzoli, A. Sinha, E. Pianese, S. Corrao, F. Priori, S. Febrini, S. Angeletti: Rescue robots at earthquake-hit Mirandola, Italy: A field report, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2012) pp. 1–8

    Google Scholar 

  35. R. Murphy, S. Stover: Rescue robots for mudslides: A descriptive study of the 2005 La Conchita mudslide response, J. Field Robotics 25(1–2), 3–16 (2008)

    Article  Google Scholar 

  36. R.R. Murphy: Trial by fire, IEEE Robotics Autom. Mag. 11(3), 50–61 (2004)

    Article  Google Scholar 

  37. L. Goldwert: Minneapolis honors bridge collapse victims, http://www.cbsnews.com/news/minneapolis-honors-bridge-collapse-victims/(2007)

  38. FBI: Photo gallery FBI response to minneapolis bridge collapse, http://www2.fbi.gov/page2/august07/bridge1.htm(2007)

  39. K. Pratt, R. Murphy, J. Burke, J. Craighead, C. Griffin, S. Stover: Use of tethered small unmanned aerial system at Berkman Plaza II collapse, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2009) pp. 134–139

    Google Scholar 

  40. S. Tadokoro, R. Murphy, S. Stover, W. Brack, M. Konyo, T. Nishimura, O. Tanimoto: Application of active scope camera to forensic investigation of construction accident, Proc. IEEE Int. Work. Adv. Robotics Its Soc. Impacts (ARSO) (2009) pp. 47–50

    Google Scholar 

  41. K. Ohno, S. Kawatsuma, T. Okada, E. Takeuchi, K. Higashi, S. Tadokoro: Robotic control vehicle for measuring radiation in Fukushima Daiichi nuclear power plant, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2011) pp. 38–43

    Google Scholar 

  42. ROV World: Raising the Costa Concordia live – ROVworld subsea information (2012)

    Google Scholar 

  43. Hydro International: ROV survey of the Costa Concordia grounding site, http://www.hydro-international.com/news/id5324-ROV_Survey_of_the_Costa_Concordia_Grounding_Site_video.html(2012)

  44. Draganfly: RCMP corporal Doug Green interviewed on CKOM John Gormley Live – Draganflyer X4-ES used in life-saving mission, http://www.draganfly.com/news/2013/05/13/rcmp-corporal-doug-green-interviewed-on-ckom-john-gormley-live-draganflyer-x4-es-used-in-life-saving-mission/(2013)

  45. T. Linder, V. Tretyakov, S. Blumenthal, P. Molitor, D. Holz, R. Murphy, S. Tadokoro, H. Surmann: Rescue robots at the collapse of the municipal archive of Cologne city: A field report, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2010) pp. 1–6

    Google Scholar 

  46. R.R. Murphy, R. Shoureshi: Emerging Mining Communication and Mine Rescue Technologies (Mine Safety and Health Administration, Arlington 2008)

    Google Scholar 

  47. R.R. Murphy, J. Kravitz, S. Stover, R. Shoureshi: Mobile robots in mine rescue and recovery, IEEE Robotics Autom. Mag. 16(2), 91–103 (2009)

    Article  Google Scholar 

  48. K. Nagatani, S. Kiribayashi, Y. Okada, K. Otake, K. Yoshida, S. Tadokoro, T. Nishimura, T. Yoshida, E. Koyanagi, M. Fukushima, S. Kawatsuma: Emergency response to the nuclear accident at the Fukushima Daiichi nuclear power plants using mobile rescue robots, J. Field Robotics 30(1), 44–63 (2013)

    Article  Google Scholar 

  49. G.M. Kulali, M. Gevher, A.M. Erkmen, I. Erkmen: Intelligent gait synthesizer for serpentine robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002) pp. 1513–1518

    Google Scholar 

  50. A. Wolf, H.B. Brown, R. Casciola, A. Costa, M. Schwerin, E. Shamas, H. Choset: A Mobile hyper redundant mechanism for search and rescue tasks, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Vol. 3 (2003) pp. 2889–2895

    Google Scholar 

  51. D. Campbell, M. Buehler: Stair descent in the simple hexapod “RHex”, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 1380–1385

    Google Scholar 

  52. R.M. Voyles, A.C. Larson: Terminatorbot: A novel robot with dual–use mechanism for locomotion and manipulation, IEEE/ASME Trans. Mechatron. 10(1), 17–25 (2005)

    Article  Google Scholar 

  53. J. Tanaka, K. Suzumori, M. Takata, T. Kanda, M. Mori: A mobile jack robot for rescue operation, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2005) pp. 99–104

    Google Scholar 

  54. R. Murphy, T. Vestgaarden, H. Huang, S. Saigal: Smart lift/shore agents for adaptive shoring of collapse structures: A feasibility study, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2006)

    Google Scholar 

  55. W.E. Green, P.Y. Oh: A fixed-wing aircraft for hovering in caves, tunnels, and buildings, Proc. Am. Control Conf. (2006) pp. 1–6

    Google Scholar 

  56. V. Kumar, D. Rus, S. Singh: Robot and sensor networks for first responders, IEEE Pervasive Comput. 3(4), 24–33 (2004)

    Article  Google Scholar 

  57. D. Kurabayashi, H. Tsuchiya, I. Fujiwara, H. Asama, K. Kawabata: Motion algorithm for autonomous rescue agents based on information assistance system, Proc. IEEE Int. Symp. Comput. Intell. Robotics Autom. (2003) pp. 1132–1137

    Google Scholar 

  58. K.W. Sevcik, W.E. Green, P.Y. Oh: Exploring search-and-rescue in near-earth environments for aerial robots, Proc.IEEE/ASME Int. Conf. Adv. Intell. Mechatron. (2005) pp. 693–698

    Google Scholar 

  59. A. Birk, S. Carpin: Rescue robotics: a crucial milestone on the road to autonomous systems, Adv. Robotics 20(5), 596–605 (2006)

    Article  Google Scholar 

  60. A. Kleiner, C. Dornhege, R. Kuemmerle, M. Ruhnke, B. Steder, B. Nebel, P. Doherty, M. Wzorek, P. Rudol, G. Conte, S. Durante, D. Lundstrom: RoboCupRescue – Robot league team RescueRobots Freiburg (Germany), Proc. 10th RoboCup 2006 (2006)

    Google Scholar 

  61. J. Pellenz, D. Paulus: Stable mapping using a hyper particle filter, Proc. 13th RoboCup 2006 (2010) pp. 252–263

    Google Scholar 

  62. A. Nuchter, K. Lingemann, J. Hertzberg: Mapping of rescue environments with kurt3d, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2005) pp. 158–163

    Google Scholar 

  63. A. Kleiner, C. Dornhege: Mapping for the support of first responders in critical domains, J. Intell. Robotic Syst. 64(1), 7–31 (2011)

    Article  Google Scholar 

  64. B. Yamauchi: A frontier-based approach for autonomous exploration, Proc. IEEE Int. Symp. Comput. Intell. Robotics Autom. (1997) pp. 146–151

    Google Scholar 

  65. C. Dornhege, A. Kleiner: A frontier-void-based approach for autonomous exploration in 3d, Adv. Robotics 27(6), 459–468 (2013)

    Article  Google Scholar 

  66. A. Jacoff, E. Messina, B. Weiss, S. Tadokoro, Y. Nakagawa: Test arenas and performance metrics for urban search and rescue robots, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (2003) pp. 3396–3403

    Google Scholar 

  67. S. Wirth, J. Pellenz: Exploration transform: A stable exploring algorithm for robots in rescue environments, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2007) pp. 1–5

    Google Scholar 

  68. Y. Okada, K. Nagatani, K. Yoshida, S. Tadokoro, T. Yoshida, E. Koyanagi: Shared autonomy system for tracked vehicles on rough terrain based on continuous three-dimensional terrain scanning, J. Field Robotics 28(6), 875–893 (2011)

    Article  Google Scholar 

  69. E. Magid, T. Tsubouchi, E. Koyanagi, T. Yoshida, S. Tadokoro: Controlled balance losing in random step environment for path planning of a teleoperated crawler-type vehicle, J. Field Robotics 28(6), 932–949 (2011)

    Article  Google Scholar 

  70. R. Sheh, B. Hengst, C. Sammut: Behavioural cloning for driving robots over rough terrain, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (2011) pp. 732–737

    Google Scholar 

  71. C. Dornhege, A. Kleiner: Behavior maps for online planning of obstacle negotiation and climbing on rough terrain, Proc.IEEE/RSJ Int. Conf. Intell. Robots Syst. (2007) pp. 3005–3011

    Google Scholar 

  72. M. Andriluka, P. Schnitzspan, J. Meyer, S. Kohlbrecher, K. Petersen, O. Von Stryk, S. Roth, B. Schiele: Vision based victim detection from unmanned aerial vehicles, Proc.  IEEE/RSJ Int. Conf. Intell. Robots Syst. (2010) pp. 1740–1747

    Google Scholar 

  73. A. Kleiner, R. Kummerle: Genetic mrf model optimization for real-time victim detection in search and rescue, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (2007) pp. 3025–3030

    Google Scholar 

  74. R. Hahn, D. Lang, M. Haselich, D. Paulus: Heat mapping for improved victim detection, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2011) pp. 116–121

    Google Scholar 

  75. A. Birk, S. Markov, I. Delchev, K. Pathak: Autonomous rescue operations on the iub rugbot, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2006)

    Google Scholar 

  76. R.R. Murphy, J. Burke: The safe human-robot ratio, Human-Robot Interactions in Future Military Operations, ed. by M. Barnes, F. Deutsch (Ashgate, Farnham 2010) pp. 31–49

    Google Scholar 

  77. M. Endsley: Design and evaluation for situation awareness enhancement, Proc. 32nd Annual Meet. Hum. Factors Soc. (1988) pp. 97–101

    Google Scholar 

  78. J.L. Drury, J. Scholtz, H.A. Yanco: Awareness in human-robot interactions, Proc.IEEE Int. Conf. Syst. Man Cybern. (2003) pp. 912–918

    Google Scholar 

  79. J. Casper, R. Murphy: Workflow study on human-robot interaction in usar, Proc.IEEE Int. Conf. Robotics Autom. (2002) pp. 1997–2003

    Google Scholar 

  80. J. Burke, R. Murphy, M. Coovert, D. Riddle: Moonlight in miami: An ethnographic study of human-robot interaction in usar, Hum.-Comput. Interact. 19(1/2), 85–116 (2004)

    Article  Google Scholar 

  81. R. Murphy, J. Burke, S. Stover: Field Studies of Safety Security Rescue Technologies Through Training and Response Activities, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Vol. 2 (2004) pp. 1089–1095

    Google Scholar 

  82. N. Sato, F. Matsuno, T. Yamasaki, T. Kamegawa, N. Shiroma, H. Igarashi: Cooperative Task Execution by a Multiple Robot Team and its Operators in Search and Rescue Operations, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Vol. 2 (2004) pp. 1083–1088

    Google Scholar 

  83. T. Arai, E. Pagello, L. Parker: Editorial: Advances in multi-robot systems, IEEE Trans. Robotics Autom. 18(5), 655–661 (2002)

    Article  Google Scholar 

  84. D.P. Stormont, A. Bhatt, B. Boldt, S. Skousen, M.D. Berkemeier: Building better swarms through competition: Lessons learned from the AAAI/Robocup rescue robot competition, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (2003) pp. 2870–2875

    Google Scholar 

  85. J. Suarez, R. Murphy: A survey of animal foraging for directed, persistent search by rescue robotics, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2011) pp. 314–320

    Google Scholar 

  86. A. Ferworn, A. Sadeghian, K. Barnum, H. Rahnama, H. Pham, C. Erickson, D. Ostrom, L. Dell'Agnese: Urban search and rescue with canine augmentation technology, Proc. IEEE/SMC Int. Conf. SystemSyst. Eng. (2006) pp. 334–338

    Google Scholar 

  87. L. Yihan, S.S. Panwar, S. Burugupalli: A mobile sensor network using autonomously controlled animals, Proc.1st Int. Conf. Broadband Netw. (BROADNETS) (2004) pp. 742–744

    Google Scholar 

  88. R. Murphy: Rats, robots, and rescue, IEEE Intell. Syst. 17(5), 7–9 (2002)

    Article  Google Scholar 

  89. S. Tadokoro, H. Kitano, T. Takahashi, I. Noda, H. Matsubara, A. Hinjoh, T. Koto, I. Takeuchi, H. Takahashi, F. Matsuno, M. Hatayama, J. Nobe, S. Shimada: The robocup-rescue project: A robotic approach to the disaster mitigation problem, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 4089–4094

    Google Scholar 

  90. T. Takahashi, S. Tadokoro: Working with robots in disasters, IEEE Robotics Autom. Mag. 9(3), 34–39 (2002)

    Article  Google Scholar 

  91. I.R. Nourbakhsh, K. Sycara, M. Koes, M. Yong, M. Lewis, S. Burion: Human-robot teaming for search and rescue, IEEE Pervasive Comput. 4(1), 72–79 (2005)

    Article  Google Scholar 

  92. H. Kitano, S. Tadokoro: Robocup-rescue: A grand challenge for multi-agent and intelligent systems, AI Magazine 22(1), 39–52 (2001)

    Article  Google Scholar 

  93. J. Scholtz, B. Antonishek, J. Young: A field study of two techniques for situation awareness for robot navigation in urban search and rescue, Proc. IEEE Int. Work. Robot-Hum. Interact. Commun. (2005) pp. 131–136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin R. Murphy .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Assistive mapping during teleoperationavailable from http://handbookofrobotics.org/view-chapter/60/videodetails/140

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Murphy, R.R., Tadokoro, S., Kleiner, A. (2016). Disaster Robotics. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics