Skip to main content

Modeling and Control of Underwater Robots

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter deals with modeling and control of underwater robots. First, a brief introduction showing the constantly expanding role of marine robotics in oceanic engineering is given; this section also contains some historical backgrounds. Most of the following sections strongly overlap with the corresponding chapters presented in this handbook; hence, to avoid useless repetitions, only those aspects peculiar to the underwater environment are discussed, assuming that the reader is already familiar with concepts such as fault detection systems when discussing the corresponding underwater implementation. The modeling section is presented by focusing on a coefficient-based approach capturing the most relevant underwater dynamic effects. Two sections dealing with the description of the sensor and the actuating systems are then given. Autonomous underwater vehicles require the implementation of mission control system as well as guidance and control algorithms. Underwater localization is also discussed. Underwater manipulation is then briefly approached. Fault detection and fault tolerance, together with the coordination control of multiple underwater vehicles, conclude the theoretical part of the chapter. Two final sections, reporting some successful applications and discussing future perspectives, conclude the chapter. The reader is referred to Chap. 25 for the design issues.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ASAP:

adaptive sampling and prediction

AUV:

autonomous underwater vehicle

CDOM:

colored dissolved organic matter

CG:

center of gravity

CML:

concurrent mapping and localization

CSSF:

Canadian Scientific Submersile Facility

DOF:

degree of freedom

DVL:

Doppler velocity log

GLS:

global navigation satellite system

GNC:

guidance, navigation, and control

GPS:

global positioning system

GUI:

graphical user interface

HW/SW:

hardware/software

IFREMER:

Institut français de recherche pour l’exploitation de la mer

IMU:

inertial measurement unit

IST:

Instituto Superior Técnico

JAMSTEC:

Japan Marine Science and Technology Center

LBL:

long-baseline system

MARUM:

Zentrum für Marine Umweltwissenschaften

MBARI:

Monterey Bay Aquarium Research Institute

MCS:

mission control system

MOOS:

motion-oriented operating system

NOC:

National Oceanography Centre

NPS:

Naval Postgraduate School

ODE:

ordinary differential equation

PID:

proportional–integral–derivative

ROV:

remotely operated vehicle

SBL:

short baseline

SISO:

single input single-output

SLAM:

simultaneous localization and mapping

SNAME:

society of naval architects and marine engineer

USBL:

ultrashort-baseline

UUV:

unmanned underwater vehicle

UVMS:

underwater vehicle manipulator system

WHOI:

Woods Hole Oceanographic Institution

References

  1. J. Yuh, S.K. Choi, C. Ikehara, G.H. Kim, G. McMurty, M. Ghasemi-Nejhad, N.N. Sarkar, K. Sugihara: Design of a semi-autonomous underwater vehicle for intervention missions (SAUVIM), IEEE Int. Symp. Underw. Technol. (1998) pp. 63–68

    Google Scholar 

  2. P. Marty: ALIVE: An autonomous light intervention vehicle, Adv. Technol. Underw. Veh. Conf., Oceanol. Int. (2004)

    Google Scholar 

  3. M. Prats, J.C. Garcia, S. Wirth, D. Ribas, P.J. Sanz, P. Ridao, N. Gracias, G. Oliver: Multipurpose autonomous underwater intervention: A systems integration perspective, 20th IEEE Mediterr. Conf. Contr. Autom., Barcelona (2012) pp. 1379–1484

    Google Scholar 

  4. T.I. Fossen: Handbook of Marine Craft Hydrodynamics and Motion Control (Wiley, New York 2011)

    Book  Google Scholar 

  5. S. Bennett: A brief history of automatic control, IEEE Control Syst. Mag. 16(3), 17–25 (1996)

    Article  Google Scholar 

  6. J. Yuh, M. West: Underwater robotics, J. Adv. Robotics 15(5), 609–639 (2001)

    Article  Google Scholar 

  7. SNAME: Nomenclature for Treating the Motion of a Submerged Body Through a Fluid, Techn. Res. Bull. (SNAME, New York 1952) pp. 1–5

    Google Scholar 

  8. T.I. Fossen: Guidance and Control of Ocean Vehicles (Wiley, New York 1994)

    Google Scholar 

  9. O.M. Faltinsen: Sea Loads on Ships and Offshore Structures (Cambridge Univ. Press, Cambridge 1990)

    Google Scholar 

  10. J. Yuh: Modeling and control of underwater robotic vehicles, IEEE Trans. Syst. Man Cybern. 20, 1475–1483 (1990)

    Article  Google Scholar 

  11. T.I. Fossen, A. Ross: Guidance and Control of Unmanned Marine Vehicles, IEEE Control Engineering (Wiley, Chichester 1999) pp. 23–42

    Google Scholar 

  12. W.E. Cummins: The impulse response function and ship motions, Techn. Rep. 1661 (DTIC, Washington 1962)

    Google Scholar 

  13. T.F. Ogilvie: Recent progress towards the understanding and prediction of ship motions, 5th Symp. Nav. Hydrodyn. (1964) pp. 3–79

    Google Scholar 

  14. T. Perez, T.I. Fossen: Time-domain models of marine surface vessels for simulation and control design based on seakeeping computations, 7th Conf. Manoeuvring Control Mar. Craft, (IFAC) (2006)

    Google Scholar 

  15. T.I. Fossen: A nonlinear unified state-space model for ship maneuvering and control in a seaway, J. Bifurc. Chaos 15(9), 2717–2746 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Nahon: Determination of undersea vehicle hydrodynamic derivatives using the USAF, Datcom, Proc. Ocean. Conf., Victoria (1993) pp. 283–288

    Google Scholar 

  17. J.N. Newman: Marine Hydrodynamics (MIT, Cambridge 1977)

    Book  Google Scholar 

  18. A.J. Healey, D. Lienard: Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles, IEEE J. Ocean. Eng. 18, 327–339 (1993)

    Article  Google Scholar 

  19. B. Stevens, F. Lewis: Aircraft Control and Simulations (Wiley, New York 1992)

    Google Scholar 

  20. I. Schjølberg, T.I. Fossen: Modelling and control of underwater vehicle-manipulator systems, 3rd Conf. Manoeuvring Control Mar. Craft (IFAC), Southampton (1994) pp. 45–57

    Google Scholar 

  21. E.A. de Barros, A. Pascoal, E. de Sea: Progress towards a method for predicting AUV derivatives, 7th Conf. Manoeuvring Control Mar. Craft (IFAC), Lisbon (2006)

    Google Scholar 

  22. Monterey Bay Aquarium Research Institute: http://www.mbari.org

  23. N.P. Fofonoff, R.C. Millard: Algorithms for Computation of Fundamental Properties of Seawater, UNESCO Tech. Pap. Mar. Sci. No. 44 (UNESCO, Paris 1983)

    Google Scholar 

  24. Autonomous Systems Laboratory, University of Hawaii: http://www.eng.hawaii.edu/~asl/

  25. R. Eustice, H. Singh, J.J. Leonard, M. Walter: Visually mapping the RMS Titanic: Conservative covariance estimates for SLAM information filters, Int. J. Robotics Res. 25(12), 1223–1242 (2006)

    Article  Google Scholar 

  26. D.A. Smallwood, L.L. Whitcomb: Adaptive identification of dynamically positioned underwater robotic vehicles, IEEE Trans. Control Syst. Technol. 11(4), 505–515 (2003)

    Article  Google Scholar 

  27. S. Zhao, J. Yuh: Experimental study on advanced underwater robot control, IEEE Trans. Robotics 21(4), 695–703 (2005)

    Article  Google Scholar 

  28. S. Majumder, S. Scheding, H.F. Durrant-Whyte: Multisensor data fusion for underwater navigation, Robotics Auton. Syst. 35(2), 97–108 (2001)

    Article  MATH  Google Scholar 

  29. J.C. Kinsey, R.M. Eustice, L.L. Whitcomb: A survey of underwater vehicle navigation: Recent advances and new challenges, 7th Conf. Manoeuvring Control Mar. Craft (IFAC), Lisbon (2006)

    Google Scholar 

  30. D.R. Yoerger, J.G. Cooke, J.J. Slotine: The influence of thruster dynamics on underwater vehicle behavior and their incorporation into control system design, IEEE J. Ocean. Eng. 15, 167–178 (1990)

    Article  Google Scholar 

  31. A.J. Healey, S.M. Rock, S. Cody, D. Miles, J.P. Brown: Toward an improved understanding of thruster dynamics for underwater vehicles, IEEE J. Ocean. Eng. 20(4), 354–361 (1995)

    Article  Google Scholar 

  32. L. Bachmayer, L.L. Whitcomb, M.A. Grosenbaugh: An accurate four-quadrant nonlinear dynamical model for marine trhusters: Theory and experimental validation, IEEE J. Ocean. Eng. 25, 146–159 (2000)

    Article  Google Scholar 

  33. T.I. Fossen, M. Blanke: Nonlinear output feedback control of underwater vehicle propellersusing feedback form estimated axial flow velocity, IEEE J. Ocean. Eng. 25(2), 241–255 (2000)

    Article  Google Scholar 

  34. W.P.A. Van Lammeren, J. van Manen, M.W.C. Oosterveld: The wageningen B-screw series, Trans. SNAME 77, 269–317 (1969)

    Google Scholar 

  35. T.I. Fossen, T.I. Johansen: A survey of control allocation methods for ships and underwater vehicles, 14th IEEE Mediterr. Conf. Control Autom., Ancona (2006) pp. 1–6

    Google Scholar 

  36. M. Stojanovic, J. Preisig: Underwater acoustic communication channels: Propagation models and statistical characterization, IEEE Commun. Mag. 47(1), 84–89 (2009)

    Article  Google Scholar 

  37. D. Pompili, I. Akyildiz: Overview of networking protocols for underwater wireless communications, IEEE Commun. Mag. 47(1), 97–102 (2009)

    Article  Google Scholar 

  38. K.P. Valavanis, D. Gracanin, M. Matijasevic, R. Kolluru: Control architecture for autonomous underwater vehicles, IEEE Control Syst. 17, 48–64 (1997)

    Google Scholar 

  39. P. Oliveira, A. Pascoal, V. Silva, C. Silvestre: Mission control of the MARIUS AUV: System design, implementation, and sea trials, Int. J. Syst. Sci. 29(10), 1065–1080 (1998)

    Article  MATH  Google Scholar 

  40. D. Brutzman, M. Burns, M. Campbell, D. Davis, T. Healey, M. Holden, B. Leonhardt, D. Marco, D. McClarin, B. McGhee: NPS Phoenix AUV software integration and in-water testing, Proc. IEEE Symp. Auton. Underw. Veh. Technol. (AUV) (1996) pp. 99–108

    Google Scholar 

  41. A.P. Aguiar, A.M. Pascoal: Dynamic positioning and way-point tracking of underactuated AUVs in the presence of ocean currents, Int. J. Control 80(7), 1092–1108 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. A.A. Bennett, J.J. Leonard: A behavior-based approach to adaptive feature detection and following with autonomous underwater vehicles, IEEE J. Ocean. Eng. 25(2), 213–226 (2000)

    Article  Google Scholar 

  43. M. Breivik, T.I. Fossen: Principles of guidance-based path following in 2D and 3D, 44th IEEE Conf. Decis. Control 8th Eur. Control Conf., Sevilla (2005)

    Google Scholar 

  44. F.A. Papoulias: Bifurcation analysis of line of sight vehicle guidance using sliding modes, Int. J. Bifurc. Chaos 1(4), 849–865 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  45. R. Rysdyk: UAV path following for constant line-of-sight, Proc. 2nd AIAA Unmanned Unltd. Syst. Technol. Oper. Aerosp., San Diego (2003)

    Google Scholar 

  46. M.D. Feezor, F.Y. Sorrel, P.R. Blankinship, J.G. Bellingham: Autonomous underwater vehicle homing/docking via electromagnetic guidance, IEEE J. Ocean. Eng. 26(4), 515–521 (2001)

    Article  Google Scholar 

  47. D. Wettergreen, A. Zelinsky, C. Gaskett: Autonomous guidance and control for an underwater robotic vehicle, Int. Conf. Field Serv. Robotics (1999)

    Google Scholar 

  48. G. Antonelli, S. Chiaverini, R. Finotello, R. Schiavon: Real-time path planning and obstacle avoidance for RAIS: An autonomous underwater vehicle, IEEE J. Ocean. Eng. 26(2), 216–227 (2001)

    Article  Google Scholar 

  49. J.C. Hyland, F.J. Taylor: Mine avoidance techniques for underwater vehicles, IEEE J. Ocean. Eng. 18, 340–350 (1993)

    Article  Google Scholar 

  50. D.R. Yoerger, J.J. Slotine: Robust trajectory control of underwater vehicles, IEEE J. Ocean. Eng. 10, 462–470 (1985)

    Article  Google Scholar 

  51. R. Cristi, F.A. Pappulias, A. Healey: Adaptive sliding mode control of autonomous underwater vehicles in the dive plane, IEEE J. Ocean. Eng. 15(3), 152–160 (1990)

    Article  Google Scholar 

  52. D.B. Marco, A.J. Healey: Command, control and navigation experimental results with the NPS ARIES AUV, IEEE J. Ocean. Eng. 26(4), 466–476 (2001)

    Article  Google Scholar 

  53. M. Caccia, G. Veruggio: Guidance and control of a reconfigurable unmanned underwater vehicle, Control Eng. Prac. 8(1), 21–37 (2000)

    Article  Google Scholar 

  54. G. Antonelli, F. Caccavale, S. Chiaverini, G. Fusco: A novel adaptive control law for underwater vehicles, IEEE Trans. Control Syst. Technol. 11(2), 221–232 (2003)

    Article  Google Scholar 

  55. G. Antonelli: On the use of adaptive/integral actions for 6-degrees-of-freedom control of autonomous underwater vehicles, IEEE J. Ocean. Eng. 32(2), 300–312 (2007)

    Article  Google Scholar 

  56. M. Erol-Kantarci, H.T. Mouftah, S. Oktug: A survey of architectures and localization techniques for underwater acoustic sensor networks, IEEE Commun. Surv. Tutor. 13(3), 487–502 (2011)

    Article  Google Scholar 

  57. A. Bahr, J.J. Leonard, M.F. Fallon: Cooperative localization for autonomous underwater vehicles, Int. J. Robotics Res. 28(6), 714–728 (2009)

    Article  Google Scholar 

  58. S.B. Williams, I. Mahon: A terrain-aided tracking algorithm for marine systems. In: Field and Service Robotics, (Springer, Berlin, Heidelberg 2006) pp. 93–102

    Chapter  Google Scholar 

  59. M. Dunbabin, P. Corke, G. Buskey: Low-cost vision-based AUV guidance system for reef navigation, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (2004) pp. 7–12

    Google Scholar 

  60. J.J. Leonard, H.J.S. Feder: Decoupled stochastic mapping, IEEE J. Ocean. Eng. 26(4), 561–571 (2001)

    Article  Google Scholar 

  61. S. Williams, G. Dissanayake, H. Durrant–Whyte: Towards terrain-aided navigation for underwater robotics, Adv. Robotics 15(5), 533–549 (2001)

    Article  Google Scholar 

  62. P. Newman, J. Leonard: Pure range-only sub-sea SLAM, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (2003) pp. 1921–1926

    Google Scholar 

  63. T.W. McLain, S.M. Rock, M.J. Lee: Experiments in the coordinated control of an underwater arm/vehicle system, Auton. Robots 3(2), 213–232 (1996)

    Article  Google Scholar 

  64. G. Antonelli (Ed.): Underwater Robots. Motion and Force Control of Vehicle-Manipulator Systems, Springer Tracts in Advanced Robotics (Springer, Berlin, Heidelberg 2014), 3rd edn.

    MATH  Google Scholar 

  65. J.S. Ferguson, A. Pope, B. Butler, R. Verrall: Theseus AUV – Two record breaking missions, Sea Technol. Mag. 40, 65–70 (1999)

    Google Scholar 

  66. A. Alessandri, M. Caccia, G. Veruggio: Fault detection of actuator faults in unmanned underwater vehicles, Control Eng. Prac. 7, 357–368 (1999)

    Article  Google Scholar 

  67. K.C. Yang, J. Yuh, S.K. Choi: Fault-tolerant system design of an autonomous underwater vehicle – ODIN: An experimental study, Int. J. Syst. Sci. 30(9), 1011–1019 (1999)

    Article  MATH  Google Scholar 

  68. G. Antonelli: A survey of fault detection/tolerance strategies for AUVs and ROVs. Recent advances. In: Fault Diagnosis and Tolerance for Mechatronic Systems, Springer Tracts in Advanced Robotics, ed. by F. Caccavale, L. Villani (Springer, Berlin, Heidelberg 2002) pp. 109–127

    Google Scholar 

  69. T.K. Podder, G. Antonelli, N. Sarkar: An experimental investigation into the fault-tolerant control of an autonomous underwater vehicle, J. Adv. Robotics 15, 501–520 (2001)

    Article  Google Scholar 

  70. M. Caccia, R. Bono, G. Bruzzone, G. Bruzzone, E. Spirandelli, G. Veruggio: Experiences on actuator fault detection, diagnosis and accomodation for ROVs, Int. Symp. Unmanned Untethered Submers. Technol. (2001)

    Google Scholar 

  71. E. Fiorelli, P. Bhatta, N.E. Leonard, I. Shulman: Adaptive sampling using feedback control of an autonomous underwater glider fleet, Int. Symp. Unmanned Untethered Submers. Technol. (2003)

    Google Scholar 

  72. N.E. Leonard, D.A. Paley, R.E. Davis, D.M. Fratantoni, F. Lekien, F. Zhang: Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay, J. Field Robotics 27(6), 718–740 (2010)

    Article  Google Scholar 

  73. S. Kalantar, U. Zimmer: Distributed shape control of homogeneous swarms of autonomous underwater vehicles, Auton. Robots 22(1), 37–53 (2006)

    Article  Google Scholar 

  74. A. Pascoal, C. Silvestre, P. Oliveira: Vehicle and mission control of single and multiple autonomous marine robots. In: Advances in Unmanned Marine Vehicles, IEEE Control Engineering, ed. by G. Roberts, R. Sutton (Peregrinus, New York 2006) pp. 353–386

    Chapter  Google Scholar 

  75. M. Dunbabin, I. Vasilescu, P. Corke, D. Rus: Experiments with cooperative networked control of underwater robots. In: Experimental Robotics, (Springer, Berlin, Heidelberg 2008) pp. 463–470

    Chapter  Google Scholar 

  76. Marine Systems Simulator: http://www.marinecontrol.org

  77. TRIDENT project: http://www.irs.uji.es/uwsim

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Antonelli .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Dive with REMUS available from http://handbookofrobotics.org/view-chapter/51/videodetails/87

:

Underwater vehicle Nereus available from http://handbookofrobotics.org/view-chapter/51/videodetails/88

:

Mariana Trench: HROV Nereus samples the Challenger Deep seafloor available from http://handbookofrobotics.org/view-chapter/51/videodetails/89

:

REMUS SharkCam: The hunter and the hunted available from http://handbookofrobotics.org/view-chapter/51/videodetails/90

:

The Icebot available from http://handbookofrobotics.org/view-chapter/51/videodetails/92

:

Two underwater Folaga vehicles patrolling a 3-D area available from http://handbookofrobotics.org/view-chapter/51/videodetails/94

:

Adaptive L1 depth control of a ROV available from http://handbookofrobotics.org/view-chapter/51/videodetails/267

:

Saturation based nonlinear depth and yaw control of an underwater vehicle available from http://handbookofrobotics.org/view-chapter/51/videodetails/268

:

Multi-vehicle bathymetry mission available from http://handbookofrobotics.org/view-chapter/51/videodetails/323

:

Neptus command and control infrastructure available from http://handbookofrobotics.org/view-chapter/51/videodetails/324

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Antonelli, G., Fossen, T.I., Yoerger, D.R. (2016). Modeling and Control of Underwater Robots. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics