Skip to main content

Soft Robotics Technology and a Soft Table for Industrial Applications

  • Conference paper
  • First Online:
Robot Intelligence Technology and Applications 4

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 447))

Abstract

Soft robotics is an expanding new research field. This article presents a state-of-the-art review on soft robotics including its research directions, key characteristics, materials, design and fabrication techniques. Although many biomimetic soft robots have been developed, a few of these have industrial applications. This article proposes a soft XY machine table for the purpose of object manipulation. The proposed table combines the concepts from three areas: soft robotics, object manipulation and industrial application. The surface of proposed table is entirely soft and embedded with inflatable air chambers. Surface deformation is generated by inflating these chambers. One object manipulation approach is to generate travelling waves on the deformable surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trivedi, D., Rahn, C.D., Kier, W.M., Walker, I.D.: Soft robotics: biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 5, 99–117 (2008)

    Article  Google Scholar 

  2. Gao, F., Wang, Z., Wang, Y., Wang, Y., Li, J.: A prototype of a biomimetic mantle jet propeller inspired by cuttlefish actuated by SMA wires and a theoretical model for its jet thrust. J. Bionic Eng. 11, 412–422 (2014)

    Article  Google Scholar 

  3. Kim, S., Laschi, C., Trimmer, B.A.: Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31, 287–294 (2013)

    Article  Google Scholar 

  4. Mao, S., Dong, E., Jin, H., Xu, M., Zhang, S., Yang, J., Low, K.H.: Gait study and pattern generation of a starfish-like soft robot with flexible rays actuated by SMAs. J. Bionic Eng. 11, 400–411 (2014)

    Article  Google Scholar 

  5. Marchese, A.D., Onal, C.D., Rus, D.: Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot. 1, 75–87 (2014)

    Article  Google Scholar 

  6. Margheri, L., Laschi, C., Mazzolai, B.: Soft robotic arm inspired by the octopus: I. from biological functions to artificial requirements. Bioinspiration Biomimetics 7 (2012)

    Google Scholar 

  7. Menciassi, A., Gorini, S., Pernorio, G., Dario, P.: A SMA actuated artificial earthworm. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation (ICRA), vol. 4, pp. 3282–3287. IEEE (2004)

    Google Scholar 

  8. Suzumori, K., Endo, S., Kanda, T., Kato, N., Suzuki, H.: A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. In: 2007 IEEE International Conference on Robotics and Automation, pp. 4975–4980 (2007)

    Google Scholar 

  9. Tsukagoshi, H., Kitagawa, A., Segawa, M.: Active hose: an artificial elephant’s nose with maneuverability for rescue operation. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation, vol. 3, pp. 2454–2459 (2001)

    Google Scholar 

  10. Umedachi, T., Trimmer, B.A.: Design of a 3D-printed soft robot with posture and steering control. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2874–2879. IEEE (2014)

    Google Scholar 

  11. Pfeifer, R., Lungarella, M., Iida, F.: The challenges ahead for bio-inspired ‘soft’ robotics. Commun. ACM 55, 76–87 (2012)

    Article  Google Scholar 

  12. Lin, H.T., Leisk, G.G., Trimmer, B.A.: GoQBOT: A caterpillar-inspired soft-bodied rolling robot. Bioinspiration Biomimetics 6 (2011)

    Google Scholar 

  13. Laschi, C., Cianchetti, M., Mazzolai, B., Margheri, L., Follador, M., Dario, P.: Soft robot arm inspired by the octopus. Adv. Robot. 26, 709–727 (2012)

    Article  Google Scholar 

  14. Miki, H., Okuyama, T., Kodaira, S., Luo, Y., Takagi, T., Yambe, T., Sato, T.: Artificial-esophagus with peristaltic motion using shape memory alloy. Int. J. Appl. Electromagnet. Mech. 33, 705–711 (2010)

    Google Scholar 

  15. Chen, F.J., Dirven, S., Xu, W.L., Li, X.N.: Soft actuator mimicking human esophageal peristalsis for a swallowing robot. IEEE/ASME Trans. Mechatron. 19, 1300–1308 (2014)

    Article  Google Scholar 

  16. Menguc, Y., Park, Y.L., Martinez-Villalpando, E., Aubin, P., Zisook, M., Stirling, L., Wood, R.J., Walsh, C.J.: Soft wearable motion sensing suit for lower limb biomechanics measurements. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 5309–5316 (2013)

    Google Scholar 

  17. Lee, S., Jung, K., Koo, J., Lee, S., Choi, H., Jeon, J., Nam, J., Choi,H.: Braille display device using soft actuator. Smart Struct. Mater. (2014)

    Google Scholar 

  18. Trimmer, B.A., Lin, H.T., Baryshyan, A., Leisk, G.G., Kaplan, D.L.: Towards a biomorphic soft robot: Design constraints and solutions. In: Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 599–605 (2012)

    Google Scholar 

  19. Trimmer, B.A.: New challenges in biorobotics: incorporating soft tissue into control systems. Appl. Bionics Biomech. 5, 119–126 (2008)

    Article  Google Scholar 

  20. Sugiyama, Y., Hirai, S.: Crawling and jumping of deformable soft robot. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 4, pp. 3276–3281 (2004)

    Google Scholar 

  21. Martinez, R.V., Glavan, A.C., Keplinger, C., Oyetibo, A.I., Whitesides, G.M.: Soft actuators and robots that are resistant to mechanical damage. Adv. Funct. Mater. 24, 3003–3010 (2014)

    Article  Google Scholar 

  22. Shepherd, R.F., Ilievski, F., Choi, W., Morin, S.A., Stokes, A.A., Mazzeo, A.D., Chen, X., Wang, M., Whitesides, G.M.: Multigait soft robot. Proc. Nat. Acad. Sci. 108(51), 20400–20403 (2011)

    Article  Google Scholar 

  23. Steltz, E., Mozeika, A., Rembisz, J., Corson, N., Jaeger, H.M.: Jamming as an enabling technology for soft robotics. In: Proceedings of the SPIE: Electroactive Polymer Actuators and Devices, pp. 764225–764229 (2010)

    Google Scholar 

  24. Morin, S.A., Shepherd, R.F., Kwok, S.W., Stokes, A.A., Nemiroski, A., Whitesides, G.M.: Camouflage and display for soft machines. Science 337, 828–832 (2012)

    Article  Google Scholar 

  25. Stokes, A.A., Shepherd, R.F., Morin, S.A., Ilievski, F., Whitesides, G.M.: A hybrid combining hard and soft robots. Soft Robot. 1, 70–74 (2014)

    Article  Google Scholar 

  26. Steltz, E., Mozeika, A., Rodenberg, N., Brown, E., Jaeger, H.M.: JSEL: Jamming skin enabled locomotion. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5672–5677 (2009)

    Google Scholar 

  27. Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., Whitesides, G.M.: Soft robotics for chemists. Angewandte Chemie 123, 1930–1935 (2011)

    Article  Google Scholar 

  28. Martinez, R.V., Branch, J.L., Fish, C.R., Jin, L., Shepherd, R.F., Nunes, R., Suo, Z., Whitesides, G.M.: Robotic tentacles with three-dimensional mobility based on flexible elastomers. Adv. Mater. 25, 205–212 (2013)

    Article  Google Scholar 

  29. Shepherd, R.F., Stokes, A.A., Freake, J., Barber, J., Snyder, P.W., Mazzeo, A.D., Cademartiri, L., Morin, S.A., Whitesides, G.M.: Using explosions to power a soft robot. Angewandte Chemie—Int. Ed. 52, 2892–2896 (2013)

    Article  Google Scholar 

  30. Tolley, M.T., Shepherd, R.F., Mosadegh, B., Galloway, K.C., Wehner, M., Karpelson, M., Wood, R.J., Whitesides, G.M.: A resilient, untethered soft robot. Soft Robot. 1, 213–223 (2014)

    Article  Google Scholar 

  31. Mattar, E.: A survey of bio-inspired robotics hands implementation: new directions in dexterous manipulation. Robot. Auton. Syst. 61, 517–544 (2013)

    Article  Google Scholar 

  32. Guo, S., Shi, L., Ye, X., Li, L.: A new jellyfish type of underwater microrobot. In: International Conference on Mechatronics and Automation (ICMA), pp. 509–514 (2007)

    Google Scholar 

  33. Lee, N., Lee, Y.H., Chung, J., Heo, H., Yang, H., Lee, K.S., Ryu, H., Jang, S., Lee, W.: Shape-changing robot for stroke rehabilitation. In: Proceedings of the 2014 conference on Designing interactive systems, pp. 325–334. ACM (2014)

    Google Scholar 

  34. Choi, H.R., Jung, K., Ryew, S., Nam, J.D., Jeon, J., Koo, J.C., Tanie, K.: Biomimetic soft actuator: design, modeling, control, and applications. IEEE/ASME Trans. Mechatron. 10, 581–593 (2005)

    Article  Google Scholar 

  35. Anderson, I.A., Gisby, T.A., McKay, T.G., O’Brien, B.M., Calius, E.P.: Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J. Appl. Phys. 112, 041101 (2012)

    Article  Google Scholar 

  36. Anderson, I.A., Hale, T., Gisby, T., Inamura, T., McKay, T., O’Brien, B., Walbran, S., Calius, E.P.: A thin membrane artificial muscle rotary motor. Appl. Phys. A: Mater. Sci. Process. 98, 75–83 (2010)

    Article  Google Scholar 

  37. Poole, A.D., Booker, J.D., Wishart, C.L., McNeill, N., Mellor, P.H.: Performance of a prototype traveling-wave actuator made from a dielectric elastomer. IEEE/ASME Trans. Mechatron. 17, 525–533 (2012)

    Article  Google Scholar 

  38. Carpi, F., Salaris, C., De Rossi, D.: Folded dielectric elastomer actuators. Smart Mater. Struct. 16, S300–S305 (2007)

    Article  Google Scholar 

  39. Lotz, P., Matysek, M., Schlaak, H.F.: Fabrication and application of miniaturized dielectric elastomer stack actuators. IEEE/ASME Trans. Mechatron. 16, 58–66 (2011)

    Article  Google Scholar 

  40. Nguyen, C.T., Phung, H., Nguyen, T.D., Lee, C., Kim, U., Lee, D., Moon, H., Koo, J., Choi, H.R.: A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators. Smart Mater. Struct. 23, 065005 (2014)

    Article  Google Scholar 

  41. Brochu, P., Pei, Q.: Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 31, 10–36 (2010)

    Article  Google Scholar 

  42. Popa, I.: A multi-link kinematics model for microrobots with artificial muscle structure. In: ARA Annual Congress Proceedings, pp. 143–149 (2014)

    Google Scholar 

  43. Arena, P., Bonomo, C., Fortuna, L., Frasca, M., Graziani, S.: Design and control of an IPMC wormlike robot. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 36, 1044–1052 (2006)

    Article  Google Scholar 

  44. Shapiro, Y., Wolf, A., Gabor, K.: Bi-bellows: pneumatic bending actuator. Sens. Actuators, A: Phys 167, 484–494 (2011)

    Article  Google Scholar 

  45. Deng, M., Wang, A., Wakimoto, S., Kawashima, T.: Characteristic analysis and modeling of a miniature pneumatic curling rubber actuator. In: 2011 International Conference on Advanced Mechatronic Systems (ICAMechS), pp. 534–539 (2011)

    Google Scholar 

  46. Nakamura, T., Shinohara, H.: Position and force control based on mathematical models of pneumatic artificial muscles reinforced by straight glass fibers. In: 2007 IEEE International Conference on Robotics and Automation, pp. 4361–4366 (2007)

    Google Scholar 

  47. Mangan, E.V., Kingsley, D.A., Quinn, R.D., Sutton, G.P., Mansour, J.M., Chiel, H.J.: A biologically inspired gripping device. Ind. Robot 32, 49–54 (2005)

    Article  Google Scholar 

  48. Hirayama, Y., Suzuki, K., Nakamura, T.: Development of a peristaltic pump based on bowel peristalsis verification of the basic characteristic considered change of motion patterns. In: 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 748–753 (2011)

    Google Scholar 

  49. Pagitz, M., Pagitz, M., Hühne, C.: A modular approach to adaptive structures. Bioinspiration Biomimetics 9, 046005 (2014)

    Article  Google Scholar 

  50. Boxerbaum, A.S., Chiel, H.J., Quinn, R.D.: A new theory and methods for creating peristaltic motion in a robotic platform. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 1221–1227 (2010)

    Google Scholar 

  51. Park, Y.L., Chen, B.R., Wood, R.J.: Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors. IEEE Sens. J. 12, 2711–2718 (2012)

    Article  Google Scholar 

  52. Rieffel, J., Saunders, F., Nadimpalli, S., Zhou, H., Hassoun, S., Rife, J., Trimmer, B.: Evolving soft robotic locomotion in PhysX. In: Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, pp. 2499–2504. ACM (2009)

    Google Scholar 

  53. Hiller, J., Lipson, H.: Dynamic simulation of soft multimaterial 3D-printed objects. Soft Robot. 1, 88–101 (2014)

    Article  Google Scholar 

  54. Holland, D.P., Park, E.J., Polygerinos, P., Bennett, G.J., Walsh, C.J.: The soft robotics toolkit: shared resources for research and design. Soft Robot. 1, 224–230 (2014)

    Article  Google Scholar 

  55. Hiller, J., Lipson, H.: Automatic design and manufacture of soft robots. IEEE Trans. Robot. 28, 457–466 (2012)

    Article  Google Scholar 

  56. Kuwabara, J., Nakajima, K., Kang, R., Branson, D.T., Guglielmino, E., Caldwell, D.G., Pfeifer, R.: Timing-based control via echo state network for soft robotic arm. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2012)

    Google Scholar 

  57. Li, T., Nakajima, K., Pfeifer, R.: Online learning for behavior switching in a soft robotic arm. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 1296–1302 (2013)

    Google Scholar 

  58. Pfeifer, R., Iida, F., Gómez, G.: Morphological computation for adaptive behavior and cognition. In: International Congress Series, vol. 1291, pp. 22–29. Elsevier (2006)

    Google Scholar 

  59. Paul, C.: Morphological computation: a basis for the analysis of morphology and control requirements. Robot. Auton. Syst. 54, 619–630 (2006)

    Article  Google Scholar 

  60. Rieffel, J.A., Valero-Cuevas, F.J., Lipson, H.: Morphological communication: exploiting coupled dynamics in a complex mechanical structure to achieve locomotion. J. R. Soc. Interface 7, 613–621 (2010)

    Article  Google Scholar 

  61. Pfeifer, R., Iida, F.: Morphological computation: connecting body, brain and environment. Jpn. Sci. Mon. 58, 48–54 (2005)

    Google Scholar 

  62. Iida, F., Pfeifer, R.: Self-stabilization and behavioral diversity of embodied adaptive locomotion. In: Embodied Artificial Intelligence. Springer (2004)

    Google Scholar 

  63. Nakajima, K., Hauser, H., Kang, R., Guglielmino, E., Caldwell, D.G., Pfeifer, R.: A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm. Front. Comput. Neurosci. 7 (2013)

    Google Scholar 

  64. Nakajima, K., Li, T., Sumioka, H., Cianchetti, M., Pfeifer, R.: Information theoretic analysis on a soft robotic arm inspired by the octopus. In: 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 110–117 (2011)

    Google Scholar 

  65. Lipson, H.: Challenges and opportunities for design, simulation, and fabrication of soft robots. Soft Robot. 1, 21–27 (2013)

    Article  Google Scholar 

  66. Xia, Y., Whitesides, G.M.: Soft lithography. Ann. Rev. Mater. Sci. 28, 153–184 (1998)

    Article  Google Scholar 

  67. http://www.festo.com/cms/en_corp/13136.htm. Accessed 17 March 2014

  68. Mosadegh, B., Mazzeo, A.D., Shepherd, R.F., Morin, S.A., Gupta, U., Sani, I.Z., Lai, D., Takayama, S., Whitesides, G.M.: Control of soft machines using actuators operated by a braille display. Lab Chip 14, 189–199 (2014)

    Article  Google Scholar 

  69. Follmer, S., Leithinger, D., Olwal, A., Hogge, A., Ishii, H.: inFORM: dynamic physical affordances and constraints through shape and object actuation. UIST (2013)

    Google Scholar 

  70. Leithinger, D., Follmer, S., Olwal, A., Ishii, H.: Physical telepresence: shape capture and display for embodied, computer-mediated remote collaboration. In: Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology. ACM (2014)

    Google Scholar 

  71. Stommel, M., Xu, W., Lim, P.P.K., Kadmiry, B.: Robotic sorting of ovine offal: discussion of a soft peristaltic approach. Soft Robot. 1, 246–254 (2014)

    Article  Google Scholar 

  72. Stommel, M., Xu, W.: Optimal, efficient sequential control of a soft-bodied, peristaltic sorting table. IEEE Trans. Autom. Sci. Eng. (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicong Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Deng, Z., Stommel, M., Xu, W. (2017). Soft Robotics Technology and a Soft Table for Industrial Applications. In: Kim, JH., Karray, F., Jo, J., Sincak, P., Myung, H. (eds) Robot Intelligence Technology and Applications 4. Advances in Intelligent Systems and Computing, vol 447. Springer, Cham. https://doi.org/10.1007/978-3-319-31293-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31293-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31291-0

  • Online ISBN: 978-3-319-31293-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics