Skip to main content

Disposal of Chlorine-Containing Wastes

  • Chapter
  • First Online:
Chemistry Beyond Chlorine

Abstract

In this chapter the survey is presented about the scale of chlorine-containing organic wastes including commonly used consumables, persistent chlorinated pollutants, and polymers (PVC). The routine and novel methods of treatment such as landfill, disposal, and recycle have been compared. In accordance with the principles of green chemistry, the emphasis has been given to the methods excluding formation of more toxic products and producing useful feedstock from wastes, such as catalytic hydrodechlorination (HDC) and other reductive techniques. Characteristic features of the use of such methods for different types of wastes and reaction media have been analyzed. The basic principles of design of effective catalysts for chlorinated wastes HDC have been elucidated. Main strategies of chlorinated polymer processing involving recycle and transformation to form adsorbents or other demanded materials have been overviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breivik K, Sweetman A, Pacyna JM et al (2002) Towards a global historical emission inventory for selected PCB congeners – a mass balance approach: 1. Global production and consumption. Sci Total Environ 290:181–198

    Article  CAS  Google Scholar 

  2. Domingo JL (2006) Polychlorinated diphenyl ethers (PCDEs): environmental levels, toxicity and human exposure: a review of the published literature. Environ Int 32:121–127

    Article  CAS  Google Scholar 

  3. Khudoley VV (2004) Carcinogenecity of persistent organic pollutants: the necessity to deepen the estimate of the real danger. Russ Chem Bull 48:72–75 (in Russian)

    Google Scholar 

  4. Keane MA (2007) Catalytic conversion of waste plastics: focus on waste PVC. J Chem Technol Biotechnol 82:787–795

    Article  CAS  Google Scholar 

  5. Kilzie F The state of Russian Market of PVC and the Perspectives of its Development. In: http://www.creonenergy.ru/upload/iblock/3cf/Kilzie_Creon.pdf. Accessed Apr 20, 2015

  6. http://www.pvc.org/. Accessed Sep 2010

  7. Braun D (2001) PVC-origin, growth, and future. J Vinyl Addit Technol 7:168–176

    Article  CAS  Google Scholar 

  8. Huang B, Lei C, Wei C et al (2014) Chlorinated volatile organic compounds (Cl-VOCs) in environment – sources, potential human health impacts, and current remediation technologies. Environ Int 71:118–138

    Article  CAS  Google Scholar 

  9. U.S. EPA (2012) Appendix A to 40 CFR, Part 423–126, Priority Pollutants

    Google Scholar 

  10. Lunin VV, Lokteva ES (1996) Catalytic hydrodehalogenation of organic compounds. Russ Chem Bull 7:1609–1621

    Google Scholar 

  11. Pinder AR (1980) The hydrogenolysis of organic halides. Synthesis 6:425–452

    Article  Google Scholar 

  12. Alonso F, Beletskaya IP, Yus M (2002) Metal-mediated reductive hydrodehalogenation of organic halides. Chem Rev 102:4009–4091

    Article  CAS  Google Scholar 

  13. Di Battista A, Verdini R, Rossetti S et al (2012) CARD-FISH analysis of a TCE-dechlorinating biocathode operated at different set potentials. New Biotechnol 30:33–38

    Article  CAS  Google Scholar 

  14. Staley LJ, Richards MK, Huffman GL et al (1989) Turbulent flame reactor studies of chlorinated hydrocarbon destruction efficiency. Waste Manag 9:109–114

    Article  CAS  Google Scholar 

  15. Lemort F, Soudais Y, Moga L et al (2006) Heat treatment of chlorinated waste in a rotating kiln: problems with intermediate reaction products and solutions applied. Int J Eng Sci 44:1071–1081

    Article  CAS  Google Scholar 

  16. Everaert K, Baeyens J (2004) Catalytic combustion of volatile organic compounds. J Hazard Mater 109:113–139

    Article  CAS  Google Scholar 

  17. Corella J, Toledo JM, Padilla AM (2000) On the selection of the catalyst among the commercial platinum-based ones for total oxidation of some chlorinated hydrocarbons. Appl Catal B Environ 27:243–256

    Article  CAS  Google Scholar 

  18. Yang P, Shi Z, Yang S et al (2015) High catalytic performances of CeO2–CrOx catalysts for chlorinated VOCs elimination. Chem Eng Sci 126:361–369

    Article  CAS  Google Scholar 

  19. Lichtenberger J, Amiridis MD (2004) Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts. J Catal 223:296–308

    Article  CAS  Google Scholar 

  20. Liu Y, Schwartz J, Cavallaro CL (1995) Catalytic dechlorination of polychlorinated biphenyls. Environ Sci Technol 29:836–840

    Article  CAS  Google Scholar 

  21. Molina CB, Calvo L, Gilarranz MA et al (2009) Pd–Al pillared clays as catalysts for the hydrodechlorination of 4-chlorophenol in aqueous phase. J Hazard Mater 172:214–223

    Article  CAS  Google Scholar 

  22. Ukisu Y (2008) Highly enhanced hydrogen-transfer hydrodechlorination and hydrogenation reactions in alkaline 2-propanol/methanol over supported palladium catalysts. Appl Catal A Gen 349:229–232

    Article  CAS  Google Scholar 

  23. Molina CB, Calvo L, Gilarranz MA et al (2009) Hydrodechlorination of 4-chlorophenol in aqueous phase with Pt–Al pillared clays using formic acid as hydrogen source. Appl Clay Sci 45:206–212

    Article  CAS  Google Scholar 

  24. Ben-David Y, Gozin M, Portnoy M et al (1992) Reductive dechlorination of aryl chlorides catalyzed by palladium complexes containing basic chelating phosphines. J Mol Catal 73:173–180

    Article  CAS  Google Scholar 

  25. Dabo P, Cyr A, Laplante F et al (2000) Electrocatalytic dehydrochlorination of pentachlorophenol to phenol or cyclohexanol. Environ Sci Technol 34:1265–1268

    Article  CAS  Google Scholar 

  26. Lin S-T, Chao RY-H, Lin S-C et al (2002) Electroreduction of polychlorobenzenes using either lead or copper electrodes. J Chin Chem Soc 49:539–544

    Article  CAS  Google Scholar 

  27. Vitale SA, Hadidi K, Cohn DR et al (1997) Evaluation of the reaction rate constants for chlorinated ethylene and ethane decomposition in attachment-dominated atmospheric pressure dry-air plasmas. Phys Lett A 232:447–455

    Article  CAS  Google Scholar 

  28. Kamgang-Youbi G, Poizot K, Lemont F (2013) Inductively coupled plasma torch efficiency at atmospheric pressure for organo-chlorine liquid waste removal: chloroform destruction in oxidative conditions. J Hazard Mater 244–245:171–179

    Article  CAS  Google Scholar 

  29. Chen X, Rozak J, Lin J-C et al (2001) Oxidative decomposition of chlorinated hydrocarbons by glow discharge in PACT (plasma and catalyst integrated technologies) reactors. Appl Catal A Gen 219:25–31

    Article  CAS  Google Scholar 

  30. Zhang S, Rusling JF (1993) Dechlorination of polychlorinated biphenyls by electrochemical catalysis in a bicontinuous microemulsion. Environ Sci Technol 27:1375–1380

    Article  CAS  Google Scholar 

  31. Weavers LK, Malmstadt N, Hoffmann MR (2000) Kinetics and mechanism of pentachlorophenol degradation by sonication, ozonation, and sonolytic ozonation. Environ Sci Technol 34:1280–1285

    Article  CAS  Google Scholar 

  32. Cheung HM, Kurup S (1994) Sonochemical destruction of CFC 11 and CFC 113 in dilute aqueous solution. Environ Sci Technol 28:1619–1622

    Article  CAS  Google Scholar 

  33. Nagata Y, Hirai K, Okitsu K et al (1995) Decomposition of chlorofluorocarbon CFC-113 in water by ultrasonic irradiation. Chem Lett 24:203–204

    Article  Google Scholar 

  34. Esclapez MD, Tudela I, Díez-García MI et al (2015) Towards the complete dechlorination of chloroacetic acids in water by sonoelectrochemical methods: effect of the cathode material on the degradation of trichloroacetic acid and its degradation by-products. Appl Catal B Environ 166–167:66–74

    Article  CAS  Google Scholar 

  35. Maymo-Gatell X, Nijenhuis I, Zinder SH (2001) Reductive dechlorination of cis-1.2-dichloroethene and vinyl chloride by “Dehalococcoides ethenogenes”. Environ Sci Technol 35:516–521

    Article  CAS  Google Scholar 

  36. Lowry GV, Reinhard M (2000) Pd-catalyzed TCE dechlorination in groundwater: solute effects, biological control, and oxidative catalyst regeneration. Environ Sci Technol 34:3217–3223

    Article  CAS  Google Scholar 

  37. Hartdue JR (2004) Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from catalytic and thermal oxidizers burning dilute chlorinated vapors. Chemosphere 54:1539–1547

    Article  CAS  Google Scholar 

  38. Öberg T (2007) Low-temperature formation and degradation of chlorinated benzenes, PCDD and PCDF in dust from steel production. Sci Total Environ 382:153–158

    Article  CAS  Google Scholar 

  39. Tabata M, Ghaffar A, Shono A et al (2013) Hydrodechlorination/detoxification of PCDDs, PCDFs, and co-PCBs in fly ash by using calcium polysulfide. Waste Manag 33:356–362

    Article  CAS  Google Scholar 

  40. Zou D, Chi Y, Fu C et al (2013) Ni Co-destruction of organic pollutants in municipal solid waste leachate and dioxins in fly ash under supercritical water using H2O2 as oxidant. J Hazard Mater 248–249:177–184

    Article  CAS  Google Scholar 

  41. Figueroa IDC, Simmons MS (1991) Structure–activity relationships of chlorobenzenes using DNA measurement as a toxicity parameter in algae. Environ Toxicol Chem 10:323–329

    Article  Google Scholar 

  42. Urbano FJ, Marinas JM (2001) Hydrogenolysis of organohalogen compounds over palladium supported catalysts. J Mol Catal A 173:329–345

    Article  CAS  Google Scholar 

  43. Ukisu Y, Miyadera T (2002) Dechlorination of polychlorinated dibenzo-p-dioxins catalyzed by noble metal catalysts under mild conditions. Chemosphere 46:507–510

    Article  CAS  Google Scholar 

  44. Shin E-J, Keane MA (1999) Gas-phase hydrodechlorination of pentachlorophenol over supported nickel catalysts. Catal Lett 58:141–145

    Article  CAS  Google Scholar 

  45. Lingaiah N, Uddin MA, Muto A et al (2000) Vapour phase catalytic hydrodechlorination of chlorobenzene over Ni–carbon composite catalysts. J Mol Catal A Chem 161:157–162

    Article  CAS  Google Scholar 

  46. de Jong V, Louw R (2004) Performance of supported nickel and other metal catalysts in the hydrodechlorination of chlorobenzene and 1-chlorohexane. Appl Catal A Gen 271:153–163

    Article  CAS  Google Scholar 

  47. Gomez-Sainero LM, Cortes A, Seoane XL et al (2000) Hydrodechlorination of carbon tetrachloride to chloroform in the liquid phase with metal-supported catalysts. Effect of the catalyst components. Ind Eng Chem Res 39:2849–2854

    Article  CAS  Google Scholar 

  48. Martin-Martinez M, Álvarez-Montero A, Gómez-Sainero LM et al (2015) Deactivation behavior of Pd/C and Pt/C catalysts in the gas-phase hydrodechlorination of chloromethanes: structure–reactivity relationship. Appl Catal B Environ 162:532–543

    Article  CAS  Google Scholar 

  49. Gomez-Sainero LM, Seoane XL, Fierro JLG et al (2002) Liquid-phase hydrodechlorination of CCl4 to CHCl3 on Pd/carbon catalysts: nature and role of Pd active species. J Catal 209:279–288

    Article  CAS  Google Scholar 

  50. Seshu Babu N, Lingaiah N, Pasha N et al (2009) Influence of particle size and nature of Pd species on the hydrodechlorination of chloroaromatics: studies on Pd/TiO2 catalysts in chlorobenzene conversion. Catal Today 141:120–124

    Article  CAS  Google Scholar 

  51. Matsimura Y, Okumura M, Usami Y et al (1997) Low-temperature decomposition of methanol to carbon monoxide and hydrogen with low activation energy over Pd/ZrO2 catalyst. Catal Lett 44:189–191

    Article  Google Scholar 

  52. Otroshenko TP, Turakulova AO, Lokteva ES et al (2015) The catalysts on the base of in hydrodechlorination of chlorobenzene. Russ J Phys Chem A 89:1163–1172

    Article  CAS  Google Scholar 

  53. Díaz E, Faba L, Ordónez S (2011) Effect of carbonaceous supports on the Pd-catalyzed aqueous-phase trichloroethylene hydrodechlorination. Appl Catal B Environ 104:415–417

    Article  CAS  Google Scholar 

  54. Bae JW, Kim IG, Lee JS et al (2003) Hydrodechlorination of CCl4 over Pt/Al2O3: effects of platinum particle size on product distribution. Appl Catal A Gen 240:129–142

    Article  CAS  Google Scholar 

  55. Amorim C, Yuan G, Patterson PM et al (2005) Catalytic hydrodechlorination over Pd supported on amorphous and structured carbon. J Catal 234:268–281

    Article  CAS  Google Scholar 

  56. Cuenya BR (2010) Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518:3127–3150

    Article  CAS  Google Scholar 

  57. Rostovshchikova TN, Nikolaev SA, Lokteva ES et al (2010) Laser electrodispersion method for the preparation of self-assembled metal catalysts. In: Gaigneaux EM (ed) Studies in surface science and catalysis, vol 175. Elsevier, Amsterdam, pp 263–266

    Google Scholar 

  58. Rostovshchikova TN, Smirnov VV, Kozhevin VM et al (2005) New size effect in the catalysis by interacting copper nanoparticles. Appl Catal A Gen 296:70–79

    Article  CAS  Google Scholar 

  59. Rostovshchikova TN, Smirnov VV, Gurevich SA et al (2005) Nanostructured metal films: fabrication and catalytic properties. Catal Today 105:344–349

    Article  CAS  Google Scholar 

  60. Lokteva ES, Peristyy AA, Kavalerskaya NE et al (2012) Laser electrodispersion as a new chlorine-free method for the production of highly effective metal-containing supported catalysts. Pure Appl Chem 84:495–508

    Article  CAS  Google Scholar 

  61. Fenelonov VB, Likholobov VA, Derevyankin AY et al (1998) Porous carbon materials prepared from C1–C3 hydrocarbons. Catal Today 42:341–345

    Article  CAS  Google Scholar 

  62. Rostovshchikova TN, Lokteva ES, Kachevskii SA et al (2009) New catalysts for the environmentally friendly processing of chlorinated organics. Catal Ind 1:214–219

    Article  Google Scholar 

  63. Kavalerskaya NE, Lokteva ES, Rostovshchikova TN et al (2013) Hydrodechlorination of chlorobenzene in the presence of Ni/Al2O3 prepared by laser electrodispersion and from a colloidal dispersion. Kinet Catal 54:597–606

    Article  CAS  Google Scholar 

  64. Hou Y, Gao S (2003) Monodisperse nickel nanoparticles prepared from a monosurfactant system and their magnetic properties. J Mater Chem 13:1510–1512

    Article  CAS  Google Scholar 

  65. Erokhin AV, Lokteva ES, Yermakov AY et al (2014) Phenylacetylene hydrogenation on Fe@C and Ni@C core-shell nanoparticles: about intrinsic activity of graphene-like carbon layer in H2 activation. Carbon 74:291–301

    Article  CAS  Google Scholar 

  66. Lokteva ES, Kachevskii SA, Golubina EV et al (2009) Hydrodechlorination of chlorobenzene in vapor-phase in the presence of nanocomposites metal-carbon based on nickel, palladium, and iron. Russ J Phys Chem A 83:1300–1306

    Article  CAS  Google Scholar 

  67. Mekhaev AV, Chupakhin ON, Uimin MA et al (2009) Liquid-phase catalytic hydrodechlorination of aromatic chloro derivatives with metal nanopowders. Russ Chem Bull 58:1321–1324

    Article  CAS  Google Scholar 

  68. Gao Y, Wang F, Liao S et al (2000) Active catalyst for the hydrodechlorination of perchlorobenzene. React Funct Polym 44:65–69

    Article  CAS  Google Scholar 

  69. Malinowski A, Juszczyk W, Pielaszek J et al (2000) Hydrodechlorination of CCl2F2 (CFC-12) by carbon- and MgF2-supported palladium and palladium-gold catalysts. Stud Surf Sci Catal 130:1991–1996

    Article  Google Scholar 

  70. Kulkarni PP, Kovalchuk VI, d’Itri JL (2002) Oligomerization pathways of dichlorodifluoromethane hydrodechlorination catalyzed by activated carbon supported Pt-Cu, Pt-Ag, Pt-Fe, and Pt-Co. Appl Catal B Environ 36:299–309

    Article  CAS  Google Scholar 

  71. Navalikhina MD, Kavalerskaya NE, Lokteva ES et al (2012) Hydrodechlorination of chlorobenzene on Ni and Ni-Pd catalysts modified by heteropolycompounds of the Keggin type. Russ J Phys Chem A 86:1669–1675

    Article  CAS  Google Scholar 

  72. Golubina EV, Lokteva ES, Lunin VV et al (2006) The role of Fe addition on the activity of Pd-containing catalysts in multiphase hydrodechlorination. Appl Catal A Gen 302:32–41

    Article  CAS  Google Scholar 

  73. Wang C-B, Lin H-K, Ho C-M (2002) Effects of the addition of titania on the thermal characterization of alumina-supported palladium. J Mol Catal A Gen 180:285–291

    Article  CAS  Google Scholar 

  74. Srinivas ST, Sai Pasad PS, Kanta Rao P (1998) Effect of support modification on the chlorobenzene hydrodechlorination activity on Pt/Al2O3 catalysts. Catal Lett 50:77–82

    Article  CAS  Google Scholar 

  75. Gregori M, Benito P, Fornasari G et al (2014) Preparation of Pd/Cu MCM-41 catalysts for hydrodechlorination: influence of the synthesis procedure. Microporous Mesoporous Mater 190:1–9

    Article  CAS  Google Scholar 

  76. Turakulova AO, Golubina EV, Lokteva ES et al (2011) ZrO2-Al2O3 binary oxides as promising supports for palladium catalysts of hydrodechlorination. Russ J Phys Chem A 85:402–407

    Article  CAS  Google Scholar 

  77. Ardila AN, Reyes J, Arriola E et al (2015) Liquid-phase chloroform hydrodechlorination catalyzed by Pd/TiO2-Na. Appl Catal A Gen 497:211–215

    Article  CAS  Google Scholar 

  78. Aramendia MA, Burch R, Garsia IM et al (2001) The effect of the addition of sodium compounds in the liquid-phase hydrodechlorination of chlorobenzene over palladium catalysts. Appl Catal B Environ 31:163–171

    Article  CAS  Google Scholar 

  79. Aramedia MA, Borau V, Garcia IM et al (2002) Liquid-phase hydrodechlorination of chlorobenzene over palladium-supported catalysts: influence of HCl formation and NaOH addition. J Mol Catal A Chem 184:237–245

    Article  Google Scholar 

  80. Chang C-C, Reo CM, Lund CRF (1999) The effect of a membrane reactor upon catalyst deactivation during hydrodechlorination of dichloroethane. Appl Catal B Environ 20:309–317

    Article  CAS  Google Scholar 

  81. Yadav GD, Reddy CA (1999) Kinetics of the n-butoxylation of p-chloronitrobenzene under liquid-liquid-liquid phase transfer catalysis. Ind Eng Chem Res 38:2245–2253

    Article  CAS  Google Scholar 

  82. Ido T, Yamamoto T, Jin G et al (1997) Third-phase catalytic activity of halogen exchange reaction in phase transfer catalytic system. Chem Eng Sci 52:3511–3520

    Article  CAS  Google Scholar 

  83. Marques CA, Rogozhnikova O, Selva M et al (1995) Selectivity in hydrodehalogenation of polychloro- and polybromobenzenes under multiphase conditions. J Mol Catal A Chem 96:301–309

    Article  CAS  Google Scholar 

  84. Simagina VI, Stoyanova IV (2001) Hydrodechlorination of polychlorinated benzenes in the presence of a bimetallic catalyst in combination with a phase-transfer catalyst. Mendeleev Commun 1:1–42

    Google Scholar 

  85. Zinovyev S, Perosa A, Yufit S et al (2002) Hydrodechlorination and hydrogenation over Raney-Ni under multiphase conditions: role of multiphase environment in reaction kinetics and selectivity. J Catal 211:347–354

    Article  CAS  Google Scholar 

  86. Tundo P, Zinovyev S, Perosa A (2000) Multiphase catalytic hydrogenation of p-chloroacetophenone and acetophenone. A kinetic study of the reaction selectivity toward the reduction of different functional groups. J Catal 196:330–338

    Article  CAS  Google Scholar 

  87. Simagina V I, Stoyanova I V, Litvak V V et al (1996) Low-temperature catalytic hydrodehalogenation of polychlorinated aromatic hydrocarbon. In: Proceedings of 8th international symposium on heterogeneous catalysis, Varna. p 485–490

    Google Scholar 

  88. Lingaiah N, Uddin Md A, Muto A et al (1999) Hydrodechlorination of chlorinated hydrocarbons over metal-carbon composite catalysts prepared by modified carbothermal reduction method. Chem Commun 1657–1658

    Google Scholar 

  89. Bonarowska M, Pielaszek J, Semikolenov VA et al (2002) Pd–Au/Sibunit carbon catalysts: characterization and catalytic activity in hydrodechlorination of dichlorodifluoromethane (CFC-12). J Catal 209:528–538

    Article  CAS  Google Scholar 

  90. Yuan G, Louis C, Delannoy L et al (2007) Silica- and titania-supported Ni–Au: application in catalytic hydrodechlorination. J Catal 247:256–268

    Article  CAS  Google Scholar 

  91. Witońska IA, Walock MJ, Binczarski M et al (2014) Pd–Fe/SiO2 and Pd–Fe/Al2O3 catalysts for selective hydrodechlorination of 2,4-dichlorophenol into phenol. J Mol Catal A Chem 393:248–256

    Article  CAS  Google Scholar 

  92. Golubina EV, Lokteva ES, Kachevsky SA et al (2005) Introduction of a base metal as a method for improvement of Pd/C catalytic activity in hydrodechlorination of ecotoxicants. In: Tundo P, Lunin V (eds) Green chemistry in Russia. Poligrafica Venezia, Venezia, pp 147–152

    Google Scholar 

  93. Dong Z, Le X, Dong C (2015) Ni@Pd core–shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol. Appl Catal B Environ 162:372–380

    Article  CAS  Google Scholar 

  94. Vadlamannati LS, Kovalchuk VI, d’Itri JL (1999) Dechlorination of 1.2-dichloroethane catalyzed by Pt–Cu/C: unraveling the role of each metal. Catal Lett 58:173–178

    Article  CAS  Google Scholar 

  95. Luebke DR, Vadlamannati LS, Kovalchuk VI et al (2002) Hydrodechlorination of 1.2-dichloroethane catalyzed by Pt–Cu/C: effect of catalyst pretreatment. Appl Catal B Environ 35:211–217

    Article  CAS  Google Scholar 

  96. Bonarowska M, Machynskyy O, Łomot D et al (2014) Supported palladium–copper catalysts: preparation and catalytic behavior in hydrogen-related reactions. Catal Today 235:144–151

    Article  CAS  Google Scholar 

  97. Pirard SL, Mahy JG, Pirard J-P et al (2015) Development by the sol–gel process of highly dispersed Ni–Cu/SiO2 xerogel catalysts for selective 1, 2-dichloroethane hydrodechlorination into ethylene. Microporous Mesoporous Mater 209:197–207

    Article  CAS  Google Scholar 

  98. Baran R, Srebowata A, Casale S et al (2014) Hydrodechlorination of 1, 2-dichloroethane on nickel loaded Beta zeolite modified by copper: influence of nickel and copper state on product selectivity. Catal Today 226:134–140

    Article  CAS  Google Scholar 

  99. Baddeley CJ, Bloxham LH, Laroze SC et al (1999) The dynamic catalytic surface: probing bimetallic active sites with medium energy ion scattering. Surf Sci 433–435:827–832

    Article  Google Scholar 

  100. Golubina EV, Lokteva ES, Lazareva TS et al (2004) Hydrodechlorination of tetrachloromethane in the vapor phase in the presence of Pd–Fe/Sibunit Catalysts. Kinet Catal 45:183–188

    Article  CAS  Google Scholar 

  101. Kulkarni PP, Deshmukh SS, Kovalchuk VI et al (1999) Hydrodechlorination of dichlorodifluoromethane on carbon-supported Group VIII noble metal catalysts. Catal Lett 61:161–166

    Article  CAS  Google Scholar 

  102. Ordonez S, Diez FV, Sastre H (2001) Characterization of the deactivation of platinum and palladium supported on activated carbon used as hydrodechlorination catalysts. Appl Catal B Environ 31:113–122

    Article  CAS  Google Scholar 

  103. Yoneda T, Takido T, Konuma K (2006) Hydrodechlorination reactivity of para-substituted chlorobenzenes over Pt/C catalyst. J Mol Catal A Chem 256:80–89

    Google Scholar 

  104. Keane MA (2004) Hydrodehalogenation of haloarenes over Silica supported Pd and Ni: a consideration of catalytic activity/selectivity and haloarene reactivity. Appl Catal A Gen 271:109–118

    Article  CAS  Google Scholar 

  105. Shin E-J, Keane MA (1998) Catalytic hydrogen treatment of aromatic alcohols. J Catal 173:450–459

    Article  CAS  Google Scholar 

  106. Bae JW, Park ED, Lee JS et al (2001) Hydrodechlorination of CCl4 over Pt/γ-Al2O3: effects of reaction pressure and diluent gases on distribution of products and catalyst stability. Appl Catal A Gen 217:79–89

    Article  CAS  Google Scholar 

  107. Simagina V, Likholobov V, Bergeret G et al (2003) Catalytic hydrodechlorination of hexachlorobenzene on carbon supported Pd-Ni bimetallic catalysts. Appl Catal B Environ 40:293–304

    Article  CAS  Google Scholar 

  108. Simagina VI, Netskina OV, Tayban ES et al (2010) The effect of support properties on the activity of Pd/C catalysts in the liquid-phase hydrodechlorination of chlorobenzene. Appl Catal A Gen 379:87–94

    Article  CAS  Google Scholar 

  109. Golubina EV, Lokteva ES, Majouga AG et al (2011) Ultradispersed diamond as an excellent support for Pd and Au nanoparticle based catalysts for hydrodechlorination and CO oxidation. Diam Relat Mater 20:960–964

    Article  CAS  Google Scholar 

  110. Golubina EV, Kachevsky SA, Lokteva ES et al (2009) TEM and XRD investigation of Pd on ultradispersed diamond, correlation with catalytic activity. Mendeleev Commun 19:133–135

    Article  CAS  Google Scholar 

  111. Gallegos-Suarez E, Guerrero-Ruiz A, Rodriguez-Ramos I et al (2015) Comparative study of the hydrogenolysis of glycerol over Ru-based catalysts supported on activated carbon, graphite, carbon nanotubes and KL-zeolite. Chem Eng J 262:326–333

    Article  CAS  Google Scholar 

  112. Liu Y, Liu L, Shan J et al (2015) Electrodeposition of palladium and reduced graphene oxide nanocomposites on foam-nickel electrode for electrocatalytic hydrodechlorination of 4-chlorophenol. J Hazard Mater 290:1–8

    Article  CAS  Google Scholar 

  113. Lokteva ES, Golubina EV, Kachevsky SA et al (2007) Heterogeneous catalysts and process for reductive dechlorination of polychlorinated hydrocarbons. Pure Appl Chem 79:1905–1914

    Article  CAS  Google Scholar 

  114. Lokteva ES, Golubina EV, Kachevskii SA et al (2011) Ultradispersed diamond as a new carbon support for hydrodechlorination catalysts. Kinet Catal 52:145–155

    Article  CAS  Google Scholar 

  115. Kachevskii SA, Golubina EV, Lokteva ES et al (2011) Palladium on ultradisperse diamond and activated carbon: the relation between structure and activity in hydrodechlorination. Russ J Phys Chem A 81:866–873

    Article  CAS  Google Scholar 

  116. Lokteva ES, Golubina EV, Antonova MV et al (2015) The catalyst for benzene hydrodechlorination prepared by pyrolysis of sawdust impregnated with palladium nitrate. Kinet Catal 56:753–762

    Google Scholar 

  117. Diaz E, Mohedano AF, Casas JA et al (2015) Deactivation of a Pd/AC catalyst in the hydrodechlorination of chlorinated herbicides. Catal Today 241:86–91

    Article  CAS  Google Scholar 

  118. Zanaveskin KL, Zanaveskin LN, Shvets VF et al (2011) The processing of polychlorinated biphenyls and technical liquids on the base of PCBs. Part 1. Catalytic hydrodechlorination of polychlorbenzenes. Chem Ind Today 1:43–51 (in Russian)

    Google Scholar 

  119. Zanaveskin KL, Zanaveskin LN, Shvets VF et al (2011) The processing of polychlorinated biphenyls and technical liquids on the base of PCBs. Part 2. Catalytic hydrodechlorination of polychlorobiphenyls. Chem Ind Today 7:9–15 (in Russian)

    Google Scholar 

  120. Ma X, Liu Y, Liu S et al (2014) Water-promoted catalytic hydrodechlorination of transformer oil-contained PCBs in liquid system under mild conditions. Appl Catal B Environ 144:580–587

    Article  CAS  Google Scholar 

  121. Wang X, Chen C, Chang Y et al (2009) Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles. J Hazard Mater 161:815–823

    Article  CAS  Google Scholar 

  122. Zhang W, Quan X, Zhang Z (2007) Catalytic reductive dechlorination of p-chlorophenol in water using Ni/Fe nanoscale particles. J Environ Sci 19:362–366

    Article  CAS  Google Scholar 

  123. Zhou T, Li Y, Lim T-T (2010) Catalytic hydrodechlorination of chlorophenols by Pd/Fe nanoparticles: comparisons with other bimetallic systems, kinetics and mechanism. Sep Purif Technol 76:206–214

    Article  CAS  Google Scholar 

  124. Trujillo-Reyes J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Supported and unsupported nanomaterials for water and soil remediation: are they a useful solution for worldwide pollution? J Hazard Mater 280:487–503

    Article  CAS  Google Scholar 

  125. Sadat-Shojai M, Bakhshandeh G-R (2011) Recycling of PVC wastes. Polym Degrad Stab 96:404–415

    Article  CAS  Google Scholar 

  126. Man M, Naidu R, Wong MH (2013) Persistent toxic substances released from uncontrolled e-waste recycling and actions for the future. Sci Total Environ 463–464:1133–1137

    Article  CAS  Google Scholar 

  127. Sombatsompop N, Sungsanit K (2003) Processability, rheology, and thermal, mechanical, and morphological properties of postconsumer poly(vinyl chloride) bottles and cables. J Appl Polym Sci 89:2738–2748

    Article  CAS  Google Scholar 

  128. Ali MF, Siddiqui MN (2005) Thermal and catalytic decomposition behavior of PVC mixed plastic waste with petroleum residue. J Anal Appl Pyrolysis 74:282–289

    Article  CAS  Google Scholar 

  129. Slapak MJP, van Kasteren JMN, Drinkenburg BAAH (1999) Hydrothermal recycling of PVC in a bubbling fluidized bed reactor: the influence of bed material and temperature. Polym Adv Technol 10:596–602

    Article  CAS  Google Scholar 

  130. Ryu C, Sharifi VN, Swithenbank J (2007) Waste pyrolysis and generation of storable char. Int J Energy Res 31:177–191

    Article  CAS  Google Scholar 

  131. Kryazhev Yu G, Solodovnichenko VS (2012) Low-temperature synthesis of sp2-carbon structures with the use of polyvinylene chlorides—Reactive polymers with a conjugation system. Solid Fuel Chem 46:330–337

    Article  CAS  Google Scholar 

  132. Kryazhev Yu G, Bukalov SS, Drozdov VA et al (2007) The structure of porous carbon formed in the chemical dehydrohalogenation of halogenated polymers followed by thermal treatment. Russ J Phys Chem A 81:346–348

    Article  CAS  Google Scholar 

  133. Kryazhev Yu G, Solodovnichenko VS, Antonicheva NV et al (2009) Evolution of the structures and sorption properties of dehydrochlorinated chloropolymers during their thermal conversions. Prot Met Phys Chem Surf 45:400–404

    Article  CAS  Google Scholar 

  134. Qiao WM, Yoon SH, Mochida I et al (2007) Waste polyvinylchloride derived pitch as a precursor to develop carbon fibers and activated carbon fibers. Waste Manag 27:1884–1890

    Article  CAS  Google Scholar 

  135. Masuda Y, Uda T, Terakado O et al (2006) Pyrolysis study of poly(vinyl chloride)-metal oxide mixtures: quantitative product analysis and the chlorine fixing ability of metal oxides. J Anal Appl Pyrolysis 77:159–168

    Article  CAS  Google Scholar 

  136. Wu Y-H, Zhou Q, Zhao T et al (2009) Poly(ethylene glycol) enhanced dehydrochlorination of poly(vinyl chloride). J Hazard Mater 163:1408–1411

    Article  CAS  Google Scholar 

  137. Braun D (2002) Recycling of PVC. Prog Polym Sci 27:2171–2195

    Article  CAS  Google Scholar 

  138. Kano J, Zhang Q, Saito F et al (2006) Synthesis of hydroxyapatite with the mechanochemical treatment products of PVC and CaO. Process Saf Environ Prot 84:309–312

    Article  CAS  Google Scholar 

  139. Tongamp W, Kano J, Zhang Q et al (2008) Simultaneous treatment of PVC and oyster-shell wastes by mechanochemical means. Waste Manag 28:484–488

    Article  CAS  Google Scholar 

  140. Wang G, Cai F, Si L et al (2005) An approach towards nano-size crystals of poly(acrylic acid): polymerization using layered double hydroxides as template. Chem Lett 34:94–95

    Article  Google Scholar 

  141. Scheir J (2010) End-of-life environmental issues with PVC in Australia. Available at: http://www.environment.gov.au/settlements/publications/waste/pvc/current.html. Accessed Sep. 2010

  142. Duangchan A, Samart C (2008) Tertiary recycling of PVC-containing plastic waste by copyrolysis with cattle manure. Waste Manag 28:2415–2421

    Article  CAS  Google Scholar 

  143. Zhang Q, Saeki S, Tanaka Y et al (2007) Soft-solution process for recovering rare metals from metal/alloy-wastes by grinding and washing with water. J Hazard Mater 139:438–442

    Article  CAS  Google Scholar 

  144. Saeki S, Lee J, Zhang Q et al (2004) Co-grinding LiCoO2 with PVC and water leaching of metal chlorides formed in ground product. Int J Miner Process 74:373–378

    Article  CAS  Google Scholar 

  145. Machado HMAMMS, Rodrigues Filho G, De Assunc RMN et al (2010) Chemical recycling of poly(vinyl chloride): application of partially dehydrochlorinated poly(vinyl chloride) for producing a chemically modified polymer. J Appl Polym Sci 115:1474–1479

    Article  CAS  Google Scholar 

  146. Kameda T, Fukuda Y, Grause G et al (2010) Chemical modification of rigid poly(vinyl chloride) by the substitution with nucleophiles. J Appl Polym Sci 116:36–44

    Article  CAS  Google Scholar 

  147. Gao S, Gao X (2010) Review on control method of PVC production process. In: Proceedings of Chinese control and decision conference, Xuzhou, China, IEEE Industrial Electronics (IE) Chapter p 2590–2595

    Google Scholar 

  148. Chen D, Yin L, Wang H et al (2014) Pyrolysis technologies for municipal solid waste: a review. Waste Manag 34:2466–2486

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Russian Science Foundation for their financial support through grant 14-33-00018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Lokteva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lokteva, E., Golubina, E., Likholobov, V., Lunin, V. (2016). Disposal of Chlorine-Containing Wastes. In: Tundo, P., He, LN., Lokteva, E., Mota, C. (eds) Chemistry Beyond Chlorine. Springer, Cham. https://doi.org/10.1007/978-3-319-30073-3_21

Download citation

Publish with us

Policies and ethics