Skip to main content

Towards a Rational Bioenergy Policy Concept

  • Chapter
  • First Online:
Concepts and Instruments for a Rational Bioenergy Policy

Part of the book series: Lecture Notes in Energy ((LNEN,volume 55))

  • 394 Accesses

Abstract

This chapter derives recommendations for bioenergy policy, applying the theory-based analytical framework developed in Chap. 3 to the German case study. The focus is on recommendations for a rational bioenergy policy concept, which encompasses the definition of a system of consistent policy aims; the choice of allocative principles which determine what allocation mechanism is used primarily to implement aims; and the identification of suitable instrument types. Given the conflicting nature of policy aims, the establishment of a complete and coherent system of policy aims is found to be of particular importance. Also, requirements concerning the operationalisation of aims are discussed. In contrast to neoclassical recommendations, a theoretical case is established for a bioenergy mix combining governance structures comparatively close to markets, which leave technology choices to market actors, with more hierarchical interventions. Based on the analysis of what allocative principles are recommendable for different allocative challenges, perspectives for the further development of the German policy mix are discussed. Moreover, to demonstrate the applicability of the study’s analytical framework to more specific questions of instrument choice and design, recommendations for the bioelectricity sector are developed in greater detail. Three design elements are identified as particularly important: the choice between price, quantity and hybrid instruments; the design of a mechanism for technology differentiation; and the design of an adjustment mechanism. Based on a comparative analysis of institutional alternatives, recommendations are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    While the EU-RED’s transport sector target is in principle technology-neutral, the absence of feasible RES alternatives makes it implicitly a biofuel-specific target (see 4.1.2.2).

  2. 2.

    In the longer term, electromobility may make a sizable contribution, but in this case, its GHG mitigation potential and even its classification as an RES technology depend on the source of electricity used, and therefore on the achievement of RES targets in the electricity sector.

  3. 3.

    The Combined Heat and Power Law (Kraft-Wärme-Kopplungsgesetz, KWKG) sets targets for an increase in the share of electricity from CHP (section 1 (1) KWKG), complementing RES and energy efficiency targets (see 4.1.1).

  4. 4.

    Parts of this section have been published in abridged form in Purkus et al. (2015).

  5. 5.

    An exception are perennial feedstocks such as SRC, where sizable upfront investments are required and land is tied up for several years; at the same time, the scope of applications is as of yet narrowly defined.

  6. 6.

    An abridged version of this section has been used in Purkus et al. (2015).

  7. 7.

    Price risks arise from imperfect knowledge about price developments in the electricity market, volume risks from imperfect information about the volumes of electricity that can be sold.

  8. 8.

    For technologies at a very early stage of development, R&D support may prove more appropriate than diffusion support.

  9. 9.

    Similarly, a uniform remuneration level not only for all bioelectricity technologies but for all RES technologies minimises overall private costs of RES generation in a static perspective.

  10. 10.

    In 2013, bioelectricity production received a remuneration sum of 4.06 billion euros under the FIT scheme, amounting to 29.65 % of total FIT payments, and 2.10 billion euros or 35.27 % of the payments under the market premium scheme (including flexibility premium payments) (50Hertz et al. 2014). In terms of electricity produced, bioenergy was responsible for 19,551,739 MWh or 34.96 % of the total amount of electricity remunerated under the FIT, and 16,644,366 MWh or 25.36 % of the total amount of electricity remunerated under the market premium scheme (ibid.).

  11. 11.

    However, the EEG surcharge’s share in consumer spending depends on income, and tends to be higher for low income households (Bardt and Niehues 2013: 215; Neuhoff et al. 2013: 46 f.)

  12. 12.

    For PV, a breathing cap had already been implemented in the “PV Novelle 2012”.

  13. 13.

    For the EEG 2009 and EEG 2012, these are: ≤150 kWel, ≤500 kWel, ≤5 MWel, ≤20 MWel of rated average annual capacity. In the EEG 2014, the demarcation was changed to ≤150 kWel, ≤750 kWel, ≤5 MWel, ≤20 MWel (see Tables 4.5 and 4.6).

  14. 14.

    In particular, this applies to plants between 150 kWel and 5 MWel. Plants above 5 MWel were not able to benefit from the EEG 2012s substrate tariff classes I and II or the biogas processing bonus, so that the EEG 2014 resulted only in a small reduction in remuneration (cf. Tables 4.5 and 4.6).

  15. 15.

    Competition is further limited through the exclusion of certain feedstocks such as scrap wood from remuneration (cf. 4.2.3.2).

  16. 16.

    Moreover, bioliquids have to adhere to sustainability requirements according to the biomass electricity sustainability ordinance (BioSt-NachV); however, since plants using bioliquids have been excluded from funding since the EEG 2012, this differentiation mechanism is neglected here.

  17. 17.

    In earlier versions of the EEG, cogeneration with associated GHG benefits was incentivised with a CHP bonus (section 27 (4) No. 3 EEG 2009; section 8 (3) EEG 2004).

  18. 18.

    Technical requirements for the minimisation of emissions leakage are retained, but these could in principle also be implemented as a requirement for the approval of installations according to emissions law (i.e. the BImSchG).

  19. 19.

    In 2012, 300 new biogas plants became operational, compared to 1300 in 2011 (Scheftelowitz et al. 2014: 18). Assuming a continuation of the EEG 2012s conditions, new biomass plants (incl. biogas, biomethane and solid biomass plants) were expected to account for an annual increase of about 90–150 MWel in installed capacity from 2014 onwards (ibid.: 47). However, in 2012 and 2013 a significant additional increase in installed capacity originated with an extension of existing plants, which could benefit from older versions of the EEG; this has reduced the effectiveness of the EEG 2012s steering of bioenergy expansion, but can be addressed through a more precise definition of the terms plant and start-up date (Scheftelowitz et al. 2014: 122 ff.).

  20. 20.

    A temporary fall back remains possible, e.g. if direct marketing intermediaries exit the market; but in this case, reference prices are reduced by 20 % (section 38 EEG 2014).

  21. 21.

    The flexibility premium, however, is dependent on participation in the MPS, so the option of monthly changes between schemes is primarily attractive for plants that do not receive it.

  22. 22.

    Yet another option would be a feed-in premium which would be paid, not for a certain period, but for a fixed contingent of electricity produced (SRU 2013: 94 ff.). In this case, producers would have to recover costs in a smaller number of full load hours than is the case with a feed-in premium without a contingent, and would therefore require a higher premium; if the size of the contingent is sufficiently limited, this option is structurally similar to a capacity premium (Kopp et al. 2013: 29; Bode 2014: 155; EEX and EPEX Spot 2014: 6). Therefore, it is not discussed separately in the following sections.

  23. 23.

    An exception would be competitive bidding schemes where, after a successful bid, remuneration is not paid over a plant’s estimated depreciation period, but only for a considerably shorter period. Here, existing plants would have to continue to compete in tenders, providing high incentive intensity to reduce costs. However, planning security would be very low, on a level comparable to quota schemes with green certificate trading. To facilitate comparability, it is assumed here that remuneration periods will continue to be aligned with depreciation periods in a competitive bidding scheme.

  24. 24.

    Hölder (2015) discusses price caps as a means of differentiating between different technologies and plant types (e.g. depreciated plants and new plants). In principle, an extension to different size classes would be possible.

  25. 25.

    At the same time, it would be more efficient to provide indirect incentives for small-scale slurry biogas plants by increasing the costs of GHG emissions in the agricultural sector.

  26. 26.

    However, the majority of currently operational bioelectricity plants are receiving remuneration based on earlier versions of the EEG. Extending sustainability standards to these plants may be associated with high political costs and legal difficulties.

  27. 27.

    In the UK sustainability standards for bioelectricity, for example, fuels falling in the waste category are largely exempt from reporting requirements regarding land criteria, the timber standard or GHG criteria; for processing residues, producers need to report only on emissions associated with collection processes, and non-woody residues are also exempt from reporting on the performance against land criteria or the timber standard (Ofgem 2014: 16).

  28. 28.

    This role could be filled by intermediate actors, comparable to direct marketing intermediaries—this would, however, further increase the transaction costs of the scheme.

  29. 29.

    Differences in external costs and benefits even apply to plants using waste and residues—for example, the extraction of woody residues can negatively impact biodiversity (Giuntoli et al. 2014), while the fermentation of bio-degradable waste is associated with additional benefits of waste disposal.

  30. 30.

    For processing biogas to biomethane, the EEG 2012 retains a bonus, which was only abolished with the EEG 2014. However, this bonus could also lead to steering errors, given that electricity generation from biomethane is associated with higher GHG emissions than biogas CHP production (Thrän et al. 2011b: 72 f.). For equivalent uses, the direct use of biogas would therefore be more beneficial. Rather than supporting biomethane production through a bonus, it would be advantageous if higher costs were compensated by higher value utilisation options, such as transport sector applications or electricity production in peak load hours. Moreover, a bonus distorts competition with other RES-based flexibility options (e.g. power to gas, storage technologies using RES electricity).

  31. 31.

    So far, receiving support under both EEG and KWKG is not possible. In the KWKG, the cogeneration of heat and electricity is supported through remuneration for a contingent of kWh. Combining this form of remuneration with a capacity premium according to the EEG would have the added advantage that the competitiveness of bioelectricity cogeneration plants in the electricity market’s merit order would be increased compared to fossil fuel plants, without the need to provide an additional fixed FIP (cf. Sect. 5.4.3.2, Leprich et al. 2013: 63 f.).

References

  • 50Hertz, Amprion, TenneT, Transnet BW (2014) EEG-Jahresabrechnungen 2013 (Stand: 25.07.2014). http://www.netztransparenz.de/de/file/EEG_HoBA_2013_20140725.pdf. Accessed 29 July 2014

  • Andor M, Flinkerbusch K, Janssen M, Liebau B, Wobben M (2010) Negative Strompreise und der Vorrang Erneuerbarer Energien. Z Energiewirt 34(2):91–99

    Article  Google Scholar 

  • Andor M, Flinkerbusch K, Voß A (2012) Quantities vs. capacities: minimizing the social cost of renewable energy promotion. CAWM Discussion Paper No. 59. Centrum für Angewandte Wirtschaftsforschung Münster, Münster

    Google Scholar 

  • Arnold K, Baur F, Beckert S, Bemmann A, Brotsack R, Dotzauer M et al (2015) Stellungnahme zum Grünbuch “Ein Strommarkt für die Energiewende” des Bundesministeriums für Wirtschaft und Energie. Perspektiven der Biomasseverstromung aus Sicht des Förderprogramms “Energetische Biomassenutzung”. Deutsches Biomasseforschungszentrum (DBFZ), Leipzig

    Google Scholar 

  • Bacenetti J, Negri M, Fiala M, González-García S (2013) Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process. Sci Total Environ 463–464:541–551

    Article  Google Scholar 

  • Bardt H, Niehues J (2013) Verteilungswirkungen des EEG. Z Energiewirt 37:211–218

    Article  Google Scholar 

  • Baur F (2013) Förder- und Lenkungsinstrumente zur energetischen Nutzung von Biomasse-Reststoffen. In: Presentation held at 2. IZES-Energie-Kongress: EEG 2.0 im Spannungsfeld von Märkten und Regulierung, Saarbrücken, 13 Mar 2013

    Google Scholar 

  • Beckers T, Miksch J (2002) Die Allokation des Verkehrsmengenrisikos bei Betreibermodellen für Straßeninfrastruktur – Theoretische Grundlagen und Anwendung auf das A-Modell. Diskussionspapier 2002/10. Technische Universität Berlin, Berlin

    Google Scholar 

  • Beckmann KJ, Gailing L, Hülz M, Kemming H, Leibenath M, Libbe J et al (2013) Räumliche Implikationen der Energiewende. Difu-Papers. Deutsches Institut für Urbanistik (Difu), Berlin

    Google Scholar 

  • BEE (2014) BEE-Positionen zur EEG-Novelle 2014. Kurzfassung der BEE-Positionen und -Stellungnahmen zur EEG-Novelle auf dem Stand des Kabinettsbeschlusses vom 8, April 2014. Bundesverband Erneuerbare Energie e.V., Berlin

    Google Scholar 

  • Berg H, Cassel D (1992) Theorie der Wirtschaftspolitik. In: Bender D, Berg H, Cassel D, Gabisch G, Grossekettler H, Hartwig K-H et al (eds) Vahlens Kompendium der Wirtschaftstheorie und Wirtschaftspolitik: Band 2, 5th edn. Verlag Vahlen, Munich, pp 163–238

    Google Scholar 

  • Berndes G, Hansson J (2007) Bioenergy expansion in the EU: cost-effective climate change mitigation, employment creation and reduced dependency on imported fuels. Energy Policy 35(12):5965–5979

    Article  Google Scholar 

  • Berndes G, Hansson J, Egeskog A, Johnsson F (2010) Strategies for 2nd generation biofuels in EU – co-firing to stimulate feedstock supply development and process integration to improve energy efficiency and economic competitiveness. Biomass Bioenergy 34(2):227–236

    Article  Google Scholar 

  • Biogasrat (2014) 2. Stellungnahme zum “Referentenentwurf eines Gesetzes zur grundlegenden Reform des Erneuerbare-Energien-Gesetzes und zur Änderung weiterer Vorschriften des Energiewirtschaftsrechts” (Fassung. 31.03.2014). Biogasrat e.V., Berlin

    Google Scholar 

  • BiomasseV (2012) Verordnung über die Erzeugung von Strom aus Biomasse (Biomasseverordnung – BiomasseV). Ausfertigungsdatum 21. Juni 2001 (BGBl. I S. 1234), zuletzt geändert durch Artikel 5 Absatz 10 des Gesetzes vom 24. Februar 2012 (BGBl. I S. 212)

    Google Scholar 

  • Blazejczak J, Edler D, Schill W-P (2014) Steigerung der Energieeffizienz: ein Muss für die Energiewende, ein Wachstumsimpuls für die Wirtschaft. DIW Wochenbericht 2014(4):47–60

    Google Scholar 

  • BMU, BMELV (2009) National biomass action plan for Germany. Biomass and sustainable energy supply. Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Federal Ministry of Food, Agriculture and Consumer Protection (BMELV), Berlin

    Google Scholar 

  • BMWi (2014a) Eckpunkte für die Reform des EEG. Federal Ministry for Economic Affairs and Energy (BMWi), Berlin

    Google Scholar 

  • BMWi (2014b) Ein Strommarkt für die Energiewende. Diskussionspapier des Bundesministeriums für Wirtschaft und Energie (Grünbuch). Federal Ministry for Economic Affairs and Energy (BMWi), Berlin

    Google Scholar 

  • BMWi (2014c) Referentenentwurf: Verordnung zur Einführung von Ausschreibungen der finanziellen Förderung für Freiflächenanlagen sowie zur Änderung weiterer Verordnungen zur Förderung der erneuerbaren Energien (31. Oktober 2014). Federal Ministry for Economic Affairs and Energy (BMWi), Berlin

    Google Scholar 

  • BMWi (2014d) Eckpunkte für ein Ausschreibungsdesign für Photovoltaik-Freiflächenanlagen. Federal Ministry for Economic Affairs and Energy (BMWi), Berlin

    Google Scholar 

  • BMWi (2015) Marktanalyse Biomasse. Federal Ministry for Economic Affairs and Energy (BMWi), Berlin. http://www.bmwi.de/BMWi/Redaktion/PDF/M-O/marktanalyse-freiflaeche-photovoltaik-biomasse,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf. Accessed 23 Apr 2015

  • Bode S (2014) Vom EEG zur Marktintegration von erneuerbaren Energien. Z Umweltpolit Umweltrecht (ZfU) 2014(2):134–160

    Google Scholar 

  • Bofinger S, Braun M, Costa Gomez C, Daniel-Gromke J, Gerhardt N, Hartmann K et al (2010) Die Rolle des Stromes aus Biogas in zukünftigen Energieversorgungsstrukturen. Fraunhofer-Institut für Windenergie und Energiesystemtechnik (IWES)/Deutsches Biomasseforschungszentrum/Fachverband Biogas e.V., Hanau/Leipzig/Freising

    Google Scholar 

  • Bracher T, Gies J, Thiemann-Linden J, Beckmann KJ (2014) Umweltverträglicher Verkehr 2050: Argumente für eine Mobilitätsstrategie für Deutschland. Texte 59/2014. Umweltbundesamt, Dessau-Roßlau

    Google Scholar 

  • Brahms F, Maslaton M (2014) Der Regierungsentwurf des Erneuerbaren-Energien-Gesetzes 2014. Verfassungsrechtliche Bedenken gegen die EEG-Umlage auf die Eigenstromversorgung. Neue Z Verwaltungsrecht (NVwZ) 760–765

    Google Scholar 

  • Carriquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: economics and policies. Energy Policy 39(7):4222–4234

    Article  Google Scholar 

  • Clearingstelle EEG (2014) Gesetze. https://www.clearingstelle-eeg.de/gesetze. Accessed 12 Dec 2014

  • COM (2005) Biomass Action Plan. COM(2005) 628 final. European Commission, Brussels

    Google Scholar 

  • COM (2010) Impact assessment. Accompanying document to the report from the Commission to the Council and the European Parliament on sustainability requirements for the use of solid and gaseous biomass sources in electricity, heating and cooling. European Commission, Brussels

    Google Scholar 

  • COM (2014a) Guidelines on State aid for environmental protection and energy 2014–2020. Communication from the Commission (2014/C 200/01). Off J Eur Union (28.6.2014), C 200/1-55

    Google Scholar 

  • COM (2014b) State of play on the sustainability of solid and gaseous biomass used for electricity, heating and cooling in the EU. Commission staff working document SWD(2014) 259 final. European Commission, Brussels

    Google Scholar 

  • Cramton P, Kerr S (2002) Tradeable carbon permit auctions. How and why to auction not grandfather. Energy Policy 30:333–345

    Article  Google Scholar 

  • DBFZ (2013) Differenzierte Bewertung von Energiepflanzen im Rahmen der EEG-Diskussion erforderlich. Pressemitteilung 12.12.2013. Deutsches Biomasseforschungszentrum (DBFZ), Leipzig. https://www.dbfz.de/web/presse/pressemitteilungen-2013/differenzierte-bewertung-von-energiepflanzen-im-rahmen-der-eeg-diskussion-erforderlich.html. Accessed 10 Oct 2014

  • de Wit M, Junginger M, Faaij A (2013) Learning in dedicated wood production systems: past trends, future outlook and implications for bioenergy. Renew Sustain Energy Rev 19:417–432

    Article  Google Scholar 

  • DECC (2013) Government response to the consultation on proposals to enhance the sustainability criteria for the use of biomass feedstocks under the Renewables Obligation (RO). Department of Energy & Climate Change (DECC), London

    Google Scholar 

  • del Río P (2012) The dynamic efficiency of feed-in tariffs: the impact of different design elements. Energy Policy 41:139–151

    Article  Google Scholar 

  • del Río P, Bleda M (2012) Comparing the innovation effects of support schemes for renewable electricity technologies: a function of innovation approach. Energy Policy 50:272–282

    Article  Google Scholar 

  • del Río P, Cerdá E (2014) The policy implications of the different interpretations of the cost-effectiveness of renewable electricity support. Energy Policy 64:364–372

    Article  Google Scholar 

  • del Río P, Linares P (2014) Back to the future? Rethinking auctions for renewable electricity support. Renew Sustain Energy Rev 35:42–56

    Article  Google Scholar 

  • Delzeit R, Lange M, Brunsch A (2011) Maiswüsten in Schleswig-Holstein? Das neue EEG und der Flächenbedarf unterschiedlicher Biogassubstrate. Kiel Policy Brief Nr. 40. Institut für Weltwirtschaft Kiel (IfW), Kiel

    Google Scholar 

  • DG AGRI (2009) “Health Check” of the Common Agricultural Policy. Directorate-General for Agriculture and Rural Development, Brussels. http://ec.europa.eu/agriculture/healthcheck/index_en.htm. Accessed 7 Aug 2014

  • Di Lucia L (2010) External governance and the EU policy for sustainable biofuels, the case of Mozambique. Energy Policy 38(11):7395–7403

    Article  Google Scholar 

  • Diekmann J, Kemfert C, Neuhoff K, Schill W-P, Traber T (2012) Erneuerbare Energien: Quotenmodell keine Alternative zum EEG. DIW Wochenbericht 2012(45). Deutsches Institut für Wirtschaftsforschung (DIW), Berlin

    Google Scholar 

  • Dixit AK (1996) The making of economic policy: a transaction-cost politics perspective. MIT Press, Cambridge

    Google Scholar 

  • EEG (2004) Erneuerbare-Energien-Gesetz vom 21. Juli 2004 (BGBl. I S. 1918), zuletzt geändert durch Artikel 1 des Gesetzes vom 7. November 2006 (BGBl. I S. 2550)

    Google Scholar 

  • EEG (2009) Erneuerbare-Energien-Gesetz vom 25. Oktober 2008 (BGBl. I S. 2074), das durch Artikel 1 des Gesetzes vom 28. Juli 2011 (BGBl. I S. 1634) geändert worden ist

    Google Scholar 

  • EEG (2012) Erneuerbare-Energien-Gesetz vom 25. Oktober 2008 (BGBl. I S. 2074), das durch Artikel 1 des Gesetzes vom 17.August 2012 (BGBl. I S. 1754) geändert worden ist

    Google Scholar 

  • EEG (2014) Gesetz für den Ausbau erneuerbarer Energien (Erneuerbare-Energien-Gesetz - EEG 2014). Nicht-amtliche Lesefassung des EEG in der ab 1. August 2014 geltenden Fassung (unter Zugrundelegung der Bundestags-Beschlüsse vom 27. Juni 2014 und 4. Juli 2014)

    Google Scholar 

  • EEG Gesetzentwurf der Bundesregierung (2014) Entwurf eines Gesetzes zur grundlegenen Reform des Erneuerbare-Energien-Gesetzes und zur Änderung weiterer Bestimmungen des Energiewirtschaftsrechts. Begründung. https://www.bmwi.de/BMWi/Redaktion/PDF/Gesetz/entwurf-eines-gesetzes-zur-grundlegenden-reform-des-erneuerbare-energien-gesetzes-und-zur-aenderung-weiterer-bestimmungen-des-energiewirtschaftsrechts,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf. Accessed 26 Feb 2015

  • EEX, EPEX Spot (2014) Positionspapier zur Weiterentwicklung der Fördermechanismen für Erneuerbare Energien in Deutschland. European Energy Exchange/EPEX SPOT, Leipzig/Paris

    Google Scholar 

  • Eggert H, Greaker M (2013) Promoting second generation biofuels: does the first generation pave the road? RFF Discussion Paper EfD 13-18. Resources for the Future, Washington, DC

    Google Scholar 

  • Fachverband Biogas (2014) Über 160 Biogas-Firmen unterzeichnen offenen Brief an Bundeswirtschaftsminister Gabriel. Fachverband Biogas e.V., Freising http://www.bioenergie.de/images/stories/2014/text/offener_brief.pdf. Accessed 28 Apr 2014

  • FAO (2008) The state of food and agriculture. Biofuels: prospects, risks and opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Finon D, Perez Y (2007) The social efficiency of instruments of promotion of renewable energies: a transaction-cost perspective. Ecol Econ 62(1):77–92

    Article  Google Scholar 

  • Friedrich E, Wufka A (2012) Biogas production from lignocellulosic residues. Fraunhofer-Institut für Keramische Technologien und Systeme (IKTS), Dresden

    Google Scholar 

  • Frondel M, Ritter N, Schmidt CM, Vance C (2010) Economic impacts from the promotion of renewable energy technologies: the German experience. Energy Policy 38(8):4048–4056

    Article  Google Scholar 

  • Frondel M, Schmidt C, aus dem Moore N (2013) Marktwirtschaftliche Energiewende: Ein Wettbewerbsrahmen für die Stromversorgung mit alternativen Technologien. Z Energiewirt 37(1):27–41

    Article  Google Scholar 

  • Frontier Economics (2014) Studie “Technologieoffene Ausschreibungen für Erneuerbare Energien”. Ein Bericht für EFET Deutschland. Frontier Economics, London

    Google Scholar 

  • Fürstenwerth D, Praetorius B, Redl C, Ragwitz M, Maurer C, Resch G et al (2014) Ausschreibungen für Erneuerbare Energien. Welche Fragen sind zu prüfen? Agora Energiewende, Berlin

    Google Scholar 

  • Gawel E (1999) Umweltordnungsrecht – ökonomisch irrational? Die ökonomische Sicht. In: Gawel E, Lübbe-Wolff G (eds) Rationale Umweltpolitik – Rationales Umweltrecht: Konzepte, Kriterien und Grenzen rationaler Steuerung im Umweltschutz, 1st edn. Nomos, Baden-Baden, pp. 237–322

    Google Scholar 

  • Gawel E, Lehmann P (2014) Die Förderung der erneuerbaren Energien nach der EEG-Reform 2014. Wirtschaftsdienst 94(9):651–658

    Article  Google Scholar 

  • Gawel E, Purkus A (2013) Promoting the market and system integration of renewable energies through premium schemes – a case study of the German market premium. Energy Policy 61:599–609

    Article  Google Scholar 

  • Gawel E, Purkus A (2015) The role of energy and electricity taxation in the context of the German energy transition. Z Energiewirt 39(2):77–103

    Article  Google Scholar 

  • Gegg P, Budd L, Ison S (2014) The market development of aviation biofuel: drivers and constraints. J Air Transp Manage 39:34–40

    Article  Google Scholar 

  • Giuntoli J, Vorkapic V, Garcia-Lledo L, Agostini A (2014) Is bioenergy from residues really and always sustainable? Qualitative assessment for policymakers. In: Hoffmann C, Baxter D, Maniatis K, Grassi A, Helm P (eds) Papers of the 22nd European biomass conference. Setting the course for a biobased economy. Extracted from the Proceedings of the international conference held in Hamburg, 23–26 June 2014. ETA-Florence Renewable Energies, Florence, pp 1407–1422

    Google Scholar 

  • Götz P, Henkel J, Lenck T, Lenz K (2014) Negative Strompreise: Ursachen und Wirkungen. Eine Analyse der aktuellen Entwicklungen – und ein Vorschlag für ein Flexibilitätsgesetz. Energy Brainpool, Agora Energiewende, Berlin

    Google Scholar 

  • Green R, Yatchew A (2012) Support schemes for renewable energy: an economic analysis. Econ Energy Environ Policy 1(2):83–98

    Article  Google Scholar 

  • Gross R (2004) Technologies and innovation for system change in the UK: status, prospects and system requirements of some leading renewable energy options. Energy Policy 32:1905–1919

    Article  Google Scholar 

  • Grubb M, Ulph D (2002) Energy, the environment, and innovation. Oxf Rev Econ Policy 18(1):92–106

    Article  Google Scholar 

  • Grubler A, Aguayo F, Gallagher K, Hekkert M, Jiang K, Mytelka L et al (2012) Chapter 24 – Policies for the energy technology innovation system (ETIS). In: GEA (ed) Global energy assessment – toward a sustainable future. Cambridge University Press/International Institute for Applied Systems Analysis, Cambridge/New York/Laxenburg, pp 1665–1744

    Google Scholar 

  • Haas R, Resch G, Panzer C, Busch S, Ragwitz M, Held A (2011) Efficiency and effectiveness of promotion systems for electricity generation from renewable energy sources – lessons from EU countries. Energy 36(4):2186–2193

    Article  Google Scholar 

  • Hansen B (1958/2014) The economic theory of fiscal policy. Routledge library editions: the economics series. Reprint. Routledge, London

    Google Scholar 

  • Hauser E, Weber A, Zipp A, Leprich U, Hofmüller S, Kochems J (2014a) Bewertung von Ausschreibungsverfahren als Finanzierungsmodell für Anlagen erneuerbarer Energienutzung. Institut für Zukunftsenergiesysteme (IZES), Saarbrücken

    Google Scholar 

  • Hauser E, Baur F, Noll F, Grote L, Hemmerling A, Leprich U et al (2014b) Beitrag der Bioenergie zur Energiewende. Institut für Zukunftsenergiesysteme (IZES), Saarbrücken

    Google Scholar 

  • Hayek FA (1945) The use of knowledge in society. Am Econ Rev 35(4), 519–530

    Google Scholar 

  • Hayek FA (1945/2005) The road to serfdom. The condensed version as it appeared in the April 1945 edition of Reader’s Digest. The Institute of Economic Affairs, London

    Google Scholar 

  • Helm D (2010) Government failure, rent-seeking, and capture: the design of climate change policy. Oxf Rev Econ Policy 26(2):182–196

    Article  Google Scholar 

  • Helm D, Hepburn C, Mash R (2003) Credible carbon policy. Oxf Rev Econ Policy 19(3):438–450

    Article  Google Scholar 

  • Hemmerlin U, Pascher P, Naß S, Gaebel C (2013) Situationsbericht 2013/2014. Trends und Fakten zur Landwirtschaft. Deutscher Bauernverband, Berlin

    Google Scholar 

  • Henke JM, Klepper G (2006) Biokraftstoffe: Königsweg für Klimaschutz, profitable Landwirtschaft und sichere Energieversorgung? Kieler Diskussionsbeiträge 427. Institut für Weltwirtschaft Kiel (IfW), Kiel

    Google Scholar 

  • Hennig C, Gawor M (2012) Bioenergy production and use: comparative analysis of the economic and environmental effects. Energy Convers Manage 63:130–137

    Article  Google Scholar 

  • Henrichsmeyer W, Witzke HP (1994) Agrarpolitik Band 2: Bewertung und Willensbildung. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Hepburn C (2006) Regulation by prices, quantities, or both: a review of instrument choice. Oxf Rev Econ Policy 22(2):226–247

    Article  Google Scholar 

  • Hermeling C, Wölfing N (2011) Energiepolitische Aspekte der Bioenergienutzung: Nutzungskonkurrenz, Klimaschutz, politische Förderung. Zentrum für Europäische Wirtschaftsforschung (ZEW), Mannheim

    Google Scholar 

  • Hölder D (2015) Eckpunkte eines Ausschreibungsmodells für die EEG-Vergütung von Strom aus Biomasse. In: Presentation held at BMWi/BMEL-Workshop “Ausschreibung EEG – Bioenergie”, Berlin, 8 May 2015

    Google Scholar 

  • Holzhammer U, Stelzer M (2014) Die Direktvermarktung: aktueller Stand, Möglichkeiten und Ausblick. In: Presentation held at Fachtagung Dezentrale flexible Strombereitstellung aus Biogas – Entwicklungen, Möglichkeiten und Perspektiven, Berlin, 3 Apr 2014

    Google Scholar 

  • Hoogwijk M, Faaij A, de Vries B, Turkenburg W (2009) Exploration of regional and global cost–supply curves of biomass energy from short-rotation crops at abandoned cropland and rest land under four IPCC SRES land-use scenarios. Biomass Bioenergy 33(1):26–43

    Article  Google Scholar 

  • IEA (2008) Deploying renewables. Principles for effective policies. In support of the G8 Plan of Action. International Energy Agency (IEA), Organisation for Economic Co-operation and Development (OECD), Paris

    Google Scholar 

  • Irwin T, Klein M, Perry GE, Thobani M (1997) Dealing with public risk in private infrastructure: an overview. In: Irwin T, Klein M, Perry, GE, Thobani M (eds) Dealing with public risk in private infrastructure. World Bank Latin American and Carribean Studies, Viewpoints. World Bank, Washington, DC, pp 1–20

    Google Scholar 

  • Isermeyer F, Zimmer Y (2006) Thesen zur Bioenergie-Politik in Deutschland. Arbeitsberichte des Bereichs Agrarökonomie 02/2006. Bundesforschungsanstalt für Landwirtschaft (FAL), Institut für Betriebswirtschaft, Braunschweig

    Google Scholar 

  • Jacobs D, Schäuble D, Bayer B, Sperk C, Töpfer K (2014) Eckpunkte für die Gestaltung der Energiewende. Z Neues Energ (ZNER) 2014(1):11–13

    Google Scholar 

  • Jacobsson S, Lauber V (2006) The politics and policy of energy system transformation—explaining the German diffusion of renewable energy technology. Energy Policy 34(3):256–276

    Article  Google Scholar 

  • Jägemann C (2014) A note on the inefficiency of technology- and region-specific renewable energy support: the German case. Z Energiewirt 38(4):235–253

    Article  Google Scholar 

  • Jakubowski P, Tegner H, Kotte S (1997) Strategien umweltpolitischer Zielfindung: Eine ökonomische Perspektive. LIT, Münster

    Google Scholar 

  • Kemfert C, Diekmann J (2009) Förderung erneuerbarer Energien und Emissionshandel – wir brauchen beides. Wochenbericht DIW Berlin 2009(11):169–174

    Google Scholar 

  • Kitzing L, Mitchell C, Morthorst PE (2012) Renewable energy policies in Europe: converging or diverging? Energy Policy 51:192–201

    Article  Google Scholar 

  • Klein A, Merkel E, Pfluger B, Held A, Ragwitz M, Resch G et al (2010) Evaluation of different feed-in tariff design options – best practice paper for the International Feed-In Cooperation. Energy Economics Group/Fraunhofer Institut für System- und Innovationsforschung (ISI), Vienna/Karlsruhe

    Google Scholar 

  • Klessmann C, Nabe C, Burges K (2008) Pros and cons of exposing renewables to electricity market risks – a comparison of the market integration approaches in Germany, Spain, and the UK. Energy Policy 36(10):3646–3661

    Article  Google Scholar 

  • Klessmann C, Wigand F, Gephart M, von Blücher F, Kelm T, Jachmann H et al (2014) Ausgestaltung des Pilotausschreibungssystems für Photovoltaik-Freiflächenanlagen. Wissenschaftliche Empfehlung. Ecofys, Berlin

    Google Scholar 

  • Klobasa M, Ragwitz M, Sensfuß F, Rostankowski A, Gerhardt N, Holzhammer U et al (2013) Nutzenwirkung der Marktprämie. Working Paper Sustainability and Innovation No. S 1/2013. Fraunhofer Institut für System- und Innovationsforschung (ISI), Karlsruhe

    Google Scholar 

  • Koch N, Fuss S, Grosjean G, Edenhofer O (2014) Causes of the EU ETS price drop: recession, CDM, renewable policies or a bit of everything? New evidence. Energy Policy 73:676–685

    Article  Google Scholar 

  • Köhler J, Walz R, Marscheder-Weidemann F, Thedieck B (2014) Lead markets in 2nd generation biofuels for aviation: a comparison of Germany, Brazil and the USA. Environ Innov Soc Transit 10:59–76

    Article  Google Scholar 

  • Kopmann A, Kretschmer B, Lange M (2009) Effiziente Nutzung von Biomasse durch einen globalen Kohlenstoffpreis. Empfehlungen für eine koordinierte Bioenergiepolitik. Kiel Policy Brief Nr. 14. Institut für Weltwirtschaft Kiel (IfW), Kiel

    Google Scholar 

  • Kopp O, Bode S, Engelhorn T, Groscurth H, Onischka M, Klessmann C et al (2013) Wege in ein wettbewerbliches Strommarktdesign für erneuerbare Energien. MVV Energie AG/arrhenius Institut für Energie- und Klimapolitik/Takon/Ecofys, Mannheim/Hamburg/Bayreuth/Berlin

    Google Scholar 

  • Krautz A (2013) Anlagen flexibel betreiben? DLG Mitteilungen 5:46–49

    Google Scholar 

  • Krutilla K, Krause R (2011) Transaction costs and environmental policy: an assessment framework and literature review. Int Rev Environ Resour Econ 4(3–4):261–354

    Article  Google Scholar 

  • KrWG. Kreislaufwirtschaftsgesetz vom 24. Februar 2012 (BGBl. I S. 212), das zuletzt durch Artikel 1a des Gesetzes vom 20. November 2015 (BGBl. I S. 2071) geändert worden ist

    Google Scholar 

  • KWKG. Kraft-Wärme-Kopplungsgesetz vom 21. Dezember 2015 (BGBl. I S. 2498). Ersetzt V 754-18 v. 19.3.2002 I 1092 (KWKG 2002)

    Google Scholar 

  • Langniß O (2002) Transaction cost economics of regulations to foster renewable energy sources in the electricity sector. In: Paper presented at European network for energy economic research (ENER) Forum 3. Successfully promoting renewable energy sources in Europe, Budapest, 6–7 June 2002

    Google Scholar 

  • Lansche J, Müller J (2012) Life cycle assessment of energy generation of biogas fed combined heat and power plants: environmental impact of different agricultural substrates. Eng Life Sci 12(3):313–320

    Article  Google Scholar 

  • Lehmann P (2012) Justifying a policy mix for pollution control: a review of economic literature. J Econ Surv 26(1):71–97

    Article  Google Scholar 

  • Lehmann P (2013) Supplementing an emissions tax by a feed-in tariff for renewable electricity to address learning spillovers. Energy Policy 61:635–641

    Article  Google Scholar 

  • Lehmann P, Gawel E (2013) Why should support schemes for renewable electricity complement the EU emissions trading scheme? Energy Policy 52:597–607

    Article  Google Scholar 

  • Lehmann P, Creutzig F, Ehlers M-H, Friedrichsen N, Heuson C, Hirth L et al (2012) Carbon lock-out: advancing renewable energy policy in Europe. Energies 5(2):323–354

    Article  Google Scholar 

  • Leprich U, Hauser E, Grashof K, Grote L, Luxenburger M, Sabatier M et al (2012) Kompassstudie Marktdesign. Leitideen für ein Design eines Stromsystems mit hohem Anteil fluktuierender Erneuerbarer Energien. Ein Projekt der BEE-Plattform Systemtransformation. Ponte Press, Bochum

    Google Scholar 

  • Leprich U, Bofinger P, Ritzau M, Grashof K, Kremp R, Guss H et al (2013) Stromsystem-Design: Das EEG 2.0 und Eckpfeiler eines zukünftigen Regenerativwirtschaftsgesetzes. Institut für Zukunftsenergiesysteme (IZES)/Lehrstuhl Prof. Dr. Peter Bofinger Universität Würzburg/Büro für Energiewirtschaft und technische Planung (BET), Saarbrücken/Würzburg/Aachen

    Google Scholar 

  • Liebetrau J, Clemens J, Cuhls C, Hafermann C, Friehe J, Weiland P et al (2010) Methane emissions from biogas-producing facilities within the agricultural sector. Eng Life Sci 10(6):595–599

    Article  Google Scholar 

  • Liu TT, McConkey BG, Ma ZY, Liu ZG, Li X, Cheng LL (2011) Strengths, weaknesses, opportunities and threats analysis of bioenergy production on marginal land. Energy Proc 5:2378–2386

    Article  Google Scholar 

  • Lockwood M (2013) The political sustainability of climate policy: the case of the UK climate change act. Glob Environ Chang 23(5):1339–1348

    Article  Google Scholar 

  • Löschel A, Flues F, Pothen F, Massier P (2013) Den Strommarkt an die Wirklichkeit anpassen: Skizze einer neuen Marktordnung. Discussion Paper No. 13–065. Zentrum für Europäische Wirtschaftsforschung (ZEW), Mannheim

    Google Scholar 

  • Luckenbach H (2000) Theoretische Grundlagen der Wirtschaftspolitik, 2nd edn. Vahlen, Munich

    Google Scholar 

  • Majer S, Naumann K (2013) Erläuterung und Kommentierung des Vorschlags der Europäischen Kommission zur Anpassung der EU-Biokraftstoffpolitik vom 17. Oktober 2012. Deutsches Biomasseforschungszentrum (DBFZ), Leipzig

    Google Scholar 

  • MaPrV. Verordnung über die Höhe der Managementprämie für Strom aus Windenergie und solarer Strahlungsenergie (Managementprämienverordnung – MaPrV) vom 2. November 2012, die am 7. November 2012 im Bundesgesetzblatt verkündet wurde (BGBl. I S. 2278)

    Google Scholar 

  • Matthes FC, Schlemmermeier B, Diermann C, Hermann H, Hammerstein C v (2013) Fokussierte Kapazitätsmärkte. Ein neues Marktdesign für den Übergang zu einem neuen Energiesystem (Kurzfassung eines Gutachtens für den WWF). In: Graichen P (ed) Kapazitätsmarkt oder strategische Reserve. Was ist der nächste Schritt? Agora Energiewende, Berlin, pp 51–64

    Google Scholar 

  • Mayer JN, Kreifels N, Burger B (2013) Kohleverstromung zu Zeiten niedriger Börsenstrompreise. Fraunhofer-Institut für Solare Energiesysteme (ISE), Freiburg

    Google Scholar 

  • Menanteau P, Finon D, Lamy ML (2003) Prices versus quantities: choosing policies for promoting the development of renewable energy. Energy Policy 31(8):799–812

    Article  Google Scholar 

  • Mengel A, Reiß A, Thömmes A, Hahne U, Kampen SV, Klement M (2010) Steuerungspotenziale im Kontext naturschutzrelevanter Auswirkungen Erneuerbarer Energien. Abschlussbericht zum F+E-Vorhaben “Naturschutzrelevanz raumbedeutsamer Auswirkungen der Energiewende”. Naturschutz und Biologische Vielfalt 97. Bundesamt für Naturschutz (BfN), Bonn

    Google Scholar 

  • Michaelis P (1996) Ökonomische Instrumente in der Umweltpolitik. Eine anwendungsorientierte Einführung. Physika-Verlag, Heidelberg

    Book  Google Scholar 

  • Midttun A, Gautesen K (2007) Feed in or certificates, competition or complementarity? Combining a static efficiency and a dynamic innovation perspective on the greening of the energy industry. Energy Policy 35(3):1419–1422

    Article  Google Scholar 

  • Mitchell C, Bauknecht D, Connor PM (2006) Effectiveness through risk reduction: a comparison of the renewable obligation in England and Wales and the feed-in system in Germany. Energy Policy 34(3):297–305

    Article  Google Scholar 

  • Möckel S (2014) Verbesserte Anforderungen an die gute fachliche Praxis der Landwirtschaft. Z Umweltrecht (ZUR) 2014(1):14–23

    Google Scholar 

  • Monopolkommission (2013) Sondergutachten 65: Energie 2013: Wettbewerb in Zeiten der Energiewende. Sondergutachten der Monopolkommission gemäß § 62 EnWG. Monopolkommission, Bonn

    Google Scholar 

  • Neuhoff K, Bach S, Diekmann J, Beznoska M, El-Laboudy T (2013) Distributional effects of energy transition: impacts of renewable electricity support in Germany. Econ Energy Environ Policy 2(1):41–54

    Article  Google Scholar 

  • Newes E, Bush B, Inman D, Lin Y, Mai T, Martinez A et al (2012) Biomass resource allocation among competing end uses. Technical report NREL/TP-6A20-54217. National Renewable Energy Laboratory (NREL), Golden

    Google Scholar 

  • North DC (1990) Institutions, institutional change and economic performance. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • PV Novelle (2012) Gesetz zur Änderung des Rechtsrahmens für Strom aus solarer Strahlungsenergie und zu weiteren Änderungen im Recht der erneuerbaren Energien vom 17. August 2012 in der am 23. August 2012 im Bundesgesetzblatt (BGBl. I S. 1754) veröffentlichten Fassung

    Google Scholar 

  • Nusser M, Sheridan P, Walz R, Wydra S, Seydel P (2007) Makroökonomische Effekte von nachwachsenden Rohstoffen. Agrarwirt Z Betriebswirt Marktforschung Agrarpolit (German J Agric Econ) 56(5/6):238–248

    Google Scholar 

  • Ofgem (2014) Renewables obligation: sustainability criteria guidance. Ofgem e-serve. https://www.ofgem.gov.uk/sites/default/files/docs/2014/06/renewables_obligation_sustainability_criteria_guidance_0.pdf. Accessed 20 Jan 2016

  • Öko-Institut (2014) Erneuerbare-Energien-Gesetz 3.0. Konzept einer strukturellen EEG-Reform auf dem Weg zu einem neuen Strommarktdesign. Agora Energiewende, Berlin

    Google Scholar 

  • Patashnik E (2008) Reforms at risk: what happens after major policy changes are enacted. Princeton University Press, Princeton

    Google Scholar 

  • Patterson T, Esteves S, Dinsdale R, Guwy A (2011) Life cycle assessment of biogas infrastructure options on a regional scale. Bioresour Technol 102(15):7313–7323

    Article  Google Scholar 

  • Pe'er G, Dicks LV, Visconti P, Arlettaz R, Báldi A, Benton TG et al (2014) EU agricultural reform fails on biodiversity. Science 344(6188):1090–1092

    Article  Google Scholar 

  • Purkus A, Gawel E, Deissenroth M, Nienhaus K, Wassermann S (2014) Beitrag der Marktprämie zur Marktintegration Erneuerbarer – Erfahrungen aus dem EEG 2012 und Perspektiven der verpflichtenden Direktvermarktung. Energiewirt Tagesfragen 64(12):8–16

    Google Scholar 

  • Purkus A, Röder M, Gawel E, Thrän D, Thornley P (2015) Handling uncertainty in bioenergy policy design – a case study analysis of UK and German bioelectricity policy instruments. Biomass Bioenergy 79:64–79

    Article  Google Scholar 

  • Pütz T (1979) Grundlagen der theoretischen Wirtschaftspolitik, 4th edn. Fischer, Stuttgart

    Google Scholar 

  • Ragwitz M, Held A, Resch G, Faber T, Haas R, Huber C et al (2007) OPTRES assessment and optimisation of renewable energy support schemes in the European electricity market. Final report. Intelligent Energy for Europe, Karlsruhe

    Google Scholar 

  • Reeg M, Brandt R, Gawel E, Heim S, Korte K, Lehmann P et al (2015) Kapazitätsmechanismen als Rettungsschirm der Energiewende? Zur Versorgungssicherheit bei hohen Anteilen fluktuierender Erneuerbarer. Discussion Paper 01/15. Helmholtz-Allianz ENERGY-TRANS

    Google Scholar 

  • Resch G, Ragwitz M, Rathmann M, Huber C, Morthorst PE, Jaworski L et al (2009) Action plan futures-e. Deriving a future European policy for renewable electricity. Vienna University of Technology, Energy Economics Group, Vienna

    Google Scholar 

  • Robert N, Stenger A (2013) Can payments solve the problem of undersupply of ecosystem services? Forest Policy Econ 35:83–91

    Article  Google Scholar 

  • Röder M, Whittaker C, Thornley P (2015) How certain are greenhouse gas reductions from bioenergy? Life cycle assessment and uncertainty analysis of wood pellet-to-electricity supply chains from forest residues. Biomass Bioenergy 79:50–63

    Article  Google Scholar 

  • Rodi M, Sina S, Görlach B, Gerstetter C, Bausch C, Neubauer A (2011) Das Klimaschutzrecht des Bundes – Analyse und Vorschläge zu seiner Weiterentwicklung. Climate Change 17/2011. Umweltbundesamt, Dessau-Roßlau

    Google Scholar 

  • Rohrig K, Lehnert W, Rehfeldt K, Diekmann J, Hofmann L, Hochloff P et al (2011) Flexible Stromproduktion aus Biogas und Biomethan. Die Einführung einer Kapazitätskomponente als Förderinstrument. Bericht zum Projekt “Weiterentwicklung und wissenschaftliche Begleitung der Umsetzung des Integrations-Bonus nach § 64 Abs. 1.6 EEG” im Auftrag des Bundesministeriums für Umwelt Naturschutz und Reaktorsicherheit (BMU). Fraunhofer Institut für Windenergie und Energiesystemtechnik (IWES)/Becker Büttner Held (BBH)/Deutsche Windguard/Deutsches Institut für Wirtschaftsforschung (DIW Berlin)/Leibniz Universität Hannover, Kassel/Bremerhaven/Berlin/Varel/Hanover

    Google Scholar 

  • Rostankowski A, Baier A, Gerhardt N, Holzhammer U, Klobasa M, Ragwitz M et al (2012) Anpassungsbedarf bei den Parametern des gleitenden Marktprämienmodells im Hinblick auf aktuelle energiewirtschaftliche Entwicklungen. Fraunhofer-Institut für System- und Innovationsforschung (ISI)/Fraunhofer-Institut für Windenergie und Energiesystemtechnik (IWES)/Becker Büttner Held (BBH)/Institut für Klimaschutz, Energie und Mobilität (IKEM), Karlsruhe/Kassel/Bremerhaven/Berlin

    Google Scholar 

  • Ruth M, Mai T, Newes E, Aden A, Warner E, Uriarte C et al (2013) Projected biomass utilization for fuels and power in a mature market. Transportation Energy Futures Series. Prepared for the U.S. Department of Energy. National Renewable Energy Laboratory (NREL), Golden

    Google Scholar 

  • Sattler C, Matzdorf B (2013) PES in a nutshell: from definitions and origins to PES in practice – approaches, design process and innovative aspects. Ecosyst Serv 6:2–11

    Article  Google Scholar 

  • Scheftelowitz M, Thrän D, Beil M, Peters W, Deumelandt P, Daniel-Gromke J et al (2014) Vorbereitung und Begleitung der Erstellung des Erfahrungsberichts 2014 gemäß § 65 EEG im Auftrag des Bundesministeriums für Wirtschaft und Energie. Vorhaben IIa: Stromerzeugung aus Biomasse. Zwischenbericht. Deutsches Biomasseforschungszentrum (DBFZ)/Helmholtz-Zentrum für Umweltforschung – UFZ/Bosch & Partner/Privates Institut für Nachhaltige Landbewirtschaftung (INL)/Fraunhofer-Institut für Windenergie und Energiesystemtechnik (IWES), Leipzig/Berlin/Halle/Kassel

    Google Scholar 

  • Schuffelen L, Kunz C (2014) Studienvergleich: Finanzierungsinstrumente für Strom aus Erneuerbaren Energien. Metaanalyse von Vorschlägen für die künftige Finanzierung von Strom aus Erneuerbaren Energien. Agentur für Erneuerbare Energien (AEE), Berlin

    Google Scholar 

  • Searchinger T (2009) Evaluating biofuels – the consequences of using land to make fuel. Brussels Forum Paper Series. The German Marshall Fund of the United States, Washington, DC

    Google Scholar 

  • Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101(6):1570–1580

    Article  Google Scholar 

  • SRU (2007) Climate change mitigation by biomass. Special report. German Advisory Council on the Environment (SRU), Berlin

    Google Scholar 

  • SRU (2013) Shaping the electricity market of the future. German Advisory Council on the Environment (SRU), Berlin

    Google Scholar 

  • SRU (2015) NITROGEN: strategies for resolving an urgent environmental problem (summary). German Advisory Council on the Environment (SRU), Berlin

    Google Scholar 

  • Stavins RN (1996) Correlated uncertainty and policy instrument choice. J Environ Econ Manage 30(2):218–232

    Article  Google Scholar 

  • Steinhilber S, Ragwitz M, Rathmann M, Klessmann C, Noothout P (2011) D17 report: indicators assessing the performance of renewable energy support policies in 27 member states. RE-Shaping: Shaping an effective and efficient European renewable energy market. Fraunhofer Institut für System- und Innovationsforschung (ISI)/Ecofys, Karlsruhe/Berlin

    Google Scholar 

  • Streit ME (2005) Theorie der Wirtschaftspolitik, 6th edn. Lucius & Lucius, Stuttgart

    Google Scholar 

  • Sühlsen K, Hisschemöller M (2014) Lobbying the ‘Energiewende’. Assessing the effectiveness of strategies to promote the renewable energy business in Germany. Energy Policy 69:316–325

    Article  Google Scholar 

  • Thrän D, Nelles M (eds) (2014) Stellungnahme: Geplante Neuregelungen im EEG lassen nahezu keinen wirtschaftlichen Betrieb von neuen Bioenergieanlagen zu. Deutsches Biomasseforschungszentrum (DBFZ), Leipzig. https://www.dbfz.de/fileadmin/user_upload/Referenzen/Statements/Reaktion_Forscher_EEG.pdf. Accessed 23 Jan 2016

  • Thrän D, Seidenberger T, Zeddies J, Offermann R (2010) Global biomass potentials – resources, drivers and scenario results. Energy Sustain Dev 14(3):200–205

    Article  Google Scholar 

  • Thrän D, Edel M, Pfeifer J, Ponitka J, Rode M, Knispel S (2011a) DBFZ Report Nr 4: Identifizierung strategischer Hemmnisse und Entwicklung von Lösungsansätzen zur Reduzierung der Nutzungskonkurrenzen beim weiteren Ausbau der Biomassenutzung. Deutsches Biomasseforschungszentrum (DBFZ), Leipzig

    Google Scholar 

  • Thrän D, Scholwin F, Witt J, Krautz A, Bienert K, Hennig C et al (2011b) Vorbereitung und Begleitung der Erstellung des Erfahrungsberichtes 2011 gemäß § 65 EEG im Auftrag des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit. Vorhaben IIa Endbericht. Deutsches Biomasseforschungszentrum (DBFZ), Leipzig

    Google Scholar 

  • Thrän D, Krautz A, Scheftelowitz M, Lenz V, Liebetrau J, Daniel-Gromke J et al (2014) Auswirkungen der gegenwärtig diskutierten Novellierungsvorschläge für das EEG-2014. Deutsches Biomasseforschungszentrum (DBFZ), Leipzig

    Google Scholar 

  • UBA (2013) Schadstoff- und Treibhausgas-Emissionen des Straßenverkehrs. Umweltbundesamt, Dessau-Roßlau. http://www.umweltbundesamt.de/daten/verkehr/schadstoff-treibhausgas-emissionen-des. Accessed 31 Oct 2014

  • van den Bergh JCJM (2007) Evolutionary economics and environmental policy. Survival of the greenest. Edward Elgar, Cheltenham

    Book  Google Scholar 

  • Wassermann S, Reeg M, Hauser W (2012) Auswirkungen der Marktprämie auf die Akteure der Direktvermarktung – ein agentenbasierter Modellansatz. Energiewirt Tagesfragen 62(9):60–63

    Google Scholar 

  • WBA (2007) Nutzung von Biomasse zur Energiegewinnung – Empfehlungen an die Politik. Wissenschaftlicher Beirat Agrarpolitik beim Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (WBA), Berlin

    Google Scholar 

  • WBA (2011) Promotion of biogas production through the Renewable Energy Sources Act (EEG). Statement on the planned amendment of the Renewable Energy Sources Act. Scientific Advisory Board on Agricultural Policy at the Federal Ministry of Food, Agriculture and Consumer Protection (WBA), Berlin

    Google Scholar 

  • WBGU (2008) Future bioenergy and sustainable land use. German Advisory Council on Global Change (WBGU), Berlin

    Google Scholar 

  • Weitzman ML (1974) Prices vs. quantities. Rev Econ Stud 41(4):477–491

    Article  Google Scholar 

  • Welfens PJJ (2013) Grundlagen der Wirtschaftspolitik. Institutionen – Makroökonomik – Politikkonzepte, 5th edn. Springer, Berlin

    Google Scholar 

  • Williamson OE (1985) The Economic institutions of capitalism: firms, markets, relational contracting. Free Press, New York

    Google Scholar 

  • Williamson OE (1996) The mechanisms of governance. Oxford University Press, New York

    Google Scholar 

  • Williamson OE (1999) Public and private bureaucracies: a transaction cost economics perspective. J Law Econ Org 15(1):306–342

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Purkus, A. (2016). Towards a Rational Bioenergy Policy Concept. In: Concepts and Instruments for a Rational Bioenergy Policy. Lecture Notes in Energy, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-31135-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31135-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31134-0

  • Online ISBN: 978-3-319-31135-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics