Skip to main content

Antagonistic Interactions in the Rupestrian Grasslands: New Insights and Perspectives

  • Chapter
  • First Online:
Ecology and Conservation of Mountaintop grasslands in Brazil

Abstract

Antagonistic interactions are main ecological forces in terrestrial communities and include several examples involving plants and animals. The studies performed in the rupestrian grasslands have mostly focused on patterns of herbivory and on the effects of plant quality and natural enemies on insect herbivore abundance and distribution. Herbivory rates recorded for plants in this ecosystem are within the range proposed for open areas (ca. 15 %), although a wider range of studies are still needed. Galling insect richness is highly variable amongst sites (between 18 and 241 species) and are mostly rich and abundant in xeric habitats compared to mesic habitats, corroborating the hypothesis of environmental harshness. Several new galling insect species have been discovered in this very diverse landscape, indicating its importance for insect radiation and evolution. Galling insect communities associated to host plants are influenced by host plant sex. Male plants generally host higher insect richness and herbivory levels than female plants. Gall insect richness sampled on 138 host plants in several rupestrian grassland sites indicates that larger plant families also host higher number of galling insects than smaller plant families or genera. Amongst the factors that influence host plant selection by herbivores in rupestrian grasslands aspects of plant quality such as leaf asymmetry, leaf sclerophylly and ant-interactions have been evaluated. However, mixed results for the effects of plant quality on insect abundance and performance have been found depending upon the insect-host system evaluated. Another antagonist interaction evaluated involves parasitism by two common species of mistletoes and results have shown that parasitism represents another important source of stress for host plants in the rupestrian grasslands. Finally, in this chapter we summarize several antagonistic, multitrophic and indirect interactions using plants in the genus Baccharis as a model, aiming to provide information and guidance for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe Y (1988) Trophobiosis between the gall wasp Andricus symbioticus, and the gall-attending ant, Lasius niger. Appl Entomol Zool 23:41–44

    Google Scholar 

  • Abrahamson WG, Eubanks MD, Blair CP, Whippie AV (2001) Galls flies, inquilines, and goldenrods: a model for host-race formation and sympatric speciation. Am Zool 41:928–938

    Google Scholar 

  • Allain RL, Lara ACF, Fernandes GW, Marques EA (1998) Leaf tannin concentration, toughness, and sclerophylly in some typical woody species of the savannas of southeastern Brazil. Bios 6:5–10

    Google Scholar 

  • Araújo WS, Santos BB (2008) Efeitos do habitat e da sazonalidade na distribuição de insetos galhadores na Serra dos Pirineus, Goiás, Brasil. Rev Biol Neotr 5:33–39

    Google Scholar 

  • Araújo AM, Fernandes GW, Bede LC (1995) Influência do sexo e fenologia de Baccharis dracunculifolia DC. (Asteraceae) sobre insetos herbívoros. Rev Bras Entomol 39:347–353

    Google Scholar 

  • Araújo APA, Carneiro MAA, Fernandes GW (2003) Efeitos do sexo, do vigor e do tamanho da planta hospedeira sobre a distribuição de insetos indutores de galhas em Baccharis pseudomyriocephala Teodoro (Asteraceae). Rev Bras Entomol 47:483–490

    Article  Google Scholar 

  • Araújo APA, Paula JD, Carneiro MAA, Schoereder JH (2006) Effects of host plant architecture on colonization by galling insects. Austral Ecol 31:343–348

    Article  Google Scholar 

  • Araújo WS, Santos BB, Gomes-Klein VL (2011) Insect galls from Serra dos Pirineus, GO, Brazil. Biota Neotrop 11:357–365

    Article  Google Scholar 

  • Arruda R, Fadini RF, Carvalho LN, Del-Claro K, Mourão FA, Jacobi CM, Teodoro GS, van den Berg E, Caires CS, Dettke GA (2012) Ecology of neotropical mistletoes: an important canopy-dwelling component of Brazilian forests and savannas. Acta Bot Bras 26:264–274

    Google Scholar 

  • Aukema JE (2003) Vectors, viscin, and Viscaceae: mistletoes as parasites, mutualists, and resources. Front Ecol Environ 1:212–219

    Article  Google Scholar 

  • Bahia TO, Zúñiga IG, Souza ML, Coutinho ES, Quesada M, Fernandes GW (2015) Hemiparasitism effect on Baccharis dracunculifolia DC. and consequences to its major galling herbivore. Acta Bot Bras 29:339–345

    Article  Google Scholar 

  • Barroso GM (1976) Compositae – subtribo Baccharidinae Hoffman: estudo das espécies ocorrentes no Brasil. Rodriguesia 40:3–273

    Google Scholar 

  • Beasley DAE, Bonisoli-Alquati A, Mousseau TA (2013) The use of fluctuating asymmetry as a measure of environmentally induced developmental instability: a meta-analysis. Ecol Indic 30:218–226

    Article  Google Scholar 

  • Bell TL, Adams MA (2011) Attack on all fronts: functional relationships between aerial and root parasitic plants and their woody hosts and consequences for ecosystems. Tree Physiol 31:3–15

    Article  CAS  PubMed  Google Scholar 

  • Bell AD, Bell A, Dines TD (1999) Branch construction and bud defence status at the canopy surface of a West African rainforest. Biol J Linn Soc 66:481–499

    Article  Google Scholar 

  • Boecklen WJ, Price PW, Mopper S (1990) Sex and drugs and herbivores: sex-biased herbivory in arroyo willow (Salix lasiolepis). Ecology 71:581–588

    Article  CAS  Google Scholar 

  • Bush GL (1994) Sympatric speciation in animals: new wine in old bottles. Tree 9:285–288

    CAS  PubMed  Google Scholar 

  • Calder M, Bernhardt P (1983) The biology of mistletoes. Academic Press, New York

    Google Scholar 

  • Cameron DD, White A, Antonovics J (2009) Parasite-grass-forb interactions and rock-paper- scissor dynamics: predicting the effects of the parasitic plant Rhinanthus minor on host plant communities. J Ecol 97:1311–1319

    Article  Google Scholar 

  • Carneiro MAA, Fernandes GW, Souza OFF (2005) Convergência na variação local e regional da riqueza de espécies de insetos galhadores. Neotrop Entomol 34:547–553

    Article  Google Scholar 

  • Carneiro MAA, Souza WVM, Fernandes GW, DeSouza OFF (2006) Sex-mediated herbivory by galling insects on Baccharis concinna (Asteraceae). Rev Bras Entomol 50:394–398

    Article  Google Scholar 

  • Carneiro MAA, Borges RAX, Araújo APA, Fernandes GW (2009a) Insetos indutores de galhas da porção sul da Cadeia do Espinhaço, MG. Rev Bras Entomol 53:570–592

    Article  Google Scholar 

  • Carneiro MAA, Branco CSA, Braga CED, Almada ED, Costa MBM, Fernandes GW, Maia VC (2009b) Are morphologically similar galls really induced by the same gall midges species? Rev Bras Entomol 53:365–378

    Google Scholar 

  • Coelho MS, Mourão Carneiro MAA, Branco CSA, Borges RAX, Fernandes GW (2013a) Gall-inducing insects from campos de altitude, Brazil. Biota Neotrop 13:139–151

    Article  Google Scholar 

  • Coelho MS, Carneiro MAA, Branco CSA, Borg es RAX, Fernandes GW (2013b) Gall-inducing insects from Serra do Cabral. Biota Neotrop 13:102–109

    Article  Google Scholar 

  • Coley PD, Aide TM (1991) Comparison of herbivory and plant defenses in temperate and tropical broad-leaved forests. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Comparison of herbivory and plant defenses in temperate and tropical broad-leaved forests. Wiley, New york, pp 25–40

    Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defences in tropical forests. Ann Rev Ecol Syst 27:305–335

    Article  Google Scholar 

  • Collevatti RG, Sperber CF (1997) The gall maker Neopelma baccharidis Burk. (Homoptera: Psyllidae) on Baccharis dracunculifolia (Asteraceae): individual, local and regional patterns. An Soc Entomol Bras 26:45–53

    Article  Google Scholar 

  • Cook JM, Rokas A, Pagel M, Stone GN (2002) Evolutionary shifts between host oak sections and host plant organs in Andricus gall wasps. Evol 56:1821–1830

    Article  Google Scholar 

  • Cornelissen T, Stiling P (2005) Perfect is best: low leaf fluctuating asymmetry reduces herbivory by leaf miners. Oecol 142:46–56

    Article  Google Scholar 

  • Cornelissen T, Stiling P (2011) Similar responses of insect herbivores to leaf fluctuating asymmetry. Arthrop Plant Inter 5:59–69

    Article  Google Scholar 

  • Cornelissen T, Guimarães CD, Viana JPR, Silva B (2013) Interespecific competition influences the organization of diverse sessile insect community. Acta Oecol 52:15–18

    Article  Google Scholar 

  • Costa FV, Azevedo IFP, Braga LL, Perillo LN, Neves FS, Leite LO, Silva BL, Ribeiro LC, Fernandes GW, Cuevas-Reyes P (2012) Fluctuating asymmetry and herbivory in two ortogenetical stages of Chamaecrista semaphore in restored and natural environments. J Plant Inter 8:179–186

    Google Scholar 

  • Craig TP, Horner JD, Itami JK (2001) Genetics, experience, and host–plant preference in Eurosta solidaginis: implications for host shifts and speciation. Evol 55:773–782

    Article  CAS  Google Scholar 

  • Cuevas-Reyes P, Fernandes GW, González-Rodríguez A, Pimenta M (2011) Effects of generalist and specialist parasitic plants (Loranthaceae) on the fluctuating asymmetry patterns of ruprestrian host plants. Basic Appl Ecol 12:449–455

    Article  Google Scholar 

  • Cuevas-Reyes P, Gilberti L, González-Rodríguez A, Fernandes GW (2013) Patterns of herbivory and fluctuating asymmetry in Solanum lycocarpum St. Hill (Solanaceae) along an urban gradient in Brazil. Ecol Ind 24:557–561

    Article  Google Scholar 

  • Del-Claro K (2004) Multitrophic relationships, conditional mutualisms, and the study of interaction biodiversity in tropical savannahs. Neotrop Entomol 33:665–672

    Article  Google Scholar 

  • Del-Claro K, Torezan-Silingardi HM (2009) Insect-plant interactions: new pathways to a better comprehension of ecological communities in Neotropical savannas. Neotrop Entomol 38:159–164

    Article  PubMed  Google Scholar 

  • Després L, Pettex EV, Plaisance V, Pompanon F (2002) Speciation in the globeflower fly Chiastocheta spp. (Diptera: Anthomyiidae) in relation to host plant species, biogeography, and morphology. Mol Phylogenet Evol 22:258–268

    Article  PubMed  CAS  Google Scholar 

  • Díaz M, Pulido FJ, Moller AP (2004) Herbivore effects on developmental instability and fecundity of holm oaks. Oecol 139:224–234

    Article  Google Scholar 

  • Dohn J, Dembélé F, Karembé M, Moustakas A, Amévor KA, Hanan NP (2013) Tree effects on grass growth in savannas: competition, facilitation and the stress- gradient hypothesis. J Ecol 101:202–209

    Article  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evol 18:586–608

    Article  Google Scholar 

  • Espírito-Santo MM, Fernandes GW (2002) Host plant effects on development and survivorship of the Neopelma baccharidis (Homoptera: Psyllidae). Aust Ecol 27:249–257

    Article  Google Scholar 

  • Espírito-Santo MM, Fernandes GW (1998) Abundance of Baccharopelma baccharidis (Homoptera: Psyllidae) galls on the dioecious shrub Baccharis dracunculifolia (Asteraceae). Environ Entomol 27:870–876

    Google Scholar 

  • Espírito-Santo MM, Fernandes GW (2007) How many species of gall-inducing insects are there on earth, and where are there? Ann Entomol Soc Am 100:95–99

    Google Scholar 

  • Espírito-Santo MM, Werneck MS (1999) Efeitos da umidade do solo e da cobertura vegetal na distribuição e abundância de Drosera montana. Acta Bot Bras 13(2):99–305

    Google Scholar 

  • Espírito-Santo MM, Madeira BG, Neves FS et al (2003) Sexual differences in reproductive phenology and their consequences to the demography of Baccharis dracunculifolia (Asteraceae), a dioecious tropical shrub. Ann Bot 91:13–19

    Article  PubMed  PubMed Central  Google Scholar 

  • Espírito-Santo MM, Faria ML, Fernandes GW (2004) Parasitoid attack and its consequence of the galling psyllid Baccharopelma dracunculifoliae. Bas Appl Ecol 5:475–484

    Article  Google Scholar 

  • Espírito-Santo MM, Neves FS, Andrade-Neto FR, Fernandes GW (2007) Plant architecture and meristem dynamics as the mechanism determining the diversity of gall-inducing insects. Oecol 153:353–364

    Article  Google Scholar 

  • Espírito-Santo MM, Neves FS, Fernandes GW, Silva JO (2012) Plant phenology and absence of sex-biased gall attack on three species of Baccharis. PLoSONE 7:e46896. doi:10.1371/journal.pone.0046896

    Article  CAS  Google Scholar 

  • Fagundes M, Fernandes GW (2011) Insect herbivores associated with Baccharis dracunculifolia (Asteraceae): responses of gall-forming and free-feeding insects to latitudinal variation. Rev Biol Trop 59:1419–1432

    PubMed  Google Scholar 

  • Fagundes M, Neves FS, Fernandes GW (2005) Direct and indirect interactions involving ants, insect herbivores, parasitoids and the host plant Baccharis dracunculifolia (Asteraceae). Ecol Entomol 30:28–35

    Article  Google Scholar 

  • Fay PA, Hartnett DC, Knapp AK (1996) Plant tolerance of gall-insect attack and gall-insect performance. Ecol 77:521–534

    Article  Google Scholar 

  • Fayle TM, Eggleton P, Manica A, Yusah KM, Foster WA (2015) Experimentally testing and assessing the predictive power of species assembly rules for tropical canopy ants. Ecol Lett 18:254–262

    Article  PubMed  PubMed Central  Google Scholar 

  • Feder JL (1998) The apple maggot fly, Rhagoletis pomonella: flies in the face of conventional wisdom about speciation. In: Howard DJ, Berlocher SH (eds) Endless forms: species and speciation. Oxford University Press, New York, pp 130–144

    Google Scholar 

  • Ferdy JB, Després L, Godelle B (2002) Evolution of mutualism between globeflowers and their pollinating flies. J Theor Biol 217:219–234

    Article  PubMed  Google Scholar 

  • Fernandes GW (1992) A gradient analysis of plant forms from Northern Arizona. J Az-Nv Acad Sci 24–25:21–30

    Google Scholar 

  •  Fernandes GW, de Mattos EA, Franco AC, Lüttqe U, Ziegler H (1998) Influence of the parasite Pilostyles ingae (Rafflesiaceae) on some Physiological Parameters of the Host Plant, Mimosa naguisei (Mimosaceae). Acta Bot 111:54–58

    Google Scholar 

  • Fernandes GW, Price PW (1988) Biogeographical gradients in galling species richness: tests of hypotheses. Oecol 76:161–167

    Article  Google Scholar 

  • Fernandes GW, Price PW (1991) Comparison of tropical and temperate galling species richness: the roles of environmental harshness and plant nutrient status. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant–animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 91–115

    Google Scholar 

  •  Fernandes GW, Price PW (1992) The adaptive significance of insect gall distribution: survivorship of species in xeric and mesic habitats. Oecologia 90:14–20

    Google Scholar 

  • Fernandes GW, Ribeiro SP (1990) Plant response to herbivory: two examples from the Neotropics. Ecotrópicos 3:77–86

    Google Scholar 

  • Fernandes GW, Santos JC (2014) Neotropical insect galls. Springer, New York

    Book  Google Scholar 

  • Fernandes GW, Carneiro MAA, Lara ACF, Allain LR, Andrade GI, Julião GR, Reis TR, Silva IM (1996) Galling insects on Neotropical species of Baccharis (Asteraceae). Trop Zool 9:315–332

    Article  Google Scholar 

  • Fernandes GW, Fagundes M, Woodman RL, Price PW (1999) Ant effects on three-trophic level interactions: plant, galls, and parasitoids. Ecol Entomol 34:411–415

    Article  Google Scholar 

  • Fernandes GW, Silva JO, Espírito-Santo MM, Fagundes M, Oki Y, Carneiro MAA (2014) Baccharis: a neotropical model system to study insect plant interactions. In: Fernandes GW, Santos JC (eds) Neotropical insect galls. Springer, Dordrecht, pp 193–219

    Google Scholar 

  • Fleck T, Fonseca CR (2007) Hipóteses sobre a riqueza de insetos galhadores: uma revisão considerando os níveis intra-específico, interespecífico e de comunidade. Neotrop Biol Cons 2:36–45

    Google Scholar 

  • Fraenkel GS (1959) The raison d’Être of secondary plant substances. Science 129:1466–1470

    Article  CAS  PubMed  Google Scholar 

  • Freitas JD, Rossi MN (2015) Interaction between trophobiont insects and ants: the effect of mutualism on the associated arthropod community. J Ins Cons (in press)

    Google Scholar 

  • Futuyma DJ, Keese MC, Funk DJ (1995) Genetic constraints on macroevolution: the evolution of host affiliation in the leaf beetle genus Ophraella. Evol 49:797–809

    Article  Google Scholar 

  • Gagné RJ (1994) The gall midges of the neotropical region. Cornell University Press, Ithaca

    Google Scholar 

  • Garlaschelli D, Caldarelli G, Pietronero L (2003) Universal scaling relations in food webs. Nature 423:165–168

    Article  CAS  PubMed  Google Scholar 

  • Givnish TJ (1998) Adaptative plant evolution on islands: classical patterns. In: Grant PR (ed) Evolution on islands. Oxford University Press, pp 281–304

    Google Scholar 

  • Gonçalves-Alvim SJ, Fernandes GW (2001) Biodiversity of galling insects: historical, community and habitat effects in four neotropical savannas. Biodiv Cons 10:79–98

    Article  Google Scholar 

  • Guerra TJ (2010) História natural da erva-de-passarinho Psittacanthus robustus (Loranthaceae) em uma área de campo rupestre do sudeste brasileiro: interações com hospedeiras, dispersores, polinizadores e insetos herbívoros. Universidade Estadual de Campinas, Thesis

    Google Scholar 

  • Guerra TJ, Pizo MA (2014) Asymmetrical dependence between a Neotropical mistletoe and its avian seed disperser. Biotropica 46:285–293

    Article  Google Scholar 

  • Guerra T, Camarota F, Castro FS, Schwertner CF, Grazia J (2011) Trophobiosis between ants and Eurystethus microlobatus Ruckes 1966 (Hemiptera: Heteroptera: Pentatomidae) a cryptic, gregarious and subsocial stinkbug. J Nat Hist 45:1101–1117

    Article  Google Scholar 

  • Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition. Am Soc Nat 94:421–425

    Article  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Quart Rev Biol 67:283–335

    Article  Google Scholar 

  • Hunter MD, Price PW (1992) Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecol 73:724–732

    Google Scholar 

  • Jacobi CM, Mourão FA, Antonini Y, Fagundes R, Kumagai AF (2015) Interações ecológicas em ambientes de canga do quadrilátero ferrífero, Minas Gerais. In: Carmo FF, Kamino LHY (ed) Geossistemas ferruginosos do Brasil: áreas prioritárias para conservação da diversidade geológica e biológica, patrimônio cultural e serviços ambientais, Editora 3i, Belo Horizonte, p 411–428

    Google Scholar 

  • Jeffries MJ, Lawton JH (1984) Enemy free space and the structure of ecological communties. Biol J Linn Soc 23:269–286

    Article  Google Scholar 

  • Jermy T (1984) Evolution of insect-host plant relationships. Am Nat 124:609–630

    Article  Google Scholar 

  • Joy JB, Crespi BJ (2007) Adaptative radiation of gall-inducing insects within a single host-plant species. Evol 61:784–795

    Article  CAS  Google Scholar 

  • Julião GR, Venticinque EM, Fernandes GW, Price PW (2014) Unexpected high diversity of galling insects in the amazonian upper canopy: the savanna out there. PLoS ONE 9:e114986. doi:10.1371/journal.pone.0114986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuijt J (1969) The biology of parasitic flowering plants. Univ Calif Press, Berkeley

    Google Scholar 

  • Landau EC, Gonçalves-Alvim SJ, Fagundes M, Fernandes GW (1998) Riqueza e abundância de herbívoros em flores de Vellozia nivea (Velloziaceae). Acta Bot Bras 12:403–409

    Article  Google Scholar 

  • Lara ACF, Fernandes GW (1994) Distribuição de galhas de Neopelma baccharidis (Homoptera: Psyllidae) em Baccharis dracunculifolia (Asteraceae). Rev Bras Biol 54:661–668

    Google Scholar 

  • Lara ACF, Fernandes GW (1996) The highest diversity of galling insects: Serra do Cipó, Brazil. Biodiv Lett 3:111–114

    Article  Google Scholar 

  • Larson KC, Whitham TG (1997) Competition between gall aphids and natural plant sinks: plant architecture affects resistance to galling. Oecol 109:575–582

    Article  Google Scholar 

  • Lawton JH, Schroder D (1977) Effects of plant type, size of geographical range and taxonomic isolation on number of insects associated with British plants. Nature 265:137–140

    Article  Google Scholar 

  • Leite AC (2015) Impactos da erva-de-passarinho Psitacanthus robustus (Lorantaceae) na cadeia trófica em campos rupestres. Dissertation, Universidade Federal de Minas Gerais

    Google Scholar 

  • Lüttge U, Haridasan M, Fernandes GW, Mattos EA, Trimborn P, Franco AC, Caldas LS, Zielgler H (1998) Photosynthesis of mistletoes in relation to their host at various sites of tropical Brazil. Trees 12:167–174

    Article  Google Scholar 

  • Maia VC (2005) Catálogo dos Cecidomyiidae (Diptera) do estado do Rio de Janeiro. Biota Neotrop 5:1–26

    Article  Google Scholar 

  • Maia VC (2014) Insect galls of Itamonte (Minas Gerais, Brazil): characterization and occurrence. Biota Neotrop 14:1–17

    Article  Google Scholar 

  • Maia VC, Fernandes GW (2004) Insect galls from Serra de São José (Tiradentes, MG, Brazil). Rev Bras Entomol 6:423–445

    Google Scholar 

  • Mani M (1964) The ecology of plant galls. W. Junk, Netherlands, The Hague

    Book  Google Scholar 

  • Marini-Filho OJ, Fernandes GW (2012) Stem galls drain nutrients and decrease shoot performance in Diplusodon orbicularis (Lithraceae). Arthrop Plant Inter 6:121–128

    Article  Google Scholar 

  • Medel R (2000) Assessment of parasite-mediated selection in a host-parasite system in plants. Ecol 81:1554–1564

    Google Scholar 

  • Medianero E, Valderrama A, Barrios H (2003) Diversidad de insectos minadores de hojas y formadores de agallas en el dosel y sotobosque del bosque tropical. Acta Zool Mex 89:153–168

    Google Scholar 

  • Meinzer FC, Woodruff DR, Shaw DC (2004) Integrated responses of hydraulic architecture, water and carbon relations of western hemlock to dwarf mistletoe infection. Plant Cell Environ 27:937–946

    Article  Google Scholar 

  • Mendonça MS (2001) Galling insect diversity ´patterns: the resource synchronization hypothesis. Oikos 95:171–176

    Article  Google Scholar 

  • Mendonça MS (2007) Plant diversity and galling arthropod diversity searching for taxonomic patterns in an animal-plant interaction in the neotropics. Bol Soc Argent Bot 42:347–357

    Google Scholar 

  • Meserve PL, Kelt DA, Milstead WB, Gutiérrez JR (2003) Thirteen years of shifting top-down and bottom-up control. Bioscience 53:633–646

    Article  Google Scholar 

  • Metcalffe DB, Asner GP, Martin RE, Espejo JES, Huasco WH, Amézquita FFF, Carranza-Jimenez L, Cabrera DFG, Baca LD, Sinca F, Quispe LPH, Taype IA, Mora LE, Dávila AR, Solórzano MM, Vilaca BLP, Román JML, Bustios PCG, Revilla NS, Tupayachi R, Girardin CAJ, Doughty CE, Malhi Y (2013) Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests. Ecol Lett 17:324–332

    Article  Google Scholar 

  • Monteiro GF (2014) Padrão altitudinal de distribuição de insetos herbívoros associados ao arbusto Baccharis dracunculifolia (Asteraceae). Dissertation, Universidade Estadual de Montes Claros

    Google Scholar 

  • Monteiro RF, Martins RP, Yakamoto K (1992) Host specificity and seed dispersal of Psittacanthus robustus (Loranthaceae) in south-weast Brazil. J Trop Ecol 8:307–314

    Article  Google Scholar 

  • Moreira DL, Engelhardt RL, Reis AS, Sanches EM, Leitão SG, Leitão GG (2002) Substâncias fenólicas com atividade antioxidante de Pseudopiptadenia contorta (Leguminosae-Mimosoideae). Rev Bras Farmacogn 12:124–125

    Article  Google Scholar 

  • Mourão FA, Carmo FF, Ratton P, Jacobi CM (2006) Hospedeiras da hemiparasita Struthanthus flexicaulis (Mart.) Mart. (Loranthaceae) em campos rupestres ferruginosos do Quadrilátero Ferrífero. Minas Gerais. Lundiana 7:103–109

    Google Scholar 

  • Mourão FA, Jacobi CM, Figueira JEC, Batista EKL (2009) Effects of the parasitism of Struthanthus flexicaulis (Loranthaceae) on the fitness of Mimosa calodendron (Fabaceae), and endemic shrub from rupestrian fields over ironstone outcrops, Minas Gerais state, Brazil. Acta Bot Bras 23:820–825

    Article  Google Scholar 

  • Murdoch WW (1966) Community structure, population control, and competition—a critique. Am Nat 100:219–226

    Article  Google Scholar 

  • Negreiros D, Le Stradic S, Fernandes GW, Rennó HC (2014) CSR analysis of plant functional types in highly diverse tropical grasslands of harsh environments. Plant Ecol 215:379–388

    Article  Google Scholar 

  • Neves FS, Fagundes M, Sperber CF, Fernandes GW (2011) Tri-trophic level interactions affect host plant development and abundance of insect herbivores. Arthrop Plant Inter 5:351–357

    Article  Google Scholar 

  • Nishi AH, Vasconcellos-Neto J, Romero GQ (2013) The role of multiple partners in a digestive mutualism with a protocarnivorous plant. Ann Bot 111:143–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohshima I, Yoshizawa K (2006) Multiple host shifts between distantly related plants, Juglandaceae and Ericaceae, in the leaf-mining moth Acrocercops leucophaea complex (Lepidoptera: Gracillariidae). Mol Phylogenet Evol 38:231–240

    Article  CAS  PubMed  Google Scholar 

  • Oliveira RS, Galvão HC, De Campos MCR, Eller CB, Pearse SJ, Lambers H (2015) Mineral nutrition of campos rupestres plant species on contrasting nutrient-impoverished soil types. New Phytol 205:1183–1194

    Article  CAS  PubMed  Google Scholar 

  • Pennings S, Callaway R (2002) Parasitic plants: parallels and contrasts with herbivores. Oecol 131:479–489

    Article  Google Scholar 

  • Polis GA (1999) Why are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos 86:3–15

    Article  Google Scholar 

  • Poulin R (2007) Are there general laws in parasite ecology? Parasitol 134:763–776

    Article  CAS  Google Scholar 

  • Press MC, Phoenix GK (2005) Impacts of parasitic plants on natural communities. New Phytol 166:737–751

    Article  PubMed  Google Scholar 

  • Price PW (1980) Evolutionary biology of parasites. Princeton University Press, New Jersey

    Google Scholar 

  • Price PW, Fernandes GW, Lara ACF, Brawn J, Gerling D, BarriosH Wright M, Ribeiro SP, Rothcliff N (1998) Global patterns in local number of insect galling species. J Biogeogr 25:581–592

    Article  Google Scholar 

  • Reblin JS, Logan BA, Tissue DT (2006) Impact of eastern dwarf mistletoe (Arceuthobium pusillum) infection on the needles of red spruce (Picea rubens) and white spruce (Picea glauca): oxygen exchange, morphology and composition. Tree Physiol 26:1325–1332

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro SP (2003) Insect herbivores in the canopies of savannas and rainforests. In: Basset Y, Novotny V, Miller S, Kitching R (eds) Arthropods of tropical forests spatio-temporal dynamics and resource use in the canopy. Cambridge University Press, Cambridge, pp 348–359

    Google Scholar 

  • Ribeiro SP, Basset Y (2007) Gall-forming and free-feeding herbivory along vertical gradients in a lowland tropical rainforest: the importance of leaf sclerophylly. Ecography 30:663–672

    Article  Google Scholar 

  • Ribeiro SP, Borges PP (2010) Canopy habitat area effect on the arthropod species densities in the Azores: pondering the contribution of tourist species and other life histories. In: Serrano ARM, Borges PAV, Boieiro M, Oromí P (eds) Terrestrial arthropods of Macaronesia—biodiversity, ecology and evolution. Sociedade Portuguesa de Entomologia, Lisboa, pp 81–106

    Google Scholar 

  • Ribeiro SP, Carneiro MAA, Fernandes GW (1994a) Distribution of Brachypnoea (Chrysomelidae, Coleoptera) in an altitudinal gradient in a Brazilian savanna vegetation. Phytophaga 6:1–6

    Google Scholar 

  • Ribeiro SP, Pimenta HR, Fernandes GW (1994b) Herbivory by chewing and sucking insects on Tabebuia ochracea. Biotropica 26:302–307

    Article  Google Scholar 

  • Ribeiro SP, Carneiro MAA, Fernandes GW (1998) Richness and distribution of free-feeding insect herbivores in Serra do Cipó, on old quartzite Brazilian mountain. J Insect Conserv 2:1–12

    Article  Google Scholar 

  • Ribeiro SP, Borges PAV, Gaspar C, Melo C, Serrano ARM, Amaral J, Aguiar C, André G, Quartau JA (2005) Canopy insect herbivores in the Azorean Laurisilva forests: key host plant species in a highly generalist insect community. Ecography 28:315–330

    Article  Google Scholar 

  • Ribeiro SP, Basset Y, Kitching R (2014) Density of insect galls in the forest understorey and canopy: Neotropical, Gondwana or global patterns? In: Fernandes GW, Santos JC (eds) Neotropical insect galls. Springer, New York, pp 129–141

    Google Scholar 

  • Ribeiro-Mendes H, Marques ESA, Silva IM, Fernandes GW (2002) Influence of host-plant sex and habitat on survivorship of insect galls within the geographical range of the host-plant. Trop Zool 15:5–15

    Article  Google Scholar 

  • Rizzini CT (1997) Tratado de fitogeografia do Brasil: aspectos ecológicos, sociológicos e florísticos. Âmbito Cultural Edições LTDA, Rio de Janeiro

    Google Scholar 

  • Safford HD (1999) Brazilian páramos I. An introduction to the physical environment and vegetation of the campos de altitude. J Biogeogr 26:693–712

    Article  Google Scholar 

  • Schwartz G, Hanazaki N, Silva MB, Izzo TJ, Bejar MEP, Mesquita MR, Fernandes GW (2003) Evidence for a stress hypothesis: Hemiparasitism effect on the colonization of Achornea castaeneaefolia A. Juss. (Euphorbiaceae) by galling insects. Acta Amaz 33:275–280

    Article  Google Scholar 

  • Silveira FAO, Negreiros D, Barbosa NPU, Buisson E, Carmo FF, Carstensen DW, Conceição AA, Cornelissen TG, Echternacht L, Fernandes GW, Garcia, QS, Guerra, TJ, Jacobi CM, Lemos-Filho JP, LeStradic S, Morellato LPC, Neves FS, Oliveira RS, Schaefer CE, Viana PL, Lambers H (2016) Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant soil (in press). doi 10.1007/s11104-015-2637-8

  • Smith AP, Young TP (1987) Tropical alpine plant ecology. Annu Rev Ecol Syst 18:137–158

    Article  Google Scholar 

  • Southwood TRE (1961) The number of species of insect associated with various trees. J Anim Ecol 30:1–8

    Article  Google Scholar 

  • Sperber CF, Collevatti RG (1996) The gall maker Baccharopelma dracunculifoliae Burck. (Homoptera: Psyllidae) on Baccharis dracunculifolia (Asteraceae): success and parasitoidism density dependence. An Soc Entomol Bras 25:59–63

    Google Scholar 

  • Strong DR, Lawton JH, Southwoon R (1984) Insects on plants. Blackwell Scientific Publications, Oxford, Community patterns and mechanisms

    Google Scholar 

  • Sutherland WJ, Freckleton RP, Godfray HCJ, Beissinger SR, Benton T, Cameron DD, Carmel Y, Coomes DA, Coulson T, Emmerson MC, Hails RS, Hays GC, Hodgson DJ, Hutchings MJ, Johnson D, Jones JPG, Keeling MJ, Kokko H, Kunin WE, Lambin X, Lewis OT, Malhi Y, Mieszkowska N, Milner-Gulland EJ, Norris K, Phillimore AB, Purves DW, Reid JM, Reuman DC, Thompson K, Travis JMJ, Turnbull LA, Wardle DA, Wiegand T (2013) Identification of 100 fundamental ecological questions. J Ecol 101:58–67

    Article  Google Scholar 

  • Tavares MT, Perioto NW (1993) Psyllaephagus baccharidis, sp. n., (Hymenoptera, Encyrtidae), a nymphal parasitoid of Neopelma baccharidis Burckhardt (Homoptera, Psyllidae). Rev Bras Entomol 37:317–320

    Google Scholar 

  • Telhado C, Esteves D, Cornelissen T, Fernandes GW, Carneiro MA (2010) Insect herbivores of Coccoloba cereifera do not select asymmetric plants. Environ Entomol 39:849–855

    Article  PubMed  Google Scholar 

  • Telhado C, Silveira FAO, Fernandes GW, Cornelissen T (2015) Fluctuating asymmetry in leaves and flowers of sympatric species in a harsh environment. Plant Species Biol (in review)

    Google Scholar 

  • Tennakoon KU, Pate JS (1996) Heterotrophic gain of carbon from hosts by the xylem tapping root hemiparasite Olax phyllanthi (Olacaceae). Oecol 105:369–376

    Article  Google Scholar 

  • Urso-Guimarães MV, Scareli-Santos C, Bonifácio-Silva AC (2003) Occurrence and characterization of entomogen galls in plants from natural vegetation areas in Delfinópolis, MG, Brazil. Braz J Biol 63:705–715

    Article  PubMed  Google Scholar 

  • Weis AE, Walton R, Grego CL (1988) Reactive plant tissue sites and the population biology of gall makers. Annu Rev Entom 33:467–486

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CNPq and FAPEMIG and PELD/CRSC, ComCerrado for several grants that have funded studies over the past years, especially at Serra do Cipó and to the Reserva Vellozia for the logistical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederico S. Neves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Neves, F.S. et al. (2016). Antagonistic Interactions in the Rupestrian Grasslands: New Insights and Perspectives. In: Fernandes, G. (eds) Ecology and Conservation of Mountaintop grasslands in Brazil. Springer, Cham. https://doi.org/10.1007/978-3-319-29808-5_14

Download citation

Publish with us

Policies and ethics