Skip to main content

Lymphatics, Cancer and Zebrafish

  • Chapter
  • First Online:
Cancer and Zebrafish

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 916))

Abstract

Many solid tumors are known to metastasize through the lymphatic vasculature. This process is facilitated by the generation of new lymphatic vessels (tumor lymphangiogenesis) and also by the remodelling of existing lymphatics. Together these processes enable the spread of tumor cells to distant sites. Currently our understanding of tumor lymphangiogenesis has been informed from mouse tumor models and from studies of developmental lymphangiogenesis. Since the discovery of bona fide lymphatic vessels in zebrafish in 2006, zebrafish have become a well-established model of developmental lymphangiogenesis. The attributes that make zebrafish such an important model of blood vessel developmentā€”the ability to live image developing vessels, genetic tractability and the conserved nature of developmentā€”also make fish an attractive model of lymphatic vessel development. In particular, zebrafish have made important contributions to our understanding of the processes of lymphatic vessel sprouting from veins and the mechanisms by which lymphatic precursors remodel into mature vessels. To date, zebrafish have not been used to directly model tumor lymphangiogenesis. In this chapter we will summarise the contributions zebrafish have made to our understanding of lymphangiogenesis and investigate the possibilities of combining zebrafish transgenic cancer lines or tumor transplantation models with existing lymphatic reporter lines, which could provide valuable insights into the process of tumor-induced lymphangiogenesis. In addition the utility of using the zebrafish lymphatic model as a platform to screen and develop novel anti-lymphatic therapeutics will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140:460ā€“476

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Sabin FR (1902) On the origin of the lymphatic system from the veins and the development of lymph hearts and the thoracic duct in the pig. Am J Anat 1:367ā€“389

    ArticleĀ  Google ScholarĀ 

  3. Srinivasan RS, Dillard ME, Lagutin OV, Lin FJ, Tsai S et al (2007) Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev 21:2422ā€“2432

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  4. Koltowska K, Betterman KL, Harvey NL, Hogan BM (2013) Getting out and about: the emergence and morphogenesis of the vertebrate lymphatic vasculature. Development 140:1857ā€“1870

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Hewson W, Hunter W (1769) An account of the lymphatic system in fish. By the same. Philos Trans (1683ā€“1775) 59:204ā€“215

    Google ScholarĀ 

  6. Kuchler AM, Gjini E, Peterson-Maduro J, Cancilla B, Wolburg H et al (2006) Development of the zebrafish lymphatic system requires VEGFC signaling. Curr Biol 16:1244ā€“1248

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  7. Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248:307ā€“318

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J et al (2006) Live imaging of lymphatic development in the zebrafish. Nat Med 12:711ā€“716

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Okuda KS, Astin JW, Misa JP, Flores MV, Crosier KE et al (2012) lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel development in zebrafish. Development 139:2381ā€“2391

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Bussmann J, Bos FL, Urasaki A, Kawakami K, Duckers HJ et al (2010) Arteries provide essential guidance cues for lymphatic endothelial cells in the zebrafish trunk. Development 137:2653ā€“2657

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. van Impel A, Zhao Z, Hermkens DM, Roukens MG, Fischer JC et al (2014) Divergence of zebrafish and mouse lymphatic cell fate specification pathways. Development 141:1228ā€“1238

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  12. Kampmeier OT (1969) Evolution and comparative morphology of the lymphatic system. Thomas, London

    Google ScholarĀ 

  13. Coffindaffer-Wilson M, Craig MP, Hove JR (2011) Determination of lymphatic vascular identity and developmental timecourse in zebrafish (Danio rerio). Lymphology 44:1ā€“12

    CASĀ  PubMedĀ  Google ScholarĀ 

  14. Johnson NC, Dillard ME, Baluk P, McDonald DM, Harvey NL et al (2008) Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev 22:3282ā€“3291

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G et al (2002) An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 21:1505ā€“1513

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98:769ā€“778

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Srinivasan RS, Geng X, Yang Y, Wang Y, Mukatira S et al (2010) The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev 24:696ā€“707

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Duong T, Koltowska K, Pichol-Thievend C, Le Guen L, Fontaine F et al (2013) VEGFD regulates blood vascular development by modulating SOX18 activity. Blood 123:1102ā€“1112

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  19. Pendeville H, Winandy M, Manfroid I, Nivelles O, Motte P et al (2008) Zebrafish Sox7 and Sox18 function together to control arterial-venous identity. Dev Biol 317:405ā€“416

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Del Giacco L, Pistocchi A, Ghilardi A (2010) prox1b Activity is essential in zebrafish lymphangiogenesis. PLoS One 5:e13170

    Google ScholarĀ 

  21. Coxam B, Sabine A, Bower NI, Smith KA, Pichol-Thievend C et al (2014) Pkd1 regulates lymphatic vascular morphogenesis during development. Cell Rep 7:623ā€“633

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Dunworth WP, Cardona-Costa J, Bozkulak EC, Kim JD, Meadows S et al (2014) Bone morphogenetic protein 2 signaling negatively modulates lymphatic development in vertebrate embryos. Circ Res 114:56ā€“66

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Aranguren XL, Beerens M, Vandevelde W, Dewerchin M, Carmeliet P et al (2011) Transcription factor COUP-TFII is indispensable for venous and lymphatic development in zebrafish and Xenopus laevis. Biochem Biophys Res Commun 410:121ā€“126

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Swift MR, Pham VN, Castranova D, Bell K, Poole RJ et al (2014) SoxF factors and Notch regulate nr2f2 gene expression during venous differentiation in zebrafish. Dev Biol 390:116ā€“125

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  25. Geudens I, Herpers R, Hermans K, Segura I, Ruiz de Almodovar C et al (2010) Role of delta-like-4/Notch in the formation and wiring of the lymphatic network in zebrafish. Arterioscler Thromb Vasc Biol 30:1695ā€“1702

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Fatima A, Culver A, Culver F, Liu T, Dietz WH et al (2014) Murine Notch1 is required for lymphatic vascular morphogenesis during development. Dev Dyn 243:957ā€“964

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Murtomaki A, Uh MK, Choi YK, Kitajewski C, Borisenko V et al (2013) Notch1 functions as a negative regulator of lymphatic endothelial cell differentiation in the venous endothelium. Development 140:2365ā€“2376

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Srinivasan RS, Escobedo N, Yang Y, Interiano A, Dillard ME et al (2014) The Prox1-Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors. Genes Dev 28:2175ā€“2187

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Hogan BM, Herpers R, Witte M, Helotera H, Alitalo K et al (2009) Vegfc/Flt4 signalling is suppressed by Dll4 in developing zebrafish intersegmental arteries. Development 136:4001ā€“4009

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Astin JW, Haggerty MJ, Okuda KS, Le Guen L, Misa JP et al (2014) Vegfd can compensate for loss of Vegfc in zebrafish facial lymphatic sprouting. Development 141:2680ā€“2690

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Gordon K, Schulte D, Brice G, Simpson MA, Roukens MG et al (2013) Mutation in vascular endothelial growth factor-C, a ligand for vascular endothelial growth factor receptor-3, is associated with autosomal dominant milroy-like primary lymphedema. Circ Res 112:956ā€“960

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Ober EA, Olofsson B, Makinen T, Jin SW, Shoji W et al (2004) Vegfc is required for vascular development and endoderm morphogenesis in zebrafish. EMBO Rep 5:78ā€“84

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Villefranc JA, Nicoli S, Bentley K, Jeltsch M, Zarkada G et al (2013) A truncation allele in vascular endothelial growth factor c reveals distinct modes of signaling during lymphatic and vascular development. Development 140:1497ā€“1506

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Hogan BM, Bos FL, Bussmann J, Witte M, Chi NC et al (2009) Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat Genet 41:396ā€“398

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Alders M, Hogan BM, Gjini E, Salehi F, Al-Gazali L et al (2009) Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans. Nat Genet 41:1272ā€“1274

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Le Guen L, Karpanen T, Schulte D, Harris NC, Koltowska K et al (2014) Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis. Development 141:1239ā€“1249

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  37. Jeltsch M, Jha SK, Tvorogov D, Anisimov A, Leppanen VM et al (2014) CCBE1 Enhances lymphangiogenesis via ADAMTS3-mediated VEGF-C activation. Circulation 129:1962ā€“1971

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Fevurly RD, Hasso S, Fye A, Fishman SJ, Chan J (2012) Novel zebrafish model reveals a critical role for MAPK in lymphangiogenesis. J Pediatr Surg 47:177ā€“182

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  39. Flores MV, Hall CJ, Crosier KE, Crosier PS (2010) Visualization of embryonic lymphangiogenesis advances the use of the zebrafish model for research in cancer and lymphatic pathologies. Dev Dyn 239:2128ā€“2135

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Kartopawiro J, Bower NI, Karnezis T, Kazenwadel J, Betterman KL et al (2014) Arap3 is dysregulated in a mouse model of hypotrichosis-lymphedema-telangiectasia and regulates lymphatic vascular development. Hum Mol Genet 23:1286ā€“1297

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Outeda P, Huso DL, Fisher SA, Halushka MK, Kim H et al (2014) Polycystin signaling is required for directed endothelial cell migration and lymphatic development. Cell Rep 7:634ā€“644

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Alitalo K, Tammela T, Petrova TV (2005) Lymphangiogenesis in development and human disease. Nature 438:946ā€“953

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Clark ER, Clark EL (1937) Observations on living mammalian lymphatic capillariesā€“their relation to the blood vessels. Am J Anat 60:253ā€“298

    ArticleĀ  Google ScholarĀ 

  44. Cha YR, Fujita M, Butler M, Isogai S, Kochhan E et al (2012) Chemokine signaling directs trunk lymphatic network formation along the preexisting blood vasculature. Dev Cell 22:824ā€“836

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  45. Lim AH, Suli A, Yaniv K, Weinstein B, Li DY et al (2011) Motoneurons are essential for vascular pathfinding. Development 138:3847ā€“3857

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  46. Navankasattusas S, Whitehead KJ, Suli A, Sorensen LK, Lim AH et al (2008) The netrin receptor UNC5B promotes angiogenesis in specific vascular beds. Development 135:659ā€“667

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  47. Sundlisaeter E, Dicko A, Sakariassen PO, Sondenaa K, Enger PO et al (2007) Lymphangiogenesis in colorectal cancerā€”prognostic and therapeutic aspects. Int J Cancer 121:1401ā€“1409

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  48. Nathanson SD (2003) Insights into the mechanisms of lymph node metastasis. Cancer 98:413ā€“423

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  49. Alitalo A, Detmar M (2012) Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene 31:4499ā€“4508

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Dadras SS, Paul T, Bertoncini J, Brown LF, Muzikansky A et al (2003) Tumor lymphangiogenesis: a novel prognostic indicator for cutaneous melanoma metastasis and survival. Am J Pathol 162:1951ā€“1960

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  51. Hoshida T, Isaka N, Hagendoorn J, di Tomaso E, Chen YL et al (2006) Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications. Cancer Res 66:8065ā€“8075

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  52. Karnezis T, Shayan R, Caesar C, Roufail S, Harris NC et al (2012) VEGF-D promotes tumor metastasis by regulating prostaglandins produced by the collecting lymphatic endothelium. Cancer Cell 21:181ā€“195

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  53. Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K et al (2007) VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109:1010ā€“1017

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  54. Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF et al (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201:1089ā€“1099

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  55. Fukumura D, Duda DG, Munn LL, Jain RK (2010) Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation 17:206ā€“225

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  56. Padera TP, Kadambi A, di Tomaso E, Carreira CM, Brown EB et al (2002) Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296:1883ā€“1886

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  57. Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB et al (2014) Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer 14:159ā€“172

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  58. Karpanen T, Egeblad M, Karkkainen MJ, Kubo H, Yla-Herttuala S et al (2001) Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 61:1786ā€“1790

    CASĀ  PubMedĀ  Google ScholarĀ 

  59. He Y, Kozaki K, Karpanen T, Koshikawa K, Yla-Herttuala S et al (2002) Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 94:819ā€“825

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  60. Lin J, Lalani AS, Harding TC, Gonzalez M, Wu WW et al (2005) Inhibition of lymphogenous metastasis using adeno-associated virus-mediated gene transfer of a soluble VEGFR-3 decoy receptor. Cancer Res 65:6901ā€“6909

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  61. Pytowski B, Goldman J, Persaud K, Wu Y, Witte L et al (2005) Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody. J Natl Cancer Inst 97:14ā€“21

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  62. Roberts N, Kloos B, Cassella M, Podgrabinska S, Persaud K et al (2006) Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res 66:2650ā€“2657

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  63. Debinski W, Slagle-Webb B, Achen MG, Stacker SA, Tulchinsky E et al (2001) VEGF-D is an X-linked/AP-1 regulated putative onco-angiogen in human glioblastoma multiforme. Mol Med 7:598ā€“608

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  64. Onogawa S, Kitadai Y, Tanaka S, Kuwai T, Kimura S et al (2004) Expression of VEGF-C and VEGF-D at the invasive edge correlates with lymph node metastasis and prognosis of patients with colorectal carcinoma. Cancer Sci 95:32ā€“39

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  65. Schietroma C, Cianfarani F, Lacal PM, Odorisio T, Orecchia A et al (2003) Vascular endothelial growth factor-C expression correlates with lymph node localization of human melanoma metastases. Cancer 98:789ā€“797

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  66. Schoppmann SF, Birner P, Stockl J, Kalt R, Ullrich R et al (2002) Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161:947ā€“956

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  67. He Y, Rajantie I, Pajusola K, Jeltsch M, Holopainen T et al (2005) Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res 65:4739ā€“4746

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  68. Farnsworth RH, Karnezis T, Shayan R, Matsumoto M, Nowell CJ et al (2011) A role for bone morphogenetic protein-4 in lymph node vascular remodeling and primary tumor growth. Cancer Res 71:6547ā€“6557

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  69. Cao R, Ji H, Feng N, Zhang Y, Yang X et al (2012) Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis. Proc Natl Acad Sci U S A 109:15894ā€“15899

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  70. Cao R, Bjorndahl MA, Religa P, Clasper S, Garvin S et al (2004) PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 6:333ā€“345

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  71. Bracher A, Cardona AS, Tauber S, Fink AM, Steiner A et al (2013) Epidermal growth factor facilitates melanoma lymph node metastasis by influencing tumor lymphangiogenesis. J Invest Dermatol 133:230ā€“238

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  72. Lee AS, Kim DH, Lee JE, Jung YJ, Kang KP et al (2011) Erythropoietin induces lymph node lymphangiogenesis and lymph node tumor metastasis. Cancer Res 71:4506ā€“4517

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  73. Fagiani E, Lorentz P, Kopfstein L, Christofori G (2011) Angiopoietin-1 and -2 exert antagonistic functions in tumor angiogenesis, yet both induce lymphangiogenesis. Cancer Res 71:5717ā€“5727

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  74. Holopainen T, Saharinen P, Dā€™Amico G, Lampinen A, Eklund L et al (2012) Effects of angiopoietin-2-blocking antibody on endothelial cell-cell junctions and lung metastasis. J Natl Cancer Inst 104:461ā€“475

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  75. Karpinich NO, Kechele DO, Espenschied ST, Willcockson HH, Fedoriw Y et al (2013) Adrenomedullin gene dosage correlates with tumor and lymph node lymphangiogenesis. FASEB J 27:590ā€“600

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  76. Karpanen T, Wirzenius M, Makinen T, Veikkola T, Haisma HJ et al (2006) Lymphangiogenic growth factor responsiveness is modulated by postnatal lymphatic vessel maturation. Am J Pathol 169:708ā€“718

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  77. Schulz MM, Reisen F, Zgraggen S, Fischer S, Yuen D et al (2012) Phenotype-based high-content chemical library screening identifies statins as inhibitors of in vivo lymphangiogenesis. Proc Natl Acad Sci U S A 109:E2665ā€“E2674

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  78. Zon LI, Peterson RT (2005) In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4:35ā€“44

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  79. Astin JW, Jamieson SM, Eng TC, Flores MV, Misa JP et al (2014) An in vivo antilymphatic screen in zebrafish identifies novel inhibitors of Mammalian lymphangiogenesis and lymphatic-mediated metastasis. Mol Cancer Ther 13:2450ā€“2462

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  80. Choi I, Chung HK, Ramu S, Lee HN, Kim KE et al (2011) Visualization of lymphatic vessels by Prox1-promoter directed GFP reporter in a bacterial artificial chromosome-based transgenic mouse. Blood 117:362ā€“365

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  81. Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Atkins MB et al (2009) Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 27:6199ā€“6206

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  82. Rinderknecht M, Detmar M (2008) Tumor lymphangiogenesis and melanoma metastasis. J Cell Physiol 216:347ā€“354

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  83. Shayan R, Karnezis T, Murali R, Wilmott JS, Ashton MW et al (2012) Lymphatic vessel density in primary melanomas predicts sentinel lymph node status and risk of metastasis. Histopathology 61:702ā€“710

    PubMedĀ  Google ScholarĀ 

  84. Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF et al (2005) BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 15:249ā€“254

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  85. Dovey M, White RM, Zon LI (2009) Oncogenic NRAS cooperates with p53 loss to generate melanoma in zebrafish. Zebrafish 6:397ā€“404

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  86. Santoriello C, Gennaro E, Anelli V, Distel M, Kelly A et al (2010) Kita driven expression of oncogenic HRAS leads to early onset and highly penetrant melanoma in zebrafish. PLoS One 5, e15170

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  87. Anelli V, Santoriello C, Distel M, Koster RW, Ciccarelli FD et al (2009) Global repression of cancer gene expression in a zebrafish model of melanoma is linked to epigenetic regulation. Zebrafish 6:417ā€“424

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  88. Park SW, Davison JM, Rhee J, Hruban RH, Maitra A et al (2008) Oncogenic KRAS induces progenitor cell expansion and malignant transformation in zebrafish exocrine pancreas. Gastroenterology 134:2080ā€“2090

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  89. Liu S, Leach SD (2011) Screening pancreatic oncogenes in zebrafish using the Gal4/UAS system. Methods Cell Biol 105:367ā€“381

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  90. Zhu S, Lee JS, Guo F, Shin J, Perez-Atayde AR et al (2012) Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell 21:362ā€“373

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  91. Li Z, Huang X, Zhan H, Zeng Z, Li C et al (2012) Inducible and repressable oncogene-addicted hepatocellular carcinoma in Tet-on xmrk transgenic zebrafish. J Hepatol 56:419ā€“425

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  92. Nguyen AT, Emelyanov A, Koh CH, Spitsbergen JM, Parinov S et al (2012) An inducible kras(V12) transgenic zebrafish model for liver tumorigenesis and chemical drug screening. Dis Model Mech 5:63ā€“72

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  93. Haldi M, Ton C, Seng WL, McGrath P (2006) Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis 9:139ā€“151

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  94. Nicoli S, Ribatti D, Cotelli F, Presta M (2007) Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res 67:2927ā€“2931

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  95. Stoletov K, Kato H, Zardouzian E, Kelber J, Yang J et al (2010) Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci 123:2332ā€“2341

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  96. Stoletov K, Montel V, Lester RD, Gonias SL, Klemke R (2007) High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc Natl Acad Sci U S A 104:17406ā€“17411

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  97. Marques IJ, Weiss FU, Vlecken DH, Nitsche C, Bakkers J et al (2009) Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer 9:128

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  98. Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC et al (2003) Myc-induced T cell leukemia in transgenic zebrafish. Science 299:887ā€“890

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  99. Mizgireuv IV, Revskoy SY (2006) Transplantable tumor lines generated in clonal zebrafish. Cancer Res 66:3120ā€“3125

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  100. Mizgirev I, Revskoy S (2010) Generation of clonal zebrafish lines and transplantable hepatic tumors. Nat Protoc 5:383ā€“394

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  101. Smith AC, Raimondi AR, Salthouse CD, Ignatius MS, Blackburn JS et al (2010) High-throughput cell transplantation establishes that tumor-initiating cells are abundant in zebrafish T-cell acute lymphoblastic leukemia. Blood 115:3296ā€“3303

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  102. Tang Q, Abdelfattah NS, Blackburn JS, Moore JC, Martinez SA et al (2014) Optimized cell transplantation using adult rag2 mutant zebrafish. Nat Methods 11:821ā€“824

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Acknowledgements

We thank Ben Hogan and Kazuhide Okuda for advice on lymphatic reporter lines and Kathryn Crosier for helpful comments on the manuscript.

Funding

The authors were supported by a Ministry of Business, Innovation and Employment grant [UOAX0813] awarded P.S.C, a Health Research Council of New Zealand project grant (14/105) awarded to P.S.C and J.W.A and an Auckland Medical Research Foundation project grant awarded to J.W.A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonathan W. Astin or Philip S. Crosier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Astin, J.W., Crosier, P.S. (2016). Lymphatics, Cancer and Zebrafish. In: Langenau, D. (eds) Cancer and Zebrafish. Advances in Experimental Medicine and Biology, vol 916. Springer, Cham. https://doi.org/10.1007/978-3-319-30654-4_9

Download citation

Publish with us

Policies and ethics