Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 607 Accesses

Abstract

In the previous Chap. 1 showed advantages and limitations of the 2D in vitro model. By taking into account the limitations of such a model, it is an evidence that there is a tremendous need to develop culture systems that more closely mimic the complexity of nervous tissue. It is required to scale up from 2D neuronal network model to 3D neuronal network model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Balgude AP, Yu X et al (2001) Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials 22(10):1077–1084

    Article  Google Scholar 

  • Baranes D, Cove J et al (2007) Interconnected network of ganglion-like neural cell spheres formed on hydrozoan skeleton. Tissue Eng 13(3):473–482

    Article  Google Scholar 

  • Behravesh E, Emami K et al (2005) Comparison of genotoxic damage in monolayer cell cultures and three-dimensional tissue-like cell assemblies. Adv Space Res 35(2):260–267

    Article  Google Scholar 

  • Bellamkonda R, Ranieri JP et al (1995) Hydrogel-based three-dimensional matrix for neural cells. J Biomed Mater Res 29(5):663–671

    Article  Google Scholar 

  • Berthod F, Hayek D et al (1993) Collagen synthesis by fibroblasts cultured within a collagen sponge. Biomaterials 14(10):749–754

    Article  Google Scholar 

  • Birgersdotter A, Sandberg R et al (2005) Gene expression perturbation in vitro–a growing case for three-dimensional (3D) culture systems. Semin Cancer Biol 15(5):405–412

    Article  Google Scholar 

  • Blackshaw SE, Arkison S et al (1997) Promotion of regeneration and axon growth following injury in an invertebrate nervous system by the use of three-dimensional collagen gels. Proc Biol Sci 264(1382):657–661

    Article  Google Scholar 

  • Castillon N, Hinnrasky J et al (2002) Polarized expression of cystic fibrosis transmembrane conductance regulator and associated epithelial proteins during the regeneration of human airway surface epithelium in three-dimensional culture. Lab Invest 82(8):989–998

    Article  Google Scholar 

  • Choi HK, Won L et al (1993) Dopaminergic neurons grown in three-dimensional reaggregate culture for periods of up to one year. J Neurosci Methods 46(3):233–244

    Article  Google Scholar 

  • Chun TH, Hotary KB et al (2006) A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125(3):577–591

    Article  Google Scholar 

  • Cukierman E, Pankov R et al (2001) Taking cell-matrix adhesions to the third dimension. Science 294(5547):1708–1712

    Article  Google Scholar 

  • Cukierman E, Pankov R et al (2002) Cell interactions with three-dimensional matrices. Curr Opin Cell Biol 14(5):633–639

    Article  Google Scholar 

  • Cullen DK, Wolf JA et al (2011) Neural tissue engineering and biohybridized microsystems for neurobiological investigation in vitro (Part 1). Crit Rev Biomed Eng 39(3):201–240

    Article  Google Scholar 

  • Desai A, Kisaalita WS et al (2006) Human neuroblastoma (SH-SY5Y) cell culture and differentiation in 3-D collagen hydrogels for cell-based biosensing. Biosens Bioelectron 21(8):1483–1492

    Article  Google Scholar 

  • Fawcett JW, Barker RA et al (1995) Dopaminergic neuronal survival and the effects of bFGF in explant, three dimensional and monolayer cultures of embryonic rat ventral mesencephalon. Exp Brain Res 106(2):275–282

    Article  Google Scholar 

  • Fawcett JW, Housden E et al (1989) The growth of axons in three-dimensional astrocyte cultures. Dev Biol 135(2):449–458

    Article  Google Scholar 

  • Friedl P, Zanker KS et al (1998) Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. Microsc Res Tech 43(5):369–378

    Article  Google Scholar 

  • Granet C, Laroche N et al (1998) Rotating-wall vessels, promising bioreactors for osteoblastic cell culture: comparison with other 3D conditions. Med Biol Eng Comput 36(4):513–519

    Article  Google Scholar 

  • Grinnell F (2000) Fibroblast-collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends Cell Biol 10(9):362–365

    Article  Google Scholar 

  • Grinnell F (2003) Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol 13(5):264–269

    Article  Google Scholar 

  • Hindie M, Vayssade M et al (2006) Interactions of B16F10 melanoma cells aggregated on a cellulose substrate. J Cell Biochem 99(1):96–104

    Article  Google Scholar 

  • Hofmann RM (1993) To do tissue culture in two or three dimensions? That is the question. Stem Cells 11(2):105–111

    Article  Google Scholar 

  • Horie H, Akahori Y (1994) Three-dimensional cell aggregation enhances growth-promoting activity of NGF in adult DRG. NeuroReport 6(1):37–40

    Article  Google Scholar 

  • Huang YC, Huang YY (2006) Biomaterials and strategies for nerve regeneration. Artif Organs 30(7):514–522

    Article  Google Scholar 

  • Kiryushko D, Berezin V et al (2004) Regulators of neurite outgrowth: role of cell adhesion molecules. Ann N Y Acad Sci 1014:140–154

    Article  Google Scholar 

  • LaPlaca MC, Cullen DK et al (2005) High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model. J Biomech 38(5):1093–1105

    Article  Google Scholar 

  • Lee J, Cuddihy MJ et al (2008) Three-dimensional cell culture matrices: state of the art. Tissue engineering Part B, Reviews 14(1):61–86

    Article  Google Scholar 

  • Letourneau P (1975a) Possible roles of cell to substratum adhesion in neuronal morphogenesis. Dev Biol 44:77–91

    Article  Google Scholar 

  • Letourneau PC (1975b) Cell-to-substratum adhesion and guidance of axonal elongation. Dev Biol 44(1):92–101

    Article  Google Scholar 

  • Liu H, Lin J et al (2006) Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells. Biomaterials 27(36):5978–5989

    Article  Google Scholar 

  • Loers G, Schachner M (2007) Recognition molecules and neural repair. J Neurochem 101(4):865–882

    Article  Google Scholar 

  • Ma W, Fitzgerald W et al (2004) CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels. Exp Neurol 190(2):276–288

    Article  Google Scholar 

  • Mao C, Kisaalita WS (2004) Characterization of 3-D collagen hydrogels for functional cell-based biosensing. Biosens Bioelectron 19(9):1075–1088

    Article  Google Scholar 

  • Masi L, Franchi A et al (1992) Adhesion, growth, and matrix production by osteoblasts on collagen substrata. Calcif Tissue Int 51(3):202–212

    Article  Google Scholar 

  • Miller BE, Miller FR et al (1985) Factors affecting growth and drug sensitivity of mouse mammary tumor lines in collagen gel cultures. Cancer Res 45(9):4200–4205

    Google Scholar 

  • Pardo B, Honegger P (2000) Differentiation of rat striatal embryonic stem cells in vitro: monolayer culture vs. three-dimensional coculture with differentiated brain cells. J Neurosci Res 59(4):504–512

    Article  Google Scholar 

  • Pautot S, Wyart C et al (2008) Colloid-guided assembly of oriented 3D neuronal networks. Nat Methods 5(8):735–740

    Article  Google Scholar 

  • Pedersen JA, Swartz MA (2005) Mechanobiology in the third dimension. Ann Biomed Eng 33(11):1469–1490

    Article  Google Scholar 

  • Pusey PN, Vanmegen W (1986) Phase-behavior of concentrated suspensions of nearly hard colloidal spheres. Nature 320:340–342

    Article  Google Scholar 

  • Schindler M, Nur EKA et al (2006) Living in three dimensions: 3D nanostructured environments for cell culture and regenerative medicine. Cell Biochem Biophys 45(2):215–227

    Article  Google Scholar 

  • Schmeichel KL, Bissell MJ (2003) Modeling tissue-specific signaling and organ function in three dimensions. J Cell Sci 116(Pt 12):2377–2388

    Article  Google Scholar 

  • Schmidt CE, Leach JB (2003) Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng 5:293–347

    Article  Google Scholar 

  • Schuz A, Palm G (1989) Density of neurons and synapses in the cerebral cortex of the mouse. J Comp Neurol 286(4):442–455

    Article  Google Scholar 

  • Shany B, Vago R et al (2005) Growth of primary hippocampal neuronal tissue on an aragonite crystalline biomatrix. Tissue Eng 11(3–4):585–596

    Article  Google Scholar 

  • Smalley KS, Lioni M et al (2006) Life isn’t flat: taking cancer biology to the next dimension. In Vitro Cell Dev Biol Anim 42(8–9):242–247

    Article  Google Scholar 

  • van Blaaderen A, Ruel R et al (1997) Template-directed colloidal crystallization. Nature 385:321–324

    Article  Google Scholar 

  • Venstrom KA, Reichardt LF (1993) Extracellular matrix. 2: Role of extracellular matrix molecules and their receptors in the nervous system. FASEB J 7(11):996–1003

    Google Scholar 

  • Wang F, Weaver VM et al (1998) Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc Natl Acad Sci U S A 95(25):14821–14826

    Article  Google Scholar 

  • Willerth SM, Arendas KJ et al (2006) Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials 27(36):5990–6003

    Article  Google Scholar 

  • Xu T, Gregory CA et al (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27(19):3580–3588

    Google Scholar 

  • Yamada KM, Pankov R et al (2003) Dimensions and dynamics in integrin function. Braz J Med Biol Res 36(8):959–966

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Frega .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Frega, M. (2016). 3D Neuronal Networks: State of the Art. In: Neuronal Network Dynamics in 2D and 3D in vitro Neuroengineered Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-30237-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30237-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30236-2

  • Online ISBN: 978-3-319-30237-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics