Skip to main content

Ecophysiology of River Algae

  • Chapter
  • First Online:
River Algae

Abstract

Algae in rivers are affected by light, water turbulence, and nutrient availability. These environmental factors ultimately affect algae according to their habitat, growth form, and specific physiological abilities. Water flow imposes limitations in the diffusion and availability of gases and resources, also in relation to algal size and growth form. Algae adapt physiologically to light scarcity or excess via photosynthetic mechanisms, as well as by modifying their pigment composition. The algal ability to obtain and keep resources is mediated by enzymes, and its ability to use and store materials is specific of the different algal groups. Toxicants impose a limit to algal performance and may affect photosynthesis as well as nutrient uptake, amongst other effects on algal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams WW, Demmig-Adams B, Lange OL (1993) Carotenoid composition and metabolism in green and blue-green algal lichens in the field. Oecologia 94:576–584

    Article  Google Scholar 

  • Ahmad I, Hellebust JA (1986) The role of glycerol and inorganic ions in osmoregulatory responses of the euryhaline flagellate Chlamydomonas pulsatilla Wollenweber. Plant Physiol 82:406–410

    Article  CAS  Google Scholar 

  • Allakhverdiev SI, Nishiyama Y, Suzuki I et al (1999) Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc Natl Acad Sci U S A 96:5862–5867

    Article  CAS  Google Scholar 

  • Anderson LCD, Bruland KW (1991) Biogeochemistry of Arsenic in natural waters: the importance of methylated species. Environ Sci Technol 25:420–427

    Article  CAS  Google Scholar 

  • Arp G, Bissett A, Brinkmann N et al (2010) Tufa-forming biofilms of German karstwater streams: microorganisms, exopolymers, hydrochemistry and calcification. In: HM Pedley, Rogerson M (eds) Tufas and speleothems: unravelling the microbial and physical controls. Geological Society, London, Special Publications 336, pp 83–118.

    Google Scholar 

  • Artigas J, Romani AM, Sabater S (2008) Relating nutrient molar ratios of microbial attached communities to organic matter utilization in a forested stream. Fund Appl Limnol 173:255–264

    Article  CAS  Google Scholar 

  • Aubirot L, Bonilla S, Flakner G (2011) Adaptive phosphate uptake behavior of phytoplankton to environmental phosphate fluctuations. FEMS Microbiol Ecol 77:1–16

    Article  CAS  Google Scholar 

  • Battin TJ, Kaplan LA, Newbold JT et al (2003) Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl Environ Microbiol 69:5443–5452

    Article  CAS  Google Scholar 

  • Bautista AIN, Necchi O Jr (2007) Photoacclimation in three species of freshwater red algae. Braz J Plant Physiol 19:23–24

    Article  CAS  Google Scholar 

  • Ben-Amotz A, Avron M (1973) The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva. Plant Physiol 51:875–878

    Article  CAS  Google Scholar 

  • Bilger W, Bjorkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:73–185

    Article  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    Article  CAS  Google Scholar 

  • Bonnineau C, Guasch H, Proia L et al (2010) Fluvial biofilms: A pertinent tool to assess beta-blockers toxicity. Aquat Toxicol 96:225–233

    Article  CAS  Google Scholar 

  • Bonnineau C, Gallardo-Sague I, Urrea G et al (2012) Light history modulates antioxidant and photosynthetic responses of biofilms to both natural (light) and chemical (herbicides) stressors. Ecotoxicology 21:1208–1224

    Article  CAS  Google Scholar 

  • Boudreau BP, Jorgensen BB (2001) The benthic boundary layer: transport processes and biogeochemistry. Oxford University Press, Oxford

    Google Scholar 

  • Brotas V, Plante-Cuny M-R (2003) The use of HPLC pigment analysis to study microphytobenthos communities. Acta Oecol 24:109–115

    Article  Google Scholar 

  • Buchaca T (2009) Pigments indicadors: estudi del senyal en estanys dels Pirineus i de la seva aplicació en paleolimnologia. PhD Thesis, Arxius de les Seccions de Ciències 142, Institut d’Estudis Catalans, Barcelona

    Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae. Renew Sust Energ Rev 19:360–369

    Article  CAS  Google Scholar 

  • Chaves M, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  Google Scholar 

  • Cholnoky BJ (1968) Die Ökologie der Diatomeen in Binnengewässern. J. Cramer, Lehre

    Google Scholar 

  • Corcoll N, Bonet B, Leira M et al (2011) Chl-a fluorescence parameters as biomarkers of metal toxicity in fluvial biofilms: an experimental study. Hydrobiologia 673:119–136

    Article  CAS  Google Scholar 

  • Corcoll N, Bonet B, Leira M et al (2012) Light history influences the response of fluvial biofilms to Zn exposure. J Phycol 48:1411–1423

    Article  CAS  Google Scholar 

  • Debenest T, Silvestre J, Coste M et al (2010) Effects of pesticides on freshwater diatoms. In: Whitacre DM (ed) Reviews of Environmental Contamination and Toxicology 203, pp 87–103

    Google Scholar 

  • Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20:1257–1273

    Article  Google Scholar 

  • Devesa-Rey R, Models AB, Díaz-Fierros F (2009) Study of phytopigments in river bed sediments: effects of the organic matter, nutrients and metal composition. Environ Monit Assess 153:147–159

    Article  CAS  Google Scholar 

  • Dewez D, Geoffroy L, Vernet G et al (2005) Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonil in alga Scenedesmus obliquus. Aquat Toxicol 74:150–159

    Article  CAS  Google Scholar 

  • Dodds WK, Biggs BJF, Lowe RL (1999) Photosynthesis-irradiance patterns in benthic microalgae: variations as a function of assemblage thickness and community structure. J Phycol 35:42–53

    Article  Google Scholar 

  • Dodds WK, Smith VH, Lohman K (2002) Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams. Can J Fish Aquat Sci 59:865–874

    Article  Google Scholar 

  • Eilers PHC, Peeters JCH (1988) Model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Modell 42:199–215

    Article  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE et al (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  Google Scholar 

  • Endo T, Schreiber U, Asada K (1995) Suppression of quantum yield of photosystem II by hyperosmotic stress in Chlamydomonas reinhardtii. Plant Cell Physiol 36:1253–1258

    CAS  Google Scholar 

  • Enríquez SC, Duarte M, Sand-Jensen K et al (1996) Broad-scale comparison of photosynthetic rates across phototrophic organisms. Oecologia 108:197–206

    Article  Google Scholar 

  • Ensminger I, Xyländer M, Hagen C et al (2000) Strategies providing success in a variable habitat: II. Ecophysiology of photosynthesis of Cladophora glomerata. Plant Cell Environ 23:1129–1136

    Article  Google Scholar 

  • Escher BI, Hermens JLM (2002) Critical review modes of action in ecotoxicology: their role in body burdens, species sensitivity, QSARs, and mixture effects. Environ Sci Technol 36:4201–4217

    Article  CAS  Google Scholar 

  • Falk S, Maxwell DP, Laudenbach DE et al (1999) Photosynthetic adjustment to temperature. In: Baker NR (ed) Photosyhtesis and the environment, vol. 5. Kluwer Academic Press, New York, pp 367–384.

    Google Scholar 

  • Fanta SE, Hill WR, Smith TB et al (2010) Applying the light: nutrient hypothesis to stream periphyton. Freshwater Biol 55:931–940

    Article  CAS  Google Scholar 

  • Faust M, Altenburger R, Backhaus T et al (2001) Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aquat Toxicol 56:13–32

    Article  CAS  Google Scholar 

  • Figueroa FL, Viñegla B (2001) Effects of solar UV radiation on photosynthesis and enzyme activities (carbonic anhydrase and nitrate reductase) in marine macroalgae from southern Spain. Rev Chil Hist Nat 74:237–249

    Article  Google Scholar 

  • Finlay JC (2001) Stable-carbon-isotope ratios of river biota: implications for energy flow in lotic food webs. Ecology 82:1052–1064

    Google Scholar 

  • France RL (1995) Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar Ecol-Progr Series 124:307–312

    Article  Google Scholar 

  • Freytet P, Plet A (1991) Les formations stromatolitiques (tufs calcaires) récentes de la région de Tournus (Saône et Loire). Geobios 24:123–139

    Article  Google Scholar 

  • Freytet P, Verrecchia EP (1998) Freshwater organisms that build stromatolites: a synopsis of biocrystallization by prokaryotic and eukaryotic algae. Sedimentology 45:535–563

    Article  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27:395–409

    Article  CAS  Google Scholar 

  • Gehl KA, Colman B (1985) Effect of external pH on the internal pH of Chlorella saccharophila. Plant Physiol 77:917–921

    Article  CAS  Google Scholar 

  • Geider R, La Roche J (2002) Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur J Phycol 37:1–17

    Article  Google Scholar 

  • Golubić S, Crescenzo V, Plenković-Moraj A et al (2008) Travertines and calcareous tufa deposits: an insight into diagenesis. Geolog Croat 61:363–378

    Google Scholar 

  • Goyal A (2007) Osmoregulation in Dunaliella, part II: photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in Dunaliella tertiolecta. Plant Physiol Biochem 45:705–710

    Article  CAS  Google Scholar 

  • Greenwood JL, Lowe RL (2006) The effects of pH on a periphyton community in an acidic wetland, USA. Hydrobiologia 561:71–82

    Article  CAS  Google Scholar 

  • Gross W (2000) Ecophysiology of algae living in highly acidic environments. Hydrobiologia 433:31–37

    Article  CAS  Google Scholar 

  • Guasch H, Sabater S (1995) Seasonal variations in photosynthesis-irradiance responses by biofilms in Mediterranean streams. J Phycol 31:727–735

    Article  Google Scholar 

  • Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 1:3–7

    Article  CAS  Google Scholar 

  • Harpole WS, Ngai JT, Cleland EE et al (2011) Resource co-limitation of primary producer communities. Ecol Lett 14:852–862

    Article  Google Scholar 

  • Harrison WG, Platt T (1986) Photosynthesis-irradiance relationships in polar and temperate phytoplankton populations. Polar Biol 5:153–164

    Article  Google Scholar 

  • Healey FP, Hendzel LL (1979) Indicators of phosphorus and nitrogen deficiency in five algae in culture. J Fish Res Board Canada 36:1364–1369

    Article  CAS  Google Scholar 

  • Hill WR, Boston HL (1991) Effects of community development on photosynthesis-irradiance relations in stream periphyton. Limnol Oceanogr 36:375–389

    Article  Google Scholar 

  • Hill WR, Knight AW (1988) Nutrient and light limitation of algae in two northern California streams. J Phycol 24:125–132

    Article  Google Scholar 

  • Hill WR, Fanta SE, Roberts BJ (2008) 13C dynamics in benthic algae: effects of light, phosphorus, and biomass development. Limnol Oceanogr 53:1217–1226

    Article  CAS  Google Scholar 

  • Jeffrey SW, Mantoura RFC, Wright SW (1997) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO, Paris

    Google Scholar 

  • Juneau P, Dewez D, Matsu S et al (2001) Evaluation of different algal species sensitivity to mercury and metolachlor by PAM-fluorometry. Chemosphere 45:589–598

    Article  CAS  Google Scholar 

  • Karsten U, Maie J, Garcia-Pichel F (1998) Seasonality in UV-absorbing compounds of cyanobacterial mat communities from an intertidal mangrove flat. Aquatic Microb Ecol 16:37–44

    Article  Google Scholar 

  • Keely JE, Sandquist DR (1992) Carbon: freshwater plants. Plant Cell Environ 15:1021–1035

    Article  Google Scholar 

  • Kühl M, Polerecky L (2008) Functional and structural imaging of phototrophic microbial communities and symbioses. Aquat Microb Ecol 53:99–118

    Article  Google Scholar 

  • Liu B, Weiqiu N, Xiangping G et al (2011) Growth response and toxic effects of three antibiotics on Selenastrum capricornutum evaluated by photosynthetic rate and chlorophyll biosynthesis. J Environ Sci 23:1558–1563

    Article  CAS  Google Scholar 

  • Maxwell DP, Falk S, Trick CG et al (1994) Growth at low temperature mimics high light acclimation in Chlorella vulgaris. Plant Physiol 105:535–543

    CAS  Google Scholar 

  • McMurry LM, Oethinge M, Levy SB (1998) Triclosan targets lipid synthesis. Nature 394:531–532

    Article  CAS  Google Scholar 

  • Merz-Preiß M, Riding R (1999) Cyanobacterial tufa calcification in two freshwater streams: ambient environment, chemical thresholds and biological processes. Sediment Geol 126:103–124

    Article  Google Scholar 

  • Meybeck M, Helmer R (1989) The quality of rivers: from pristine stage to global pollution. Palaeogeogr Palaeocl 75:283–309

    Article  Google Scholar 

  • Morison MO, Sheath RG (1985) Responses to desiccation stress by Klebsormidium rivulare (Ulotrichales, Chlorophyta) from a Rhode Island stream. Phycologia 24:129–145

    Article  CAS  Google Scholar 

  • Moss B (1968) Studies on the degradation of chlorophyll a and carotenoids in freshwaters. New Phytol 67:49–59

    Article  CAS  Google Scholar 

  • Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  • Negro A, De Hoyos C, Aldasoro J (2003) Diatom and desmid relationships with the environment in mountain lakes and mires of NW Spain. Hydrobiologia 505:1–13

    Article  Google Scholar 

  • Pedersen MF, Borum J (1996) Nutrient control of algal growth in estuarine waters. Nutrient limitation and the importance of nitrogen requeriments and nitrogen storage among phytoplankton species of macroalgae. Mar Ecol-Progr Ser 142:261–272

    Article  CAS  Google Scholar 

  • Phan T, Marquis RE (2006) Triclosan inhibition of membrane enzymes and glycolysis of Streptococcus mutans in suspension and biofilm. Can J Microbiol 52:977–983

    Article  CAS  Google Scholar 

  • Planas D (1996) Acidification effects. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology: freshwater benthic ecosystems. Academic, San Diego, pp 497–530

    Chapter  Google Scholar 

  • Porra RJ, Pfündel EE, Engel N (1997) Metabolism and function of photosynthetic pigments. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO, Paris, pp 85–126

    Google Scholar 

  • Potapova MG, Charles DF (2003) Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition. Freshwater Biol 48:1311–1328

    Article  CAS  Google Scholar 

  • Potts M (1999) Mechanisms of desiccation tolerance in cyanobacteria. Eur J Phycol 34:319–328

    Article  Google Scholar 

  • Price KJ, Carrick HJ (2011) Meta-analytical approach to explain variation in microbial phosphorus uptake rates in aquatic ecosystems. Aquat Microb Ecol 65:89–102

    Article  Google Scholar 

  • Proia L, Morin S, Peipoch M et al (2011) Resistance and recovery of river biofilms receiving short pulses of triclosan and diuron. Sci Total Environ 409:3129–3137

    Article  CAS  Google Scholar 

  • Proia L, Vilches C, Boninneau C et al (2013) Drought episode modulate biofilm response to pulses of Triclosan. Aquat Toxicol 127:36–45

    Article  CAS  Google Scholar 

  • Raven J (1995) Costs and benefits of low intracellular osmolarity in cells of freshwater algae. Funct Ecol 9:701–707

    Article  Google Scholar 

  • Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of seawater. In: Hill MN (ed) The sea, vol 2. John Wiley, New York, pp 26–77

    Google Scholar 

  • Reynolds CS (2006) The ecology of phytoplankton. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Riber HH, Wetzel RG (1987) Boundary-layer and internal diffusion effects on phosphorus fluxes in lake periphyton. Limnol Oceanogr 32:1181–1119

    Article  CAS  Google Scholar 

  • Ricart M, Barceló D, Geiszinge A et al (2009) Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria. Chemosphere 76:1392–1401

    Article  CAS  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  CAS  Google Scholar 

  • Rowan KS (1989) Photosynthetic pigments of algae. Cambridge University Press, Cambridge

    Google Scholar 

  • Sabater S, Guasch H, Romaní A et al (2000) Stromatolitic communities in Mediterranean streams: adaptations to a changing environment. Biodivers Conserv 9:379–392

    Article  Google Scholar 

  • Sabater S, Buchaca T, Cambra J et al (2003) Structure and function of benthic algal communities in an extremely acid river. J Phycol 39:481–489

    Article  CAS  Google Scholar 

  • Sand-Jensen K, Borum J (1991) Interaction between phytoplankton, periphyton and macrophytes in temperate freshwaters and estuaries. Aquat Bot 41:137–176

    Article  Google Scholar 

  • Sanders, JG (1979). Effects of arsenic speciation and phosphate concentration on arsenic inhibition of Skeletonema costatum (Bacillariophyceae). J Phycol 15:424–428

    Google Scholar 

  • Schlüter L, Lauridsen TL, Krogh G et al (2006) Identification and quantification of phytoplankton groups in lakes using new pigment ratios—a comparison between pigment analysis by HPLC and microscopy. Freshwater Biol 51:1474–1485

    Article  CAS  Google Scholar 

  • Schreiber U, Schliwaand U, Bilge W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  Google Scholar 

  • Seckbach J, Oren A (2007) Oxygenic photosynthetic microorganisms in extreme environments: possibilities and limitations. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht

    Chapter  Google Scholar 

  • Serôdio J, Marques da Silva J, Catarino F (1997) Nondestructive tracing of migratory rhythms of intertidal benthic microalgae using in vivo chlorophyll a fluorescence. J Phycol 33:542–553

    Article  Google Scholar 

  • Shephard K (1987) Evaporation of water from the mucilage of a gelatinous algal community. Br Phycol J 22:181–185

    Article  Google Scholar 

  • Smith FR, Walker NA (1980) Photosynthesis by aquatic plants effects of unstirred layers in relation to assimilation of CO2 and HCO3 and to carbon isotopic discrimination. New Phytol 86:245–259

    Article  CAS  Google Scholar 

  • Steinman AD, Mulholland PJ, Hill WR (1992) Functional responses associated with growth from in stream algae. J North Am Benthol Soc 11:229–243

    Article  Google Scholar 

  • Stelzer RS, Lamberti GA (2001) Effects of N: P ratio and total nutrient concentration on stream periphyton community structure, biomass, and elemental composition. Limnol Oceanogr 46:356–367

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Sterner RW, Else JJ, Fee EJ et al (1997) The light: nutrient ratio in lakes: the balance of energy and materials affects ecosystem structure and process. Am Nat 150:663–684

    Article  CAS  Google Scholar 

  • Stevenson RJ, Glover R (1993) Effects of algal density and current on ion transport through periphyton communities. Limnol Oceanogr 38:1276–1281

    CAS  Google Scholar 

  • Stevenson RJ, Pan Y, van Dam H (1999) Assessing environmental conditions in rivers and streams using diatoms. In: Stoermer EF, Smol JP (eds) The diatoms: application for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 57–85

    Google Scholar 

  • Sudhir P, Murthy S (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481–486

    Article  CAS  Google Scholar 

  • Thiel T (1988) Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis. J Bacteriol 170:1143–1147

    CAS  Google Scholar 

  • Tilman D, Kiesling R, Sterne R et al (1986) Green, bluegreen and diatom algae: taxonomic differences in competitive ability for phosphorus, silicon and nitrogen. Arch Hydrobiol 106:473–485

    Google Scholar 

  • Timoner X, Buchaca T, Acuña V et al (2014) Photosynthetic pigment changes and adaptations in biofilms in response to flow intermittency. Aquatic Sci 76:565–578

    Article  CAS  Google Scholar 

  • Villalaín J, Reyes Mateo C, Arand FJ et al (2001) Membranotropic effects of the antibacterial agent triclosan. Arch Biochem Biophys 390:128–136

    Article  CAS  Google Scholar 

  • Vonshak A, Torzillo G (2004) Environmental stress physiology. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing, Oxford, pp 57–82

    Google Scholar 

  • Waring J, Baker NR, Underwood GJC (2007) Responses of estuarine intertidal microphytobenthic algal assemblages to enhanced ultraviolet B radiation. Glob Change Biol 13:1398–1413

    Article  Google Scholar 

  • Winterbound MJ, Hildrew AG, Orton S (1992) Nutrients, algae and grazers in some British streams of contrasting pH. Freshwater Biol 28:173–182

    Article  Google Scholar 

  • Wood JM (1974) Biological cycles for toxic elements in the environment. Science 183:1049–1052

    Article  CAS  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  CAS  Google Scholar 

  • Yates KK, Robbins LL (1998) Production of carbonate sediments by a unicellular green alga. Am Mineral 83:1503–1509

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This chapter benefitted from funding of the projects SCARCE (CONSOLIDER-INGENIO CSD2009-00065), and CARBONET (CGL2011-30474-C02-01) of the Spanish Ministry of Science and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergi Sabater .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sabater, S., Artigas, J., Corcoll, N., Proia, L., Timoner, X., Tornés, E. (2016). Ecophysiology of River Algae. In: Necchi JR, O. (eds) River Algae. Springer, Cham. https://doi.org/10.1007/978-3-319-31984-1_9

Download citation

Publish with us

Policies and ethics