Advertisement

Microbial Interactions on Coral Surfaces and Within the Coral Holobiont

  • Max TeplitskiEmail author
  • Cory J. Krediet
  • Julie L. Meyer
  • Kim B. Ritchie

Abstract

Microbial communities associated with coral surfaces are diverse and complex. They play key roles in nutrient acquisition by coral holobionts and in responses to stressors and diseases. Members of coral-associated microbiota produce antimicrobial compounds, inhibit cell-to-cell signaling, and disrupt virulence in opportunistic pathogens. Characterization of coral-associated microbial communities suggests that metabolic capabilities define the core members of the communities. However, some taxonomic conservation is becoming evident in microbial communities associated with the same coral species and genera in different geographic regions. Even though shifts in the composition of coral microbiota often correlate with the appearance of signs of diseases and/or bleaching, it is not yet clear to what extent these shifts are a cause or a consequence of diseases. This chapter focuses on interactions within coral-associated microbial communities and suggests potentially interesting directions for future research.

Keywords

Coral microbiology Coral disease Halomonas spp. Coral mucus Coral commensal microbiota 

Notes

Acknowledgements

Preparation of this manuscript was supported by the Protect Our Reefs Foundation (MT, KBR, CJK and JLM) and by the George E. Burch Fellowship in Theoretical Medicine (MT).

References

  1. Alagely A, Krediet CJ, Ritchie KB, Teplitski M (2011) Signaling-mediated cross-talk modulates swarming and biofilm formation in a coral pathogen Serratia marcescens. ISME J 5(10):1609–1620. doi: 10.1038/ismej.2011.45 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alavi M, Miller T, Erlandson K, Schneider R, Belas R (2001) Bacterial community associated with Pfiesteria-like dinoflagellate cultures. Environ Microbiol 3(6):380–396PubMedCrossRefGoogle Scholar
  3. Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Ann Rev Mar Sci 5(5):321–348. doi: 10.1146/Annurev-Marine-121211-172241 PubMedCrossRefGoogle Scholar
  4. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008a) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci U S A 105:17442–17446. doi: 10.1073/pnas.0804478105 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anthony SL, Page CA, Bourne DG, Willis BL (2008b) Newly characterized distinct phases of the coral disease ‘atramentous necrosis’ on the Great Barrier Reef. Dis Aquat Organ 81(3):255–259. doi: 10.3354/dao01962 PubMedCrossRefGoogle Scholar
  6. Apprill A, Hughen K, Mincer T (2013) Major similarities in the bacterial communities associated with lesioned and healthy Fungiidae corals. Environ Microbiol 15(7):2063–2072. doi: 10.1111/1462-2920.12107 PubMedCrossRefGoogle Scholar
  7. Aronson RB, Bruno JF, Precht WF, Glynn PW, Harvell CD, Kaufman L, Rogers CS, Shinn EA, Valentine JF (2003) Causes of coral reef degradation. Science 302(5650):1502–1504PubMedCrossRefGoogle Scholar
  8. Augustin R, Fraune S, Bosch TCG (2010) How Hydra senses and destroys microbes. Semin Immunol 22(1):54–58. doi: 10.1016/J.Smim.2009.11.002 PubMedCrossRefGoogle Scholar
  9. Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Physiol 59:89–113. doi: 10.1146/annurev.arplant.59.032607.092759 Google Scholar
  10. Ban SS, Graham NA, Connolly SR (2014) Evidence for multiple stressor interactions and effects on coral reefs. Glob Chang Biol 20(3):681–697. doi: 10.1111/gcb.12453 PubMedCrossRefGoogle Scholar
  11. Baumgarten S, Simakov O, Esherick LY, Liew YJ, Lehnert EM, Michell CT, Li Y, Hambleton EA, Guse A, Oates ME, Gough J, Weis VM, Aranda M, Pringle JR, Voolstra CR (2015) The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc Natl Acad Sci U S A 112(38):11893–11898. doi: 10.1073/pnas.1513318112 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bayer T, Neave MJ, Alsheikh-Hussain A, Aranda M, Yum LK, Mincer T, Hughen K, Apprill A, Voolstra CR (2013) The microbiome of the Red Sea coral Stylophora pistillata is dominated by tissue-associated Endozoicomonas bacteria. Appl Environ Microbiol 79(15):4759–4762. doi: 10.1128/Aem.00695-13 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Ben-Haim Y, Zicherman-Keren M, Rosenberg E (2003) Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. Appl Environ Microbiol 69(7):4236–4242PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bhagooli R, Hidaka M (2004) Release of zooxanthellae with intact photosynthetic activity by the coral Galaxea fascicularis in response to high temperature stress. Mar Biol 145(2):329–337. doi: 10.1007/S00227-004-1309-7 CrossRefGoogle Scholar
  15. Bieri T, Pringle JR (2016) Effects of algal and host genotypes on the bleaching of a symbiotic cnidarian in response to low pH. PLoS One (in review)Google Scholar
  16. Bieri T, Onishi M, Xiang T, Grossman AR, Pringle JR (2016) Relative contributions of various cellular mechanisms to loss of algae during cnidarian bleaching. PLoS One 11(4):e0152693. doi: 10.1371/journal.pone.0152693
  17. Bourne D, Iida Y, Uthicke S, Smith-Keune C (2008) Changes in coral-associated microbial communities during a bleaching event. ISME J 2(4):350–363. doi: 10.1038/ismej.2007.112 PubMedCrossRefGoogle Scholar
  18. Bourne DG, Garren M, Work TM, Rosenberg E, Smith GW, Harvell CD (2009) Microbial disease and the coral holobiont. Trends Microbiol 17(12):554–562. doi: 10.1016/j.tim.2009.09.004 PubMedCrossRefGoogle Scholar
  19. Bourne DG, Dennis PG, Uthicke S, Soo RM, Tyson GW, Webster N (2013) Coral reef invertebrate microbiomes correlate with the presence of photosymbionts. ISME J 7(7):1452–1458. doi: 10.1038/ismej.2012.172 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Brown BE, Bythell JC (2005) Perspectives on mucus secretion in reef corals. Mar Ecol Prog Ser 296:291–309. doi: 10.3354/meps296291 CrossRefGoogle Scholar
  21. Burge CA, Eakin CM, Friedman CS, Froelich B, Hershberger PK, Hofmann EE, Petes LE, Prager KC, Weil E, Willis BL, Ford SE, Harvell CD (2014) Climate change influences on marine infectious diseases: implications for management and society. Ann Rev Mar Sci 6:249–277. doi: 10.1146/Annurev-Marine-010213-135029 PubMedCrossRefGoogle Scholar
  22. Cardenas A, Rodriguez RL, Pizarro V, Cadavid LF, Arevalo-Ferro C (2012) Shifts in bacterial communities of two Caribbean reef-building coral species affected by white plague disease. ISME J 6(3):502–512. doi: 10.1038/ismej.2011.123 PubMedCrossRefGoogle Scholar
  23. Chen MC, Cheng YM, Sung PJ, Kuo CE, Fang LS (2003) Molecular identification of Rab7 (ApRab7) in Aiptasia pulchella and its exclusion from phagosomes harboring zooxanthellae. Biochem Biophys Res Commun 308:586–595. doi: 10.1016/S0006-291X(03)01428-1 PubMedCrossRefGoogle Scholar
  24. Chimetto LA, Brocchi M, Thompson CC, Martins RCR, Ramos HR, Thompson FL (2008) Vibrios dominate as culturable nitrogen-fixing bacteria of the Brazilian coral Mussismilia hispida. Syst Appl Microbiol 31(4):312–319. doi: 10.1016/J.Syapm.2008.06.001 PubMedCrossRefGoogle Scholar
  25. Cline K, Wernerwashburne M, Andrews J, Keegstra K (1984) Thermolysin is a suitable protease for probing the surface of intact pea chloroplasts. Plant Physiol 75(3):675–678PubMedPubMedCentralCrossRefGoogle Scholar
  26. Coddeville B, Maes E, Ferrier-Pages C, Guerardel Y (2011) Glycan profiling of gel forming mucus layer from the scleractinian symbiotic coral Oculina arbuscula. Biomacromolecules 12(6):2064–2073. doi: 10.1021/bm101557v PubMedCrossRefGoogle Scholar
  27. Cui Y, Suzuki S, Omori Y, Wong SK, Ijichi M, Kaneko R, Kameyama S, Tanimoto H, Hamasaki K (2015) Abundance and distribution of dimethylsulfoniopropionate degradation genes and the corresponding bacterial community structure at dimethyl sulfide hot spots in the tropical and subtropical pacific ocean. Appl Environ Microbiol 81(12):4184–4194. doi: 10.1128/AEM.03873-14 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cunning R, Silverstein RN, Silverstein RN, Baker AC (2015) Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proc R Soc B 282(1809):20141725. doi: 10.1098/rspb.2014.1725 PubMedPubMedCentralCrossRefGoogle Scholar
  29. DeBose JL, Lema SC, Nevitt GA (2008) Dimethylsulfoniopropionate as a foraging cue for reef fishes. Science 319(5868):1356–1356. doi: 10.1126/Science.1151109 PubMedCrossRefGoogle Scholar
  30. Deschaseaux ESM, Jones GB, Deseo MA, Shepherd KM, Kiene RP, Swan HB, Harrison PL, Eyre BD (2014) Effects of environmental factors on dimethylated sulfur compounds and their potential role in the antioxidant system of the coral holobiont. Limnol Oceanogr 59(3):758–768. doi: 10.4319/Lo.2014.59.3.0758 CrossRefGoogle Scholar
  31. Deutscher J (2008) The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol 11(2):87–93. doi: 10.1016/j.mib.2008.02.007 PubMedCrossRefGoogle Scholar
  32. Dobretsov S, Teplitski M, Paul V (2009) Mini-review: quorum sensing in the marine environment and its relationship to biofouling. Biofouling 25(5):413–427. doi: 10.1080/08927010902853516 PubMedCrossRefGoogle Scholar
  33. Dobretsov S, Teplitski M, Bayer M, Gunasekera S, Proksch P, Paul VJ (2011) Inhibition of marine biofouling by bacterial quorum sensing inhibitors. Biofouling 27(8):893–905. doi: 10.1080/08927014.2011.609616 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Douglas AE (2003) Coral bleaching – how and why? Mar Pollut Bull 46(4):385–392. doi: 10.1016/S0025-326X(03)00037-7 PubMedCrossRefGoogle Scholar
  35. Downs CA, Kramarsky-Winter E, Martinez J, Kushmaro A, Woodley CM, Loya Y, Ostrander GK (2009) Symbiophagy as a cellular mechanism for coral bleaching. Autophagy 5:211–216. doi: 10.4161/auto.5.2.7405 PubMedCrossRefGoogle Scholar
  36. Dunn SR, Weis VM (2009) Apoptosis as a post-phagocytic winnowing mechanism in a coral-dinoflagellate mutualism. Environ Microbiol 11(1):268–276. doi: 10.1111/j.1462-2920.2008.01774.x PubMedCrossRefGoogle Scholar
  37. Dunn SR, Schnitzler CE, Weis VM (2007) Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose. Proc R Soc B 274(1629):3079–3085. doi: 10.1098/rspb.2007.0711 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dunn SR, Pernice M, Green K, Hoegh-Guldberg O, Dove SG (2012) Thermal stress promotes host mitochondrial degradation in symbiotic cnidarians: are the batteries of the reef going to run out? PLoS One 7:e39024. doi: 10.1371/journal.pone.0039024 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dunne RP, Brown BE (2001) The influence of solar radiation on bleaching of shallow water reef corals in the Andaman Sea, 1993–1998. Coral Reefs 20:201–210. doi: 10.1007/s003380100160 Google Scholar
  40. Dykens J, Shick JM, Benoit C, Buettner GR, Winston GW (1992) Oxygen radical production in the sea-anemone Anthopleura elegantissima and its endosymbiotic algae. J Exp Biol 168:219–241Google Scholar
  41. Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20(9):2444–2449PubMedCrossRefGoogle Scholar
  42. Fan L, Liu M, Simister R, Webster NS, Thomas T (2013) Marine microbial symbiosis heats up: the phylogenetic and functional response of a sponge holobiont to thermal stress. ISME J 7(5):991–1002. doi: 10.1038/ismej.2012.165 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Fiore CL, Jarett JK, Olson ND, Lesser MP (2010) Nitrogen fixation and nitrogen transformations in marine symbioses. Trends Microbiol 18(10):455–463. doi: 10.1016/J.Tim.2010.07.001 PubMedCrossRefGoogle Scholar
  44. Franklin D, Hoegh-Guldberg O, Jones R, Berges J (2004) Cell death and degeneration in the symbiotic dinoflagellates of the coral Stylophora pistillata during bleaching. Mar Ecol Prog Ser 272:117–130CrossRefGoogle Scholar
  45. Frydenborg BR, Krediet CJ, Teplitski M, Ritchie KB (2013) Temperature-dependent inhibition of opportunistic Vibrio pathogens by native coral commensal bacteria. Microb Ecol 67:392–401. doi: 10.1007/s00248-013-0334-9 PubMedCrossRefGoogle Scholar
  46. Fusetani N, Toyoda T, Asai N, Matsunaga S, Maruyama T (1996) Montiporic acids A and B, cytotoxic and antimicrobial polyacetylene carboxylic acids from eggs of the scleractinian coral Montipora digitata. J Nat Prod 59(8):796–797PubMedCrossRefGoogle Scholar
  47. Garren M, Azam F (2010) New method for counting bacteria associated with coral mucus. Appl Environ Microbiol 76(18):6128–6133. doi: 10.1128/AEM.01100-10 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Garren M, Son K, Raina JB, Rusconi R, Menolascina F, Shapiro OH, Tout J, Bourne DG, Seymour JR, Stocker R (2014) A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J 8(5):999–1007. doi: 10.1038/Ismej.2013.210 PubMedCrossRefGoogle Scholar
  49. Gates RD, Baghdasarian G, Muscatine L (1992) Temperature stress causes host-cell detachment in symbiotic cnidarians – implications for coral bleaching. Biol Bull 182:324–332. doi: 10.2307/1542252 CrossRefGoogle Scholar
  50. Gochfeld DJ, Aeby GS (2008) Antibacterial chemical defenses in Hawaiian corals provide possible protection from disease. Mar Ecol Prog Ser 362:119–128CrossRefGoogle Scholar
  51. Gochfeld DJ, Olson JB, Slattery M (2006) Colony versus population variation in susceptibility and resistance to dark spot syndrome in the Caribbean coral Siderastrea siderea. Dis Aquat Organ 69(1):53–65PubMedCrossRefGoogle Scholar
  52. Golberg K, Eltzov E, Shnit-Orland M, Marks RS, Kushmaro A (2011) Characterization of quorum sensing signals in coral-associated bacteria. Microb Ecol 61(4):783–792. doi: 10.1007/s00248-011-9848-1 PubMedCrossRefGoogle Scholar
  53. Golberg K, Pavlov V, Marks RS, Kushmaro A (2013) Coral-associated bacteria, quorum sensing disrupters, and the regulation of biofouling. Biofouling 29(6):669–682PubMedCrossRefGoogle Scholar
  54. Goreau TF (1964) Mass expulsion of zooxanthellae from Jamaican reef communities after hurricane Flora. Science 145:383–386. doi: 10.1126/science.145.3630.383 PubMedCrossRefGoogle Scholar
  55. Gorke B, Stulke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6(8):613–624PubMedCrossRefGoogle Scholar
  56. Grover R, Ferrier-Pages C, Maguer JF, Ezzat L, Fine M (2014) Nitrogen fixation in the mucus of Red Sea corals. J Exp Biol 217(22):3962–3963. doi: 10.1242/Jeb.111591 PubMedCrossRefGoogle Scholar
  57. Haapkyla J, Unsworth RK, Flavell M, Bourne DG, Schaffelke B, Willis BL (2011) Seasonal rainfall and runoff promote coral disease on an inshore reef. PLoS One 6(2):e16893. doi: 10.1371/journal.pone.0016893 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hanes SD, Kempf SC (2013) Host autophagic degradation and associated symbiont loss in response to heat stress in the symbiotic anemone, Aiptasia pallida. Invertebr Biol 132:95–107. doi: 10.1111/ivb.12018 CrossRefGoogle Scholar
  59. Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ, Hofmann EE, Lipp EK, Osterhaus AD, Overstreet RM, Porter JW, Smith GW, Vasta GR (1999) Emerging marine diseases – climate links and anthropogenic factors. Science 285(5433):1505–1510PubMedCrossRefGoogle Scholar
  60. Henke JM, Bassler BL (2004) Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol 186(20):6902–6914. doi: 10.1128/JB.186.20.6902-6914.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hoegh-Guldberg O, Mccloskey LR, Muscatine L (1987) Expulsion of zooxanthellae by symbiotic cnidarians from the Red-Sea. Coral Reefs 5(4):201–204. doi: 10.1007/Bf00300964 CrossRefGoogle Scholar
  62. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318(5857):1737–1742. doi: 10.1126/Science.1152509 PubMedCrossRefGoogle Scholar
  63. Hughes TP, Connell JH (1997) Multiple stressors on coral reefs: a long-term perspective. Symposium on the effects of multiple stressors on freshwater and marine ecosystems at the annual meeting of the American-Society-of-Limnology-and-Oceanography 44:932–940. doi: 10.4319/lo.1999.44.3_part_2.0932
  64. Iguchi A, Shinzato C, Foret S, Miller DJ (2011) Identification of fast-evolving genes in the scleractinian coral Acropora using comparative EST analysis. PLoS One 6(6):e20140. doi: 10.1371/journal.pone.0020140 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Jaap WC (1979) Observations on zooxanthellae expulsion at Middle Sambo Reef, Florida Keys. Bull Mar Sci 29:414–422Google Scholar
  66. Jatkar AA, Brown BE, Bythell JC, Guppy R, Morris NJ, Pearson JP (2010) Coral mucus: the properties of its constituent mucins. Biomacromolecules 11(4):883–888. doi: 10.1021/bm9012106 PubMedCrossRefGoogle Scholar
  67. Jones RJ (2004) Testing the ‘photoinhibition’ model of coral bleaching using chemical inhibitors. Mar Ecol Prog Ser 284:133–145CrossRefGoogle Scholar
  68. Jones R (2005) The ecotoxicological effects of Photosystem II herbicides on corals. Mar Pollut Bull 51:495–506. doi: 10.1016/j.marpolbul.2005.06.027 PubMedCrossRefGoogle Scholar
  69. Jones R, Hoegh-Guldberg O (2001) Diurnal changes in the photochemical efficiency of the symbiotic dinoflagellates (Dinophyceae) of corals: photoprotection, photoinactivation and the relationship to coral bleaching. Plant Cell Environ 24:89–99CrossRefGoogle Scholar
  70. Kim YM, Bouras N, Kay NNV, Strelkov SE (2010) Inhibition of photosynthesis and modification of the wheat leaf proteome by Ptr ToxB: a host-specific toxin from the fungal pathogen Pyrenophora tritici-repentis. Proteomics 10(16):2911–2926. doi: 10.1002/Pmic.200900670 PubMedCrossRefGoogle Scholar
  71. Kimes NE, Grim CJ, Johnson WR, Hasan NA, Tall BD, Kothary MH, Kiss H, Munk AC, Tapia R, Green L, Detter C, Bruce DC, Brettin TS, Colwell RR, Morris PJ (2011) Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME J 6:835–846. doi: 10.1038/ismej.2011.154 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kirst GO (1990) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 41:21–53. doi: 10.1146/Annurev.Pp.41.060190.000321 CrossRefGoogle Scholar
  73. Koren O, Rosenberg E (2006) Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl Environ Microbiol 72(8):5254–5259. doi: 10.1128/AEM.00554-06 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Krediet CJ, Ritchie KB, Cohen M, Lipp EK, Sutherland KP, Teplitski M (2009a) Utilization of mucus from the coral Acropora palmata by the pathogen Serratia marcescens and by environmental and coral commensal bacteria. Appl Environ Microbiol 75(12):3851–3858. doi: 10.1128/Aem.00457-09 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Krediet CJ, Ritchie KB, Teplitski M (2009b) Catabolite regulation of enzymatic activities in a white pox pathogen and commensal bacteria during growth on mucus polymers from the coral Acropora palmata. Dis Aquat Organ 87(1–2):57–66. doi: 10.3354/Dao02084 PubMedCrossRefGoogle Scholar
  76. Krediet CJ, Ritchie KB, Alagely A, Teplitski M (2013a) Members of native coral microbiota inhibit glycosidases and thwart colonization of coral mucus by an opportunistic pathogen. ISME J 7(5):980–990. doi: 10.1038/ismej.2012.164 PubMedCrossRefGoogle Scholar
  77. Krediet CJ, Ritchie KB, Paul VJ, Teplitski M (2013b) Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc R Soc B 280(1755):20122328. doi: 10.1098/Rspb.2012.2328 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Krediet CJ, Denofrio JC, Caruso C, Burriesci MS, Cella K, Pringle JR (2015) Rapid, precise, and accurate counts of Symbiodinium cells using the Guava flow cytometer, and a comparison to other methods. PLoS One 10(8):e0135725PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kushmaro A, Banin E, Loya Y, Stackebrandt E, Rosenberg E (2001) Vibrio shiloi sp. nov., the causative agent of bleaching of the coral Oculina patagonica. Int J Syst Evol Microbiol 51(Pt 4):1383–1388PubMedCrossRefGoogle Scholar
  80. Kuta KG, Richardson LL (2002) Ecological aspects of black band disease of corals: relationships between disease incidence and environmental factors. Coral Reefs 21(4):393–398. doi: 10.1007/S00338-002-0261-6 Google Scholar
  81. Kvennefors EC, Leggat W, Hoegh-Guldberg O, Degnan BM, Barnes AC (2008) An ancient and variable mannose-binding lectin from the coral Acropora millepora binds both pathogens and symbionts. Dev Comp Immunol 32(12):1582–1592. doi: 10.1016/j.dci.2008.05.010 PubMedCrossRefGoogle Scholar
  82. Kvennefors EC, Sampayo E, Kerr C, Vieira G, Roff G, Barnes AC (2012) Regulation of bacterial communities through antimicrobial activity by the coral holobiont. Microb Ecol 63(3):605–618. doi: 10.1007/s00248-011-9946-0 PubMedCrossRefGoogle Scholar
  83. Kvitt H, Rosenfeld H, Zandbank K, Tchernov D (2011) Regulation of apoptotic pathways by Stylophora pistillata (anthozoa, pocilloporidae) to survive thermal stress and bleaching. PLoS One 6:e28665. doi: 10.1371/journal.pone.0028665 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Le Tissier MDAA, Brown BE (1996) Dynamics of solar bleaching in the intertidal reef coral Goniastrea aspera at Ko Phuket, Thailand. Mar Ecol Prog Ser 136:235–244. doi: 10.3354/meps136235 CrossRefGoogle Scholar
  85. Lema KA, Willis BL, Bourne DG (2012) Corals form characteristic associations with symbiotic nitrogen-fixing bacteria. Appl Environ Microbiol 78(9):3136–3144. doi: 10.1128/AEM.07800-11 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lema KA, Willis BL, Bourne DG (2014) Amplicon pyrosequencing reveals spatial and temporal consistency in diazotroph assemblages of the Acropora millepora microbiome. Environ Microbiol 16(10):3345–3359PubMedCrossRefGoogle Scholar
  87. Lesser MP (1997) Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16(3):187–192. doi: 10.1007/S003380050073 CrossRefGoogle Scholar
  88. Lesser MP (2007) Coral reef bleaching and global climate change: can corals survive the next century? Proc Natl Acad Sci U S A 104(13):5259–5260. doi: 10.1073/pnas.0700910104 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Lesser MP, Bythell JC, Gates RD, Johnstone RW, Hoegh-Guldberg O (2007a) Are infectious diseases really killing corals? Alternative interpretations of the experimental and ecological data. J Exp Mar Biol Ecol 346(1–2):36–44. doi: 10.1016/j.jembe.2007.02.015 CrossRefGoogle Scholar
  90. Lesser MP, Falcon LI, Rodriguez-Roman A, Enriquez S, Hoegh-Guldberg O, Iglesias-Prieto R (2007b) Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar Ecol Prog Ser 346:143–152. doi: 10.3354/Meps07008 CrossRefGoogle Scholar
  91. Littman RA, Willis BL, Pfeffer C, Bourne DG (2009) Diversities of coral-associated bacteria differ with location, but not species, for three acroporid corals on the Great Barrier Reef. FEMS Microbiol Ecol 68(2):152–163. doi: 10.1111/j.1574-6941.2009.00666.x PubMedCrossRefGoogle Scholar
  92. Looney EE, Sutherland KP, Lipp EK (2010) Effects of temperature, nutrients, organic matter and coral mucus on the survival of the coral pathogen, Serratia marcescens PDL100. Environ Microbiol 12(9):2479–2485. doi: 10.1111/j.1462-2920.2010.02221.x PubMedCrossRefGoogle Scholar
  93. Mao-Jones J, Ritchie KB, Jones LE, Ellner SP (2010) How microbial community composition regulates coral disease development. PLoS Biol 8(3):e1000345. doi: 10.1371/journal.pbio.1000345 PubMedPubMedCentralCrossRefGoogle Scholar
  94. McDaniel LD, Young E, Delaney J, Ruhnau F, Ritchie KB, Paul JH (2010) High frequency of horizontal gene transfer in the oceans. Science 330(6000):50. doi: 10.1126/science.1192243 PubMedCrossRefGoogle Scholar
  95. McDaniel LD, Young EC, Ritchie KB, Paul JH (2012) Environmental factors influencing Gene Transfer Agent (GTA) mediated transduction in the subtropical ocean. PLoS One 7(8):e43506. doi: 10.1371/journal.pone.0043506 PubMedPubMedCentralCrossRefGoogle Scholar
  96. McFall-Ngai M, Heath-Heckman EA, Gillette AA, Peyer SM, Harvie EA (2012) The secret languages of coevolved symbioses: insights from the Euprymna scolopes-Vibrio fischeri symbiosis. Semin Immunol 24(1):3–8. doi: 10.1016/j.smim.2011.11.006 PubMedCrossRefGoogle Scholar
  97. McKew B, Dumbrell A, Daud S, Hepburn L, Thorpe E, Mogensen L, Whitby C (2012) Characterization of geographically distinct bacterial communities associated with coral mucus produced by Acropora spp. and Porites spp. Appl Environ Microbiol 78(15):5229–5237PubMedPubMedCentralCrossRefGoogle Scholar
  98. Meikle P, Richards GN, Yellowlees D (1987) Structural determination of the oligosaccharide side-chains from a glycoprotein isolated from the mucus of the coral Acropora formosa. J Biol Chem 262(35):16941–16947PubMedGoogle Scholar
  99. Meikle P, Richards GN, Yellowlees D (1988) Structural investigations on the mucus from 6 species of coral. Mar Biol 99(2):187–193. doi: 10.1007/BF00391980 CrossRefGoogle Scholar
  100. Meron D, Atias E, Kruh LI, Elifantz H, Minz D, Fine M, Banin E (2011) The impact of reduced pH on the microbial community of the coral Acropora eurystoma. ISME J 5(1):51–60. doi: 10.1038/Ismej.2010.102 PubMedCrossRefGoogle Scholar
  101. Meyer JL, Paul VJ, Teplitski M (2014) Community shifts in the surface microbiomes of the coral Porites astreoides with unusual lesions. PLoS One 9(6):e100316. doi: 10.1371/journal.pone.0100316 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Meyer JL, Gunasekera SP, Scott RM, Paul VJ, Teplitski M (2015) Microbiome shifts and the inhibition of quorum sensing by Black Band Disease cyanobacteria. ISME J 10:1204-1216. doi: 10.1038/ismej.2015.184
  103. Molchanova VI, Ovodova RG, Ovodov YS, Elkin YN, Fernandez Santana V (1985) Studies of the polysaccharide moiety of corallan, a glycoprotein from Pseudopterogorgia americana. Carbohydr Res 141(2):289–293. doi: 10.1016/S0008-6215(00)90460-9 CrossRefGoogle Scholar
  104. Morrow KM, Moss AG, Chadwick NE, Liles MR (2012) Bacterial associates of two Caribbean coral species reveal species-specific distribution and geographic variability. Appl Environ Microbiol 78(18):6438–6449. doi: 10.1128/AEM.01162-12 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Mumby PJ, Hastings A, Edwards HJ (2007) Thresholds and the resilience of Caribbean coral reefs. Nature 450(7166):98–101. doi: 10.1038/nature06252 PubMedCrossRefGoogle Scholar
  106. Muscatine L, Mccloskey LR, Marian RE (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr 26(4):601–611CrossRefGoogle Scholar
  107. Negri A, Vollhardt C, Humphrey C, Heyward A, Jones R, Eaglesham G, Fabricius K (2005) Effects of the herbicide diuron on the early life history stages of coral. Mar Pollut Bull 51:370–383. doi: 10.1016/j.marpolbul.2004.10.053 PubMedCrossRefGoogle Scholar
  108. Negri AP, Flores F, Röthig T, Uthicke S (2011) Herbicides increase the vulnerability of corals to rising sea surface temperature. Limnol Oceanogr 56:471–485. doi: 10.4319/lo.2011.56.2.0471 CrossRefGoogle Scholar
  109. Nevitt GA (2011) The neuroecology of dimethyl sulfide: a global-climate regulator turned marine infochemical. Integr Comp Biol 51(5):819–825. doi: 10.1093/Icb/Icr093 PubMedCrossRefGoogle Scholar
  110. Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222. doi: 10.1146/annurev-genet-102108-134304 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Ng WL, Perez LJ, Wei Y, Kraml C, Semmelhack MF, Bassler BL (2011) Signal production and detection specificity in Vibrio CqsA/CqsS quorum-sensing systems. Mol Microbiol 79(6):1407–1417. doi: 10.1111/j.1365-2958.2011.07548.x PubMedPubMedCentralCrossRefGoogle Scholar
  112. Nissimov J, Rosenberg E, Munn CB (2009) Antimicrobial properties of resident coral mucus bacteria of Oculina patagonica. FEMS Microbiol Lett 292(2):210–215. doi: 10.1111/j.1574-6968.2009.01490.x PubMedCrossRefGoogle Scholar
  113. Olson JB, Thacker RW, Gochfeld DJ (2014) Molecular community profiling reveals impacts of time, space, and disease status on the bacterial community associated with the Caribbean sponge Aplysina cauliformis. FEMS Microbiol Ecol 87(1):268–279. doi: 10.1111/1574-6941.12222 PubMedCrossRefGoogle Scholar
  114. Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333(6041):418–422. doi: 10.1126/Science.1204794 PubMedCrossRefGoogle Scholar
  115. Pantos O, Bongaerts P, Dennis PG, Tyson GW, Hoegh-Guldberg O (2015) Habitat-specific environmental conditions primarily control the microbiomes of the coral Seriatopora hystrix. ISME J 9(9):1916–1927. doi: 10.1038/ismej.2015.3 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Paul JH, Deflaun MF, Jeffrey WH (1986) Elevated levels of microbial activity in the coral surface microlayer. Mar Ecol Prog Ser 33(1):29–40CrossRefGoogle Scholar
  117. Paxton CW, Davy SK, Weis VM (2013) Stress and death of cnidarian host cells play a role in cnidarian bleaching. J Exp Biol 216:2813–2820. doi: 10.1242/jeb.087858 PubMedCrossRefGoogle Scholar
  118. Pernice M, Dunn SR, Miard T, Dufour S, Dove S, Hoegh-Guldberg O (2011) Regulation of apoptotic mediators reveals dynamic responses to thermal stress in the reef building coral Acropora millepora. PLoS One 6(6):e16095. doi: 10.1371/journal.pone.0016095 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Post DM, Yu L, Krasity BC, Choudhury B, Mandel MJ, Brennan CA, Ruby EG, McFall-Ngai MJ, Gibson BW, Apicella MA (2012) O-antigen and core carbohydrate of Vibrio fischeri lipopolysaccharide: composition and analysis of their role in Euprymna scolopes light organ colonization. J Biol Chem 287(11):8515–8530. doi: 10.1074/jbc.M111.324012 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Radecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C (2015) Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol 8:490–497. doi: 10.1016/j.tim.2015.03.008 CrossRefGoogle Scholar
  121. Raina JB, Tapiolas D, Willis BL, Bourne DG (2009) Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl Environ Microbiol 75(11):3492–3501. doi: 10.1128/AEM.02567-08 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Reidling JC, Miller MA, Steele RE (2000) Sweet Tooth, a novel receptor protein-tyrosine kinase with C-type lectin-like extracellular domains. J Biol Chem 275(14):10323–10330PubMedCrossRefGoogle Scholar
  123. Reitzel AM, Sullivan JC, Traylor-Knowles N, Finnerty JR (2008) Genomic survey of candidate stress-response genes in the estuarine anemone Nematostella vectensis. Biol Bull 214(3):233–254PubMedCrossRefGoogle Scholar
  124. Reynaud S, Leclercq N, Romaine-Liuod S, Ferrier-Pages C, Jaubert J, Gattuso J-P (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Global Chang Biol 9:1660–1668. doi: 10.1046/j.1529-8817.2003.00678.x CrossRefGoogle Scholar
  125. Richier S, Sabourault C, Courtiade J, Zucchini N, Allemand D, Furla P (2006) Oxidative stress and apoptotic events during thermal stress in the symbiotic sea anemone, Anemonia viridis. FEBS J 273:4186–4198. doi: 10.1111/j.1742-4658.2006.05414.x PubMedCrossRefGoogle Scholar
  126. Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14CrossRefGoogle Scholar
  127. Ritchie KB (2011) Bacterial symbionts of corals and Symbiodinium. In: Rosenberg E, Gophna U (eds) Beneficial microorganisms in multicellular life forms. Springer, Berlin, pp 139–150Google Scholar
  128. Rodriguez-Lanetty M, Granados-Cifuentes C, Barberan A, Bellantuono AJ, Bastidas C (2013) Ecological inferences from a deep screening of the complex bacterial consortia associated with the coral, Porites astreoides. Mol Ecol 22(16):4349–4362. doi: 10.1111/mec.12392 PubMedCrossRefGoogle Scholar
  129. Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10. doi: 10.3354/Meps243001 CrossRefGoogle Scholar
  130. Rosenberg E, Falkovitz L (2004) The Vibrio shiloi/Oculina patagonica model system of coral bleaching. Annu Rev Microbiol 58:143–159. doi: 10.1146/annurev.micro.58.030603.123610 PubMedCrossRefGoogle Scholar
  131. Rosenberg E, Zilber-Rosenberg I (2011) Symbiosis and development: the hologenome concept. Birth Defects Res C, EmbryoToday: Rev 93(1):56–66. doi: 10.1002/bdrc.20196 CrossRefGoogle Scholar
  132. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5(5):355–362. doi: 10.1038/nrmicro1635 PubMedCrossRefGoogle Scholar
  133. Rypien KL, Ward JR, Azam F (2010) Antagonistic interactions among coral-associated bacteria. Environ Microbiol 12(1):28–39. doi: 10.1111/j.1462-2920.2009.02027.x PubMedCrossRefGoogle Scholar
  134. Sawyer SJ, Muscatine L (2001) Cellular mechanisms underlying temperature-induced bleaching in the tropical sea anemone Aiptasia pulchella. J Exp Biol 204(20):3443–3456PubMedGoogle Scholar
  135. Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol Oceanogr 51:1284–1293. doi: 10.4319/lo.2006.51.3.1284 CrossRefGoogle Scholar
  136. Sharon G, Rosenberg E (2008) Bacterial growth on coral mucus. Curr Microbiol 56(5):481–488. doi: 10.1007/s00284-008-9100-5 PubMedCrossRefGoogle Scholar
  137. Sharp KH, Ritchie KB, Schupp PJ, Ritson-Williams R, Paul VJ (2010) Bacterial acquisition in juveniles of several broadcast spawning coral species. PLoS One 5(5):e10898. doi: 10.1371/journal.pone.0010898 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Sharp KH, Distel D, Paul VJ (2012) Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides. ISME J 6(4):790–801. doi: 10.1038/ismej.2011.144 PubMedCrossRefGoogle Scholar
  139. Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, Fujie M, Fujiwara M, Koyanagi R, Ikuta T, Fujiyama A, Miller DJ, Satoh N (2011) Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476(7360):320–323. doi: 10.1038/nature10249 PubMedCrossRefGoogle Scholar
  140. Shnit-Orland M, Kushmaro A (2009) Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol Ecol 67(3):371–380. doi: 10.1111/j.1574-6941.2008.00644.x PubMedCrossRefGoogle Scholar
  141. Smith DJ, Suggett DJ, Baker NR (2005) Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Global Chang Biol 11:1–11. doi: 10.1111/j.1365-2486.2004.00895.x CrossRefGoogle Scholar
  142. Speck MD, Donachie SP (2012) Widespread Oceanospirillaceae bacteria in Porites spp. J Mar Biol Suppl 746720:746721–746727Google Scholar
  143. Spoerner M, Wichard T, Bachhuber T, Stratmann J, Oertel W (2012) Growth and thallus morphogenesis of Ulva mutabilis (Chlorophyta) depends on a combination of two bacterial species excreting regulatory factors. J Phycol 48(6):1433–1447. doi: 10.1111/J.1529-8817.2012.01231.X PubMedCrossRefGoogle Scholar
  144. Sunagawa S, DeSantis TZ, Piceno YM, Brodie EL, DeSalvo MK, Voolstra CR, Weil E, Andersen GL, Medina M (2009a) Bacterial diversity and white plague disease-associated community changes in the Caribbean coral Montastraea faveolata. ISME J 3(5):512–521. doi: 10.1038/Ismej.2008.131 PubMedCrossRefGoogle Scholar
  145. Sunagawa S, Wilson EC, Thaler M, Smith ML, Caruso C, Pringle JR, Weis VM, Medina M, Schwarz JA (2009b) Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics 10:258. doi: 10.1186/1471-2164-10-258 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Sussman M, Willis BL, Victor S, Bourne DG (2008) Coral pathogens identified for white syndrome (WS) epizootics in the Indo-Pacific. PLoS One 3(6):e2393. doi: 10.1371/journal.pone.0002393 PubMedPubMedCentralCrossRefGoogle Scholar
  147. Sussman M, Mieog JC, Doyle J, Victor S, Willis BL, Bourne DG (2009) Vibrio zinc-metalloprotease causes photoinactivation of coral endosymbionts and coral tissue lesions. PLoS One 4(2):e4511. doi: 10.1371/journal.pone.0004511 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Tait K, Hutchison Z, Thompson FL, Munn CB (2010) Quorum sensing signal production and inhibition by coral-associated vibrios. Environ Microbiol Rep 2(1):145–150. doi: 10.1111/J.1758-2229.2009.00122.X PubMedCrossRefGoogle Scholar
  149. Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182. doi: 10.1016/j.tplants.2008.01.005 PubMedCrossRefGoogle Scholar
  150. Tchernov D, Kvitt H, Haramaty L, Bibby TS, Gorbunov MY, Rosenfeld H, Falkowski PG (2011) Apoptosis and the selective survival of host animals following thermal bleaching in zooxanthellate corals. Proc Natl Acad Sci U S A 108:9905–9909. doi: 10.1073/pnas.1106924108 PubMedPubMedCentralCrossRefGoogle Scholar
  151. Teplitski M, Rajamani S (2011) Signal and nutrient exchange in the interactions between soil algae and bacteria. In: Witzany G (ed) Biocommunication in soil microorganisms. Springer, Berlin, pp 413–426CrossRefGoogle Scholar
  152. Teplitski M, Mathesius U, Rumbaugh KP (2011) Perception and degradation of N-Acyl homoserine lactone quorum sensing signals by mammalian and plant cells. Chem Rev 111(1):100–116. doi: 10.1021/Cr100045m PubMedCrossRefGoogle Scholar
  153. Tolleter D, Seneca FO, DeNofrio JC, Krediet CJ, Palumbi SR, Pringle JR, Grossman AR (2013) Coral bleaching independent of photosynthetic activity. Curr Biol 23(18):1782–1786PubMedCrossRefGoogle Scholar
  154. Tremblay P, Weinbauer MG, Rottier C, Guerardel Y, Nozais C, Ferrier-Pages C (2011) Mucus composition and bacterial communities associated with the tissue and skeleton of three scleractinian corals maintained under culture conditions. J Mar Biol Assoc UK 91(3):649–657. doi: 10.1017/S002531541000130x CrossRefGoogle Scholar
  155. Tremblay P, Grover R, Maguer JF, Legendre L, Ferrier-Pages C (2012) Autotrophic carbon budget in coral tissue: a new 13C-based model of photosynthate translocation. J Exp Biol 215(Pt 8):1384–1393. doi: 10.1242/jeb.065201 PubMedCrossRefGoogle Scholar
  156. Vacelet E, Thomassin B (1991) Microbial utilization of coral mucus in long term in situ incubation over a coral reef. Hydrobiologia 211(1):19–32. doi: 10.1007/BF00008613 CrossRefGoogle Scholar
  157. van Dam JW, Uthicke S, Beltran VH, Mueller JF, Negri aP (2015) Combined thermal and herbicide stress in functionally diverse coral symbionts. Environ Pollut 204:271–279. doi: 10.1016/j.envpol.2015.05.013 PubMedCrossRefGoogle Scholar
  158. Vezzulli L, Pezzati E, Huete-Stauffer C, Pruzzo C, Cerrano C (2013) 16SrDNA Pyrosequencing of the Mediterranean Gorgonian Paramuricea clavata reveals a link among alterations in bacterial holobiont members, anthropogenic influence and disease outbreaks. PLoS One 8(6):e67745PubMedPubMedCentralCrossRefGoogle Scholar
  159. Vidal-Dupiol J, Ladriere O, Meistertzheim AL, Foure L, Adjeroud M, Mitta G (2011) Physiological responses of the scleractinian coral Pocillopora damicornis to bacterial stress from Vibrio coralliilyticus. J Exp Biol 214(Pt 9):1533–1545. doi: 10.1242/jeb.053165 PubMedCrossRefGoogle Scholar
  160. Vine NG, Leukes WD, Kaiser H (2004) In vitro growth characteristics of five candidate aquaculture probiotics and two fish pathogens grown in fish intestinal mucus. FEMS Microbiol Lett 231(1):145–152PubMedCrossRefGoogle Scholar
  161. Voss JD, Richardson LL (2006) Nutrient enrichment enhances black band disease progression in corals. Coral Reefs 25(4):569–576. doi: 10.1007/S00338-006-0131-8 CrossRefGoogle Scholar
  162. Wall CB, Fan TY, Edmunds PJ (2014) Ocean acidification has no effect on thermal bleaching in the coral Seriatopora caliendrum. Coral Reefs 33:119–130. doi: 10.1007/s00338-013-1085-2 CrossRefGoogle Scholar
  163. Wichard T (2015) Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta). Front Plant Sci 6:1–19. doi: 10.3389/Fpls.2015.00085
  164. Wiedenmann J, D’Angelo C, Smith EG, Hunt AN, Legiret F-E, Postle AD, Achterberg EP (2012) Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat Clim Chang 3:160–164. doi: 10.1038/nclimate1661 CrossRefGoogle Scholar
  165. Wooldridge SA (2009) Water quality and coral bleaching thresholds: formalising the linkage for the inshore reefs of the Great Barrier Reef, Australia. Mar Pollut Bull 58:745–751. doi: 10.1016/j.marpolbul.2008.12.013 PubMedCrossRefGoogle Scholar
  166. Zimmer BL, May AL, Bhedi CD, Dearth SP, Prevatte CW, Pratte Z, Campagna SR, Richardson LL (2014) Quorum Sensing signal production and microbial interactions in a polymicrobial disease of corals and the coral surface mucopolysaccharide layer. PLoS One 9(9):e108541. doi: 10.1371/journal.pone.0108541 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Max Teplitski
    • 1
    Email author
  • Cory J. Krediet
    • 2
  • Julie L. Meyer
    • 3
  • Kim B. Ritchie
    • 4
  1. 1.Smithsonian Marine StationFt. PierceUSA
  2. 2.Department of Marine ScienceEckerd CollegeSt. PetersburgUSA
  3. 3.Soil and Water Science DepartmentUniversity of FloridaGainesvilleUSA
  4. 4.Mote Marine LaboratorySarasotaUSA

Personalised recommendations