Skip to main content

Bernstein Type Inequalities Concerning Growth of Polynomials

  • Chapter
  • First Online:
Mathematical Analysis, Approximation Theory and Their Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 111))

  • 1492 Accesses

Abstract

Let \(p(z) = a_{0} + a_{1}z + a_{2}z^{2} + a_{3}z^{3} + \cdots + a_{n}z^{n}\) be a polynomial of degree n, where the coefficients a j , for 0 ≤ j ≤ n, may be complex, and p(z) ≠ 0 for | z | < 1. Then

$$\displaystyle{ M(p,R) \leq \Big (\frac{R^{n} + 1} {2} \Big)\vert \vert p\vert \vert,\ \ \mathrm{for}\ \ R \geq 1, }$$
(1)

and

$$\displaystyle{ M(p,r) \geq \Big (\frac{r + 1} {2} \Big)^{n}\vert \vert p\vert \vert,\ \ \mathrm{for}\ \ 0 <r \leq 1, }$$
(2)

where \(M(p,R):= \max _{\vert z\vert =R\geq 1}\vert p(z)\vert\), \(M(p,r):= \max _{\vert z\vert =r\leq 1}\vert p(z)\vert\), and \(\vert \vert p\vert \vert:= \max _{\vert z\vert =1}\vert p(z)\vert\). Inequality (1) is due to Ankeny and Rivlin (Pac. J. Math. 5, 849–852, 1955), whereas Inequality (2) is due to Rivlin (Am. Math. Mon. 67, 251–253, 1960). These inequalities, which due to their applications are of great importance, have been the starting point of a considerable literature in Approximation Theory, and in this paper we study some of the developments that have taken place around these inequalities. The paper is expository in nature and would provide results dealing with extensions, generalizations and refinements of these inequalities starting from the beginning of this subject to some of the recent ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ankeny, N.C., Rivlin, T.J.: On a theorem of S. Bernstein. Pac. J. Math. 5, 849–852 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aziz, A.: Growth of polynomials whose zeros are within or outside a circle. Bull. Aust. Math. Soc. 35, 247–256 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aziz, A., Mohammad, Q.G.: Simple proof of a theorem of Erdös and Lax. Proc. Am. Math. Soc. 80, 119–122 (1980)

    MathSciNet  MATH  Google Scholar 

  4. Aziz, A., Mohammad, G.: Growth of polynomials with zeros outside a circle. Proc. Am. Math. Soc. 81, 549–553 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aziz, A., Zargar, B.A.: Growth of maximum modulus of polynomials with prescribed zeros. Glas. Mat. 37, 73–81 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Boas, R.P.: Inequalities for the derivatives of polynomials. Math. Mag. 42, 165–174 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dewan, K.K.: Another proof of a theorem of Ankeny and Rivlin. Glas. Math. 18, 291–293 (1983)

    MathSciNet  MATH  Google Scholar 

  8. Dewan, K.K., Ahuja, A.: Growth of polynomials with prescribed zeros. J. Math. Inequal. 5, 355–361 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dewan, K.K., Bhat, A.A.: On the maximum modulus of polynomials not vanishing inside the unit circle. J. Interdisciplinary Math. 1, 129–140 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duffin, R.J., Schaeffer, C.: Some properties of functions of exponential type. Bull. Am. Math. Soc. 44, 236–240 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frappier, C., Rahman, Q.I.: On an Inequality of S. Bernstein. Can. J. Math. 34(4), 932–944 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Frappier, C., Rahman, Q.I., Ruscheweyh, S.: New inequalities for polynomials. Trans. Am. Math. Soc. 288, 69–99 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Frappier, C., Rahman, Q. I., Ruscheweyh, S.: New Inequalities for Polynomials. Trans. Am. Math. Soc. 288, 69–99 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gardner, R.B., Govil, N.K., Weems, A.: Some results concerning rate of growth of polynomials. East J. Approx. 10, 301–312 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Gardner, R.B., Govil, N.K., Musukula, S.R.: Rate of growth of polynomials not vanishing inside a circle. J. Inequal. Pure Appl. Math. 6(2), article 53 (2005)

    Google Scholar 

  16. Govil, N.K.: On the maximum modulus of polynomials. J. Math. Anal. Appl. 112, 253–258 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Govil, N.K.: On the maximum modulus of polynomials not vanishing inside the unit circle. Approx. Theory Appl. 5, 79–82 (1989)

    MathSciNet  MATH  Google Scholar 

  18. Govil, N.K.: On a theorem of Ankeny and Rivlin concerning maximum modulus of polynomials. Complex Variables 40, 249–259 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Govil, N.K.: On Growth of polynomials. J. Inequal. Appl. 7(5), 623–631 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Govil, N.K., Mohapatra, R.N.: Markov and Bernstein type inequalities for polynomials. J. Inequal. Appl. 3, 349–387 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Govil, N.K., Nyuydinkong, G.: On maximum modulus of polynomials not vanishing inside a circle. J. Interdisciplinary Math. 4, 93–100 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Govil, N.K., Qazi, M.A., Rahman, Q.I.: Inequalities describing the growth of polynomials not vanishing in a disk of prescribed radius. Math. Inequal. Appl. 6(3), 453–467 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Govil, N.K., Liman, A., Shah, W.M.: Some inequalities concerning derivative and maximum modulus of polynomials. Aust. J. Math. Anal. Appl. 8, 1–8 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Jain, V.K.: Certain interesting implications of T. J. Rivlins’s result on maximum modulus of a polynomial. Glas. Math. 33, 33–36 (1998)

    MATH  Google Scholar 

  25. Lax, P.D.: Proof of a conjecture of P. Erdös on the derivatives of a polynomial. Bull. Am. Math. Soc. 50, 509–513 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  26. Markov, A.A.: On a problem of D. I. Mendeleev (Russian), Zapiski Imp. Akad. Nauk 62, 1–24 (1889)

    Google Scholar 

  27. Markov, V.A.: Über Polynome die in einem gegebenen Intervalle möglichst wenig von null abweichen, Math. Ann. 77, 213–258 (1916)

    Article  MathSciNet  Google Scholar 

  28. Milovanović, G.V., Mitrinović, D.S., Rassias, T.M.: Topics in Polynomials: Extremal Problems, Inequalities, Zeros. World Scientific Publishing Co. Pte. Ltd., Singapore (1994)

    Book  MATH  Google Scholar 

  29. Nehari, Z.: Conformal Mapping. McGraw Hill, New York (1952)

    MATH  Google Scholar 

  30. Pukhta, M.S.: Rate of growth of polynomials with zeros on the unit Disc. Prog. Appl. Math. 6(2), 50–58 (2013)

    MathSciNet  Google Scholar 

  31. Pukhta, M.S.: Growth of the maximum modulus of polynomials with prescribed zeros. J. Class. Anal. 5(2), 107–113 (2014)

    MathSciNet  Google Scholar 

  32. Qazi, M.A.: On the maximum modulus of polynomials. Proc. Am. Math. Soc. 115(2), 337–343 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rahman, Q.I., Schmeisser, G.: Les inégalités de Markoff et de Bernstein. Les Presses de l’ Université de Montréal, Québec (1983)

    MATH  Google Scholar 

  34. Rahman, Q.I., Schmeisser, G.: Analytic Theory of Polynomials. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  35. Riesz, M.: Über einen Satz des Herrn Serge Bernstein. Acta. Math. 40, 337–347 (1916)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rivlin, T.J.: On the maximum modulus of polynomials. Am. Math. Mon. 67, 251–253 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sharma, A., Singh, V.: Some Bernstein type inequalities for polynomials. Analysis 5, 321–341 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  38. Varga, R.S.: A comparison of the successive overrelaxation method and semi-iterative methods using Chebyshev polynomials. J. Soc. Ind. Appl. Math. 5, 39–46 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  39. Visser, C.: A simple proof of certain inequalities concerning polynomials. Nederl. Akad. Wetensch. Proc. 47, 276–281 (1945)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Govil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Govil, N.K., Nwaeze, E.R. (2016). Bernstein Type Inequalities Concerning Growth of Polynomials. In: Rassias, T., Gupta, V. (eds) Mathematical Analysis, Approximation Theory and Their Applications. Springer Optimization and Its Applications, vol 111. Springer, Cham. https://doi.org/10.1007/978-3-319-31281-1_13

Download citation

Publish with us

Policies and ethics