Skip to main content

Abstract

A comprehensive overview of greenhouse gas (GHG) emissions of from different sectors across the globe is provide in this chapter. Particular attention is given to agriculture, forestry, and other land use (AFOLU). Since agricultural activities (cultivation of crops, management activities and rearing of livestock) result in production and emissions of GHG, quantification of GHG and its mitigation is addressed in this chapter. The suggested mitigation techniques include the use of bioenergy crops, fertilizer and manure management, conservation tillage, crop rotations, cover crops and cropping intensity, irrigation, erosion control, management of drained wetlands, lime amendments, residue management, biochar and biotechnology. Furthermore, quantification of GHG emissions is discussed using different process based models. These models could further be used as decision support tools under different scenarios to mitigate GHG emissions if calibrated and validated effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalde, H., P. Gonzalez, M. Gytarsky, T. Krug, W. Kurz, R.D. Lasco, D. Martino, B. Mcconkey, S. Ogle, and K. Paustian. 2006. Generic methodologies applicable to multiple land-use categories. IPCC Guidelines for National Greenhouse Gas Inventories, 4. Institute for Global Environmental Strategies (IGES), Hayama, Japan.

    Google Scholar 

  • Albanito, F., T. Beringer, R. Corstanje, B. Poulter, A. Stephenson, J. Zawadzka, and P. Smith. 2016. Carbon implications of converting cropland to bioenergy crops or forest for climate mitigation: A global assessment. GCB Bioenergy 8: 81–95.

    Article  CAS  Google Scholar 

  • Bennetzen, E.H., P. Smith, and J.R. Porter. 2015. Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Global Change Biology 22: 763–781.

    Article  Google Scholar 

  • Brisson, N., C. Gary, E. Justes, R. Roche, B. Mary, D. Ripoche, D. Zimmer, J. Sierra, P. Bertuzzi, P. Burger, F. Bussière, Y.M. Cabidoche, P. Cellier, P. Debaeke, J.P. Gaudillère, C. Hénault, F. Maraux, B. Seguin, and H. Sinoquet. 2003. An overview of the crop model stics. European Journal of Agronomy 18: 309–332.

    Article  Google Scholar 

  • Brisson, N., B. Mary, D. Ripoche, M.H. Jeuffroy, F. Ruget, B. Nicoullaud, P. Gate, F. Devienne-Barret, R. Antonioletti, C. Durr, G. Richard, N. Beaudoin, S. Recous, X. Tayot, D. Plenet, P. Cellier, J.-M. Machet, J.M. Meynard, and R. Delécolle. 1998. STICS: A generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie 18: 311–346.

    Article  Google Scholar 

  • Bruckman, V.J., M. Klinglmüller, B.B. Uzun, and E. Apaydin-Varol. 2014. Potentials to mitigate climate change using biochar–the Austrian perspective. Potentials to mitigate climate change using biochar. IUFRO Occasional Papers 27.

    Google Scholar 

  • Calderini, D.F., and M.P. Reynolds. 2000. Changes in grain weight as a consequence of de-graining treatments at pre- and post-anthesis in synthetic hexaploid lines of wheat (<i > Triticum durum</i > x < i > T. tauschii). Functional Plant Biology 27: 183–191.

    Google Scholar 

  • Calvin, K., L. Clarke, J. Edmonds, J. Eom, M. Hejazi, S. Kim, P. Kyle, R. Link, P. Luckow and P. Patel. 2011. GCAM Wiki documentation [Online]. Available: https://wiki.umd.edu/gcam/index.php/Main_Page [Accessed].

  • Calvin, K., M. Wise, D. Klein, D. Mccollum, M. Tavoni, B. Van Der Zwaan, and D.P. Van Vuuren. 2013. A multi-model analysis of the regional and sectoral roles of bioenergy in near- and long-term CO2 emissions reduction. Climate Change Economics 04: 1340014.

    Article  Google Scholar 

  • Calvin, K. V., R. Beach, A. Gurgel, M. Labriet and A.M. Loboguerrero Rodriguez. 2015. Agriculture, forestry, and other land-use emissions in Latin America. Energy Economics 56, May 2016: 615–624.

    Google Scholar 

  • Cardozo, N.P., R. De Oliveira Bordonal, and N. La Scala Jr. 2015. Greenhouse gas emission estimate in sugarcane irrigation in Brazil: Is it possible to reduce it, and still increase crop yield? Journal of Cleaner Production 112: 3988–3997.

    Article  Google Scholar 

  • Chum, H., A. Faaij, and J. Moreira. 2011. Bioenergy. In IPCC special report on renewable energy sources and climate change mitigation, ed. O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, and C. Von Stechow. Cambridge: Cambridge University Press.

    Google Scholar 

  • Constantin, J., M. Willaume, C. Murgue, B. Lacroix, and O. Therond. 2015. The soil-crop models STICS and AqYield predict yield and soil water content for irrigated crops equally well with limited data. Agricultural and Forest Meteorology 206: 55–68.

    Article  Google Scholar 

  • Coyle, W. 2007. The future of biofuels: A global perspective. Amber Waves 5: 24–29.

    Google Scholar 

  • Craufurd, P.Q., and T.R. Wheeler. 2009. Climate change and the flowering time of annual crops. Journal of Experimental Botany 60: 2529–2539.

    Article  CAS  Google Scholar 

  • Daioglou, V., B. Wicke, A.P.C. Faaij, and D.P. Van Vuuren. 2015. Competing uses of biomass for energy and chemicals: implications for long-term global CO2 mitigation potential. GCB Bioenergy 7: 1321–1334.

    Article  CAS  Google Scholar 

  • Davies-Barnard, T., P.J. Valdes, J.S. Singarayer, and C.D. Jones. 2014. Climatic impacts of land-use change due to crop yield increases and a universal carbon tax from a scenario model. Journal of Climate 27(4): 1413–1424. doi:10.1175/JCLI-D-13-00154.1.

    Article  Google Scholar 

  • Dokoohaki, H., M. Gheysari, S.-F. Mousavi, S. Zand-Parsa, F.E. Miguez, S.V. Archontoulis, and G. Hoogenboom. 2016. Coupling and testing a new soil water module in DSSAT CERES-Maize model for maize production under semi-arid condition. Agricultural Water Management 163: 90–99.

    Article  Google Scholar 

  • Dornburg, V., and A.C. Faaij. 2005. Cost and Co2-emission reduction of biomass cascading: Methodological aspects and case study of SRF poplar. Climatic Change 71: 373–408.

    Article  CAS  Google Scholar 

  • Dornburg, V., B.G. Hermann, and M.K. Patel. 2008. Scenario projections for future market potentials of biobased bulk chemicals. Environmental Science & Technology 42: 2261–2267.

    Article  CAS  Google Scholar 

  • Dornburg, V., D. Van Vuuren, G. Van De Ven, H. Langeveld, M. Meeusen, M. Banse, M. Van Oorschot, J. Ros, G. Jan Van Den Born, H. Aiking, M. Londo, H. Mozaffarian, P. Verweij, E. Lysen, and A. Faaij. 2010. Bioenergy revisited: Key factors in global potentials of bioenergy. Energy & Environmental Science 3: 258–267.

    Article  Google Scholar 

  • EPA. 2010. Methane and nitrous oxide emissions from natural sources .Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  • FAOSTAT. 2015. Food and Agriculture Organization of the United Nations Statistic Division. Rome: FAO.

    Google Scholar 

  • Farrell, A.E., R.J. Plevin, B.T. Turner, A.D. Jones, M. O’hare, and D.M. Kammen. 2006. Ethanol can contribute to energy and environmental goals. Science 311: 506–508.

    Article  CAS  Google Scholar 

  • Field, C.B., J.E. Campbell, and D.B. Lobell. 2008. Biomass energy: The scale of the potential resource. Trends in Ecology & Evolution 23: 65–72.

    Article  Google Scholar 

  • Frank, S., E. Schmid, P. Havlík, U.A. Schneider, H. Böttcher, J. Balkovič, and M. Obersteiner. 2015. The dynamic soil organic carbon mitigation potential of European cropland. Global Environmental Change 35: 269–278.

    Article  Google Scholar 

  • Gnansounou, E., J. Dong, and D. Bedniaguine. 2004. The strategic technology options for mitigating CO2 emissions in power sector: Assessment of Shanghai electricity-generating system. Ecological Economics 50: 117–133.

    Article  Google Scholar 

  • Harris, Z.M., R. Spake, and G. Taylor. 2015. Land use change to bioenergy: A meta-analysis of soil carbon and GHG emissions. Biomass and Bioenergy 82: 27–39.

    Article  CAS  Google Scholar 

  • Hergoualc’h, K., and L.V. Verchot. 2014. Greenhouse gas emission factors for land use and land-use change in Southeast Asian peatlands. Mitigation and Adaptation Strategies for Global Change 19: 789–807.

    Article  Google Scholar 

  • Hill, J., E. Nelson, D. Tilman, S. Polasky, and D. Tiffany. 2006. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences 103: 11206–11210.

    Article  CAS  Google Scholar 

  • Houghton, R.A., J.I. House, J. Pongratz, G.R. Van Der Werf, R.S. Defries, M.C. Hansen, C. Le Quéré, and N. Ramankutty. 2012. Carbon emissions from land use and land-cover change. Biogeosciences 9: 5125–5142.

    Article  CAS  Google Scholar 

  • Hudiburg, T.W., S.C. Davis, W. Parton, and E.H. Delucia. 2015. Bioenergy crop greenhouse gas mitigation potential under a range of management practices. GCB Bioenergy 7: 366–374.

    Article  CAS  Google Scholar 

  • Hurkman, W.J., W.H. Vensel, C.K. Tanaka, L. Whitehand, and S.B. Altenbach. 2009. Effect of high temperature on albumin and globulin accumulation in the endosperm proteome of the developing wheat grain. Journal of Cereal Science 49: 12–23.

    Article  CAS  Google Scholar 

  • IEA. 2004. Biofuels for transport: An international perspective. Paris: International Energy Agency.

    Google Scholar 

  • Ignaciuk, A. 2015. Adapting agriculture to climate change. France: OECD Publishing.

    Book  Google Scholar 

  • IPCC. 2007. Climate change 2007: Mitigation of climate change. .Exit EPA disclaimer contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change, ed. B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer., Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

    Google Scholar 

  • IPCC. 2011. Special report on renewable energy sources and climate change mitigation. United Kingdom and New York: NY, USA, Cambridge University Press.

    Google Scholar 

  • IPCC. 2013. IPCC Climate change 2013: The Physical science Basis. Contribution of working group I to the Fifth assessment report of the Intergovernmental Panel on climate change, ed. Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley. Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press.

    Google Scholar 

  • Izaurralde, R.C., J.R. Williams, W.B. Mcgill, N.J. Rosenberg, and M.C.Q. Jakas. 2006. Simulating soil C dynamics with EPIC: Model description and testing against long-term data. Ecological Modelling 192: 362–384.

    Article  Google Scholar 

  • Jones, J.W., G. Hoogenboom, C.H. Porter, K.J. Boote, W.D. Batchelor, L.A. Hunt, P.W. Wilkens, U. Singh, A.J. Gijsman, and J.T. Ritchie. 2003. The DSSAT cropping system model. European Journal of Agronomy 18: 235–265.

    Article  Google Scholar 

  • Kalafatis, S.E., M.C. Lemos, Y.-J. Lo, and K.A. Frank. 2015. Increasing information usability for climate adaptation: The role of knowledge networks and communities of practice. Global Environmental Change 32: 30–39.

    Article  Google Scholar 

  • Kang, M.S., and S.S. Banga. 2013. Global agriculture and climate change. Journal of Crop Improvement 27: 667–692.

    Article  Google Scholar 

  • Kennedy, C., J. Steinberger, B. Gasson, Y. Hansen, T. Hillman, M. Havránek, D. Pataki, A. Phdungsilp, A. Ramaswami, and G.V. Mendez. 2009. Greenhouse gas emissions from global cities. Environmental Science & Technology 43: 7297–7302.

    Article  CAS  Google Scholar 

  • Kim, D.-G., D. Giltrap, and G. Hernandez-Ramirez. 2013. Background nitrous oxide emissions in agricultural and natural lands: A meta-analysis. Plant and Soil 373(1): 17–30. doi:10.1007/s11104-013-1762-5.

    Article  CAS  Google Scholar 

  • Kimball, B.A. 2011. Lessons from FACE: CO2 effects and interactions with water, nitrogen, and temperature. In Handbook of climate change and agroecosystems: Impacts, adaptation, and mitigation, ed. D. Hillel and C. Rosenzweig. London: Imperial College Press.

    Google Scholar 

  • Knightes, C.D., and M. Cyterski. 2005. Evaluating predictive errors of a complex environmental model using a general linear model and least square means. Ecological Modelling 186: 366–374.

    Article  Google Scholar 

  • Lambin, E.F., and P. Meyfroidt. 2011. Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences 108: 3465–3472.

    Article  CAS  Google Scholar 

  • Lobell, D.B., M. Banziger, C. Magorokosho, and B. Vivek. 2011. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change 1: 42–45.

    Article  Google Scholar 

  • Loulou, R. 2008. ETSAP-TIAM: The TIMES integrated assessment model. Part II: Mathematical formulation. Computational Management Science 5: 41–66.

    Article  Google Scholar 

  • Macleod, M., et al. 2015. Cost-effectiveness of greenhouse gas mitigation measures for agriculture. Paris: OECD Publishing.

    Book  Google Scholar 

  • Mohammed, A.R., and L. Tarpley. 2009. High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agricultural and Forest Meteorology 149: 999–1008.

    Article  Google Scholar 

  • Morgan, J.A., R.F. Follett, L.H. Allen, S. Del Grosso, J.D. Derner, F. Dijkstra, A. Franzluebbers, R. Fry, K. Paustian, and M.M. Schoeneberger. 2010. Carbon sequestration in agricultural lands of the United States. Journal of Soil and Water Conservation 65: 6A–13A.

    Article  Google Scholar 

  • Nayak, D., E. Saetnan, K. Cheng, W. Wang, F. Koslowski, Y.-F. Cheng, W.Y. Zhu, J.-K. Wang, J.-X. Liu, D. Moran, X. Yan, L. Cardenas, J. Newbold, G. Pan, Y. Lu, and P. Smith. 2015. Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Agriculture, Ecosystems & Environment 209: 108–124.

    Article  CAS  Google Scholar 

  • NRC. 2010. Advancing the science of climate change. Washington, DC: National Research Council. The National Academies Press.

    Google Scholar 

  • Ogle, S.M., F.J. Breidt, M. Easter, S. Williams, and K. Paustian. 2007. An empirically based approach for estimating uncertainty associated with modelling carbon sequestration in soils. Ecological Modelling 205: 453–463.

    Article  Google Scholar 

  • Ogle, S.M., F. Jay Breidt, M.D. Eve, and K. Paustian. 2003. Uncertainty in estimating land use and management impacts on soil organic carbon storage for US agricultural lands between 1982 and 1997. Global Change Biology 9: 1521–1542.

    Article  Google Scholar 

  • Paltsev, S., J. Reilly, H. Jacoby, R. Eckaus, J. Mcfarland, M. Sarofim, M. Asadoorian, and M. Babiker. 2005. The MIT emissions prediction and policy analysis (EPPA) model: Version 4, MIT joint program on the science and policy of global change. Cambridge, MA: MIT.

    Google Scholar 

  • Paustian, K., N.H. Ravindranath, A. Amstel, and M. Gytarsky. 2006. Chapter 1 ‐ Introduction. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, ed. H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara and K. Tanabe. Japan: IGES.

    Google Scholar 

  • Pittock, B. 2003. Climate change - An Australian guide to the science and potential impacts, pp. 239. Report compiled for the Australian Greenhouse Office, Canberra, Australia. Available at http://www.greenhouse.gov.au/science/guide/index.html

  • Qin, Z., Q. Zhuang, and X. Cai. 2015. Bioenergy crop productivity and potential climate change mitigation from marginal lands in the United States: An ecosystem modeling perspective. GCB Bioenergy 7: 1211–1221.

    Article  CAS  Google Scholar 

  • Ravindranath, N., R. Manuvie, J. Fargione, J. Canadell, G. Berndes, J. Woods, H. Watson, and J. Sathaye (eds.). 2008. Greenhouse gas implications of land use and land conversion to biofuel crops. New York: Island Press.

    Google Scholar 

  • Reddy, P.P. 2015. Agriculture as a source of GHGs. In Climate resilient agriculture for ensuring food security. India: Springer.

    Chapter  Google Scholar 

  • Rezaei, E.E., S. Siebert, and F. Ewert. 2015. Intensity of heat stress in winter wheat—phenology compensates for the adverse effect of global warming. Environmental Research Letters 10: 024012.

    Article  Google Scholar 

  • Roberts, K.G., B.A. Gloy, S. Joseph, N.R. Scott, and J. Lehmann. 2009. Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential. Environmental Science & Technology 44: 827–833.

    Article  Google Scholar 

  • Ross, M. 2009. Documentation of the Applied Dynamic Analysis of the Global Economy (ADAGE) model. Working Paper 09_01, April 2009,.RTI International, Research Triangle Park, NC.

    Google Scholar 

  • Saadi, S., M. Todorovic, L. Tanasijevic, L.S. Pereira, C. Pizzigalli, and P. Lionello. 2015. Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield. Agricultural Water Management 147: 103–115.

    Article  Google Scholar 

  • Sadras, V.O., V. Vadez, R. Purushothaman, L. Lake, and H. Marrou. 2015. Unscrambling confounded effects of sowing date trials to screen for crop adaptation to high temperature. Field Crops Research 177: 1–8.

    Article  Google Scholar 

  • Sala, O.E., F. Stuart Chapin III, J.J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L.F. Huenneke, R.B. Jackson, A. Kinzig, R. Leemans, D.M. Lodge, H.A. Mooney, M.N. Oesterheld, N.L. Poff, M.T. Sykes, B.H. Walker, M. Walker, and D.H. WALL. 2000. Global biodiversity scenarios for the year 2100. Science 287: 1770–1774.

    Article  CAS  Google Scholar 

  • Sharma, S.K., and R. Chauhan. 2011. Climate change research initiative: Indian network for climate change assessment. Current Science (Bangalore) 101: 308–311.

    Google Scholar 

  • Six, J., E.T. Elliott, and K. Paustian. 2000. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry 32: 2099–2103.

    Article  CAS  Google Scholar 

  • Slade, R., A. Bauen, and R. Gross. 2014. Global bioenergy resources. Nature Climate Change 4: 99–105.

    Article  Google Scholar 

  • Smith, P. 2015. Addressing the joint challenges of climate change and food security. 5: 61.

    Google Scholar 

  • Stöckle, C.O., M. Donatelli, and R. Nelson. 2003. CropSyst, A cropping systems simulation model. European Journal of Agronomy 18: 289–307.

    Article  Google Scholar 

  • Stratonovitch, P., and M.A. Semenov. 2015. Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change. Journal of Experimental Botany 66: 3599–3609.

    Article  CAS  Google Scholar 

  • Swaminathan, M.S., and P.C. Kesavan. 2012. Agricultural research in an era of climate change. Agricultural Research 1: 3–11.

    Article  Google Scholar 

  • Talukder, A.S.M.H.M., G.K. Mcdonald, and G.S. Gill. 2013. Effect of short-term heat stress prior to flowering and at early grain set on the utilization of water-soluble carbohydrate by wheat genotypes. Field Crops Research 147: 1–11.

    Article  Google Scholar 

  • Talukder, A.S.M.H.M., G.K. Mcdonald, and G.S. Gill. 2014. Effect of short-term heat stress prior to flowering and early grain set on the grain yield of wheat. Field Crops Research 160: 54–63.

    Article  Google Scholar 

  • Tao, F., Z. Zhang, S. Zhang, and R.P. Rötter. 2015. Heat stress impacts on wheat growth and yield were reduced in the Huang-Huai-Hai Plain of China in the past three decades. European Journal of Agronomy 71: 44–52.

    Article  Google Scholar 

  • Troy, T.J., C. Kipgen, and I. Pal. 2015. The impact of climate extremes and irrigation on US crop yields. Environmental Research Letters 10: 054013.

    Article  Google Scholar 

  • Turner, B.L., E.F. Lambin, and A. Reenberg. 2007. The emergence of land change science for global environmental change and sustainability. Proceedings of the National Academy of Sciences 104: 20666–20671.

    Article  CAS  Google Scholar 

  • Wang, B., D.L. Liu, S. Asseng, I. Macadam, and Q. Yu. 2015. Impact of climate change on wheat flowering time in eastern Australia. Agricultural and Forest Meteorology 209–210: 11–21.

    Article  Google Scholar 

  • Wang, X., J. Cai, D. Jiang, F. Liu, T. Dai, and W. Cao. 2011. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. Journal of Plant Physiology 168: 585–593.

    Article  CAS  Google Scholar 

  • Webster, M.D., M. Babiker, M. Mayer, J.M. Reilly, J. Harnisch, R. Hyman, M.C. Sarofim, and C. Wang. 2002. Uncertainty in emissions projections for climate models. Atmospheric Environment 36: 3659–3670.

    Article  CAS  Google Scholar 

  • Wei, D., N. Dormady, and A. Rose. 2015. Development of reduced-form models to evaluate macroeconomic impacts of greenhouse gas mitigation. Journal of Sustainable Energy Engineering 2: 377–397.

    Article  Google Scholar 

  • Williams, J.R. 1995. The EPIC model. In Computer models of watershed hydrology, ed. V.P. Singh. Colorado: Water Resources Publications.

    Google Scholar 

  • Woli, P., B.V. Ortiz, D. Buntin, and K. Flanders. 2014. El Niño-Southern Oscillation (ENSO) effects on Hessian Fly (Diptera: Cecidomyiidae) infestation in the Southeastern United States. Environmental Entomology 43: 1641–1649.

    Article  CAS  Google Scholar 

  • Woolf, D., J.E. Amonette, F.A. Street-Perrott, J. Lehmann, and S. Joseph. 2010. Sustainable biochar to mitigate global climate change. Nature Communications 1: 56.

    Article  Google Scholar 

  • Worldwatch. 2006. Worldwatch biofuels for transportation. Washington DC.

    Google Scholar 

  • Wu, Z., H. Zhang, C. Krause, and N. Cobb. 2010. Climate change and human activities: a case study in Xinjiang, China. Climatic Change 99: 457–472.

    Article  Google Scholar 

  • Bao, Y., G. Hoogenboom, R. McClendon, and P. Urich. 2015. Soybean production in 2025 and 2050 in the southeastern USA based on the SimCLIM and the CSM-CROPGRO-Soybean models. Climate Research 63: 73–89.

    Article  Google Scholar 

  • Zhang, D., G. Pan, G. Wu, G.W. Kibue, L. Li, X. Zhang, J. Zheng, J. Zheng, K. Cheng, S. Joseph, and X. Liu. 2016. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol. Chemosphere 142: 106–113.

    Article  CAS  Google Scholar 

  • Zhang, H.-L., X. Zhao, X.-G. Yin, S.-L. Liu, J.-F. Xue, M. Wang, C. Pu, R. Lal, and F. Chen. 2015. Challenges and adaptations of farming to climate change in the North China Plain. Climatic Change 129: 213–224.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhtar Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ahmed, M. (2017). Greenhouse Gas Emissions and Climate Variability: An Overview. In: Ahmed, M., Stockle, C. (eds) Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-32059-5_1

Download citation

Publish with us

Policies and ethics