Skip to main content

Introduction to Nanoporous Metals

  • Chapter
  • First Online:
Nanoporous Metals for Advanced Energy Technologies

Abstract

In this chapter, we briefly give an introduction to nanoporous metals (NPMs). First, we show “what are NPMs.” The definition of NPMs is given, considering the characteristic length scale and porous structure. NPMs are such a kind of metallic materials with interconnected backbones (ligaments) and pores (channels) on the nanoscale. Here, the term “nanoporous” is different from “mesoporous,” which is defined by the International Union of Pure and Applied Chemistry (IUPAC). Moreover, the length scale of nanopores (several to hundreds of nanometers) in NPMs is several orders of magnitude smaller than that (above tens of microns) of pores in normal metal foams. The pore distribution in NPMs could be ordered, or random, or the combination of the former two. Many methods could be used to fabricate NPMs, and dealloying is the most important one. Second, the microstructural characteristics of NPMs are outlined. Besides the prototype nanoporous gold (NPG), many pure elements (transition metals, elements from IIIA-VA groups, and even semiconductor elements) and alloys could be fabricated into a nanoporous structure. Both bulk (up to centimeters) and nanosized (zero-dimensional (0D), 1D, and 2D) NPMs have been reported. Metallic ligaments and nanopore channels in dealloying-driven NPMs are topologically and morphologically equivalent, i.e., they are inverses of each other in three-dimensional space. The microstructure of NPMs may be homogeneous, and NPMs with multiscale or multilevel porous structures can also be prepared. In addition, the crystalline orientation and lattice defects of NPMs depend upon the microstructure of the precursor alloys and the dealloying process. Third, the properties of NPMs are summarized. Due to their unique microstructures, nanoporous metallic materials combine the properties of both metals and nanostructured materials. Thus NPMs show the structure-related electrical, magnetic, mechanical, optical, catalytic, and electrocatalytic properties. Moreover, the microstructures and the related properties of NPMs could be facilely designed and modulated. Last, we discuss the potential applications of NPMs. Owing to their unique microstructures and related properties, NPMs show promising applications in sensors, actuators, fuel cells, lithium-ion batteries (LIBs), supercapacitors, metal–air batteries, water splitting, synthesis of chemicals, hydrogen storage, automobile exhaust treatment, drug loading and release, bonding materials, and so forth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ding Y, Chen M (2009) Nanoporous metals for catalytic and optical applications. MRS Bull 34(08):569–576

    Article  Google Scholar 

  2. Tappan BC, Steiner SA, Luther EP (2010) Nanoporous metal foams. Angew Chem Int Ed 49(27):4544–4565

    Article  Google Scholar 

  3. Kelly R, Frost A, Shahrabi T, Newman R (1991) Brittle fracture of an Au/Ag alloy induced by a surface film. Metall Trans A 22(2):531–541

    Article  Google Scholar 

  4. Forty A (1979) Corrosion micromorphology of noble metal alloys and depletion gilding. Nature 282:597–598

    Article  Google Scholar 

  5. Keir D, Pryor M (1980) The dealloying of copper-manganese alloys. J Electrochem Soc 127(10):2138–2144

    Article  Google Scholar 

  6. Cassagne T, Flanagan W, Lichter B (1986) On the failure mechanism of chemically embrittled Cu3Au single crystals. Metall Trans A 17(4):703–710

    Article  Google Scholar 

  7. Erlebacher J, Seshadri R (2009) Hard materials with tunable porosity. MRS Bull 34(08):561–568

    Article  Google Scholar 

  8. Hyeji P, Changui A, Hyungyung J, Myounggeun C, Dong Seok K, Do Kyung K et al (2014) Large-area metal foams with highly ordered sub-micrometer-scale pores for potential applications in energy areas. Mater Lett 129:174–177

    Article  Google Scholar 

  9. Chae WS, Gough DV, Ham SK, Robinson DB, Braun PV (2012) Effect of ordered intermediate porosity on ion transport in hierarchically nanoporous electrodes. ACS Appl Mater Interfaces 4(8):3973–3979

    Article  Google Scholar 

  10. Erlebacher J, Aziz MJ, Karma A, Dimitrov N, Sieradzki K (2001) Evolution of nanoporosity in dealloying. Nature 410(6827):450–453

    Article  Google Scholar 

  11. Nishio K, Masuda H (2011) Anodization of gold in oxalate solution to form a nanoporous black film. Angew Chem Int Ed 50(7):1603–1607

    Article  Google Scholar 

  12. Näth O, Stephen A, Rösler J, Vollertsen F (2009) Structuring of nanoporous nickel-based superalloy membranes via laser etching. J Mater Process Technol 209(10):4739–4743

    Article  Google Scholar 

  13. Leventis N, Chandrasekaran N, Sadekar AG, Sotiriou-Leventis C, Lu H (2009) One-pot synthesis of interpenetrating inorganic/organic networks of CuO/resorcinol-formaldehyde aerogels: nanostructured energetic materials. J Am Chem Soc 131(13):4576–4577

    Article  Google Scholar 

  14. Avisar-Levy M, Levy O, Ascarelli O, Popov I, Bino A (2015) Fractal structures of highly-porous metals and alloys at the nanoscale. J Alloys Compd 635:48–54

    Article  Google Scholar 

  15. Zhang X, Guan P, Malic L, Trudeau M, Rosei F, Veres T (2015) Nanoporous twinned PtPd with highly catalytic activity and stability. J Mater Chem A 3(5):2050–2056

    Article  Google Scholar 

  16. Zhang Z, Wang Y, Qi Z, Zhang W, Qin J, Frenzel J (2009) Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying. J Phys Chem C 113(29):12629–12636

    Article  Google Scholar 

  17. Jia F, Yu C, Deng K, Zhang L (2007) Nanoporous metal (Cu, Ag, Au) films with high surface area: general fabrication and preliminary electrochemical performance. J Phys Chem C 111(24):8424–8431

    Article  Google Scholar 

  18. Dong C-S, Gu Y, Zhong M-l, Li L, Ma M-X, Liu W-J (2011) The effect of laser remelting in the formation of tunable nanoporous Mn structures on mild steel substrates. Appl Surf Sci 257(7):2467–2473

    Article  Google Scholar 

  19. Wada T, Setyawan AD, Yubuta K, Kato H (2011) Nano- to submicro-porous β-Ti alloy prepared from dealloying in a metallic melt. Scr Mater 65(6):532–535

    Article  Google Scholar 

  20. Hakamada M, Motomura J, Hirashima F, Mabuchi M (2012) Preparation of nanoporous ruthenium catalyst and its CO oxidation characteristics. Mater Trans 53(3):524–530

    Article  Google Scholar 

  21. Stepanovich A, Sliozberg K, Schuhmann W, Ludwig A (2012) Combinatorial development of nanoporous WO3 thin film photoelectrodes for solar water splitting by dealloying of binary alloys. Int J Hydrogen Energy 37(16):11618–11624

    Article  Google Scholar 

  22. Liu T, Zhu M, Shen H, Qin C, Cao Y (2013) The influences of dealloying temperature and time on the morphology, structure, and magnetic properties of porous Co nanoparticles. J Nanopart Res 15(3):1

    Google Scholar 

  23. Wada T, Kato H (2013) Three-dimensional open-cell macroporous iron, chromium and ferritic stainless steel. Scr Mater 68(9):723–726

    Article  Google Scholar 

  24. Joung Wook K, Wada T, Sung Gyoo K, Kato H (2014) Sub-micron porous niobium solid electrolytic capacitor prepared by dealloying in a metallic melt. Mater Lett 116:223–226

    Article  Google Scholar 

  25. Lei W, Balk TJ (2014) Using multilayer precursors to create nanoporous gold and nanoporous iridium thin films with layered architecture. Metall Mater Trans A 45(3):1096–1100

    Article  Google Scholar 

  26. Chen Q, Sieradzki K (2013) Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems. Nat Mater 12(12):1102–1106

    Article  Google Scholar 

  27. Zhang Z, Wang Y, Wang Y (2013) A general dealloying route to synthesize nanoporous non-noble metals. J Nanosci Nanotechnol 13(2):1503–1506

    Article  Google Scholar 

  28. Song T, Yan M, Qian M (2015) A dealloying approach to synthesizing micro-sized porous tin (Sn) from immiscible alloy systems for potential lithium-ion battery anode applications. J Porous Mater 22(3):713–719

    Article  Google Scholar 

  29. Wada T, Ichitsubo T, Yubuta K, Segawa H, Yoshida H, Kato H (2014) Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a top-down process. Nano Lett 14(8):4505–4510

    Article  Google Scholar 

  30. Liu S, Feng J, Bian X, Qian Y, Liu J, Xu H (2015) Nanoporous germanium as high-capacity lithium-ion battery anode. Nano Energy 13:651–657

    Article  Google Scholar 

  31. Yin H, Xiao W, Mao X, Zhu H, Wang D (2015) Preparation of a porous nanostructured germanium from GeO2 via a “reduction-alloying-dealloying” approach. J Mater Chem A 3(4):1427–1430

    Article  Google Scholar 

  32. Wang X, Frenzel J, Wang W, Ji H, Qi Z, Zhang Z et al (2011) Length-scale modulated and electrocatalytic activity enhanced nanoporous gold by doping. J Phys Chem C 115(11):4456–4465

    Article  Google Scholar 

  33. Zhang Z, Zhang C, Gao Y, Frenzel J, Sun J, Eggeler G (2012) Dealloying strategy to fabricate ultrafine nanoporous gold-based alloys with high structural stability and tunable magnetic properties. CrystEngComm 14(23):8292

    Article  Google Scholar 

  34. Xu C, Sun F, Gao H, Wang J (2013) Nanoporous platinum-cobalt alloy for electrochemical sensing for ethanol, hydrogen peroxide, and glucose. Anal Chim Acta 780:20–27

    Article  Google Scholar 

  35. Xu C, Wang J, Zhou J (2013) Nanoporous PtNi alloy as an electrochemical sensor for ethanol and H2O2. Sens Actuators B Chem 182:408–415

    Article  Google Scholar 

  36. Xu C, Zhang H, Hao Q, Duan H (2014) A hierarchical nanoporous PtCu alloy as an oxygen-reduction reaction electrocatalyst with high activity and durability. Chempluschem 79(1):107–113

    Article  Google Scholar 

  37. Qiu HJ, Shen X, Wang JQ, Hirata A, Fujita T, Wang Y et al (2015) Aligned nanoporous Pt-Cu bimetallic microwires with high catalytic activity toward methanol electrooxidation. ACS Catal 5(6):3779–3785

    Article  Google Scholar 

  38. Sun J, Shi J, Xu J, Chen X, Zhang Z, Peng Z (2015) Enhanced methanol electro-oxidation and oxygen reduction reaction performance of ultrafine nanoporous platinum-copper alloy: experiment and density functional theory calculation. J Power Sources 279:334–344

    Article  Google Scholar 

  39. Duan H, Hao Q, Xu C (2015) Hierarchical nanoporous PtTi alloy as highly active and durable electrocatalyst toward oxygen reduction reaction. J Power Sources 280:483–490

    Article  Google Scholar 

  40. Duan H, Xu C (2015) Nanoporous PtPd alloy electrocatalysts with high activity and stability toward oxygen reduction reaction. Electrochim Acta 152:417–424

    Article  Google Scholar 

  41. Xu C, Hou J, Pang X, Li X, Zhu M, Tang B (2012) Nanoporous PtCo and PtNi alloy ribbons for methanol electrooxidation. Int J Hydrogen Energy 37(14):10489–10498

    Article  Google Scholar 

  42. Xu C, Liu Y, Wang J, Geng H, Qiu H (2012) Nanoporous PdCu alloy for formic acid electro-oxidation. J Power Sources 199:124–131

    Article  Google Scholar 

  43. Zhang Z, Zhang C, Sun J, Kou T, Zhao C (2012) Ultrafine nanoporous Cu–Pd alloys with superior catalytic activities towards electro-oxidation of methanol and ethanol in alkaline media. RSC Adv 2(31):11820

    Article  Google Scholar 

  44. Xu C, Liu Y, Hao Q, Duan H (2013) Nanoporous PdNi alloys as highly active and methanol-tolerant electrocatalysts towards oxygen reduction reaction. J Mater Chem A 1(43):13542

    Article  Google Scholar 

  45. Xu C, Liu Y, Zhang H, Geng H (2013) A nanoporous PdCo alloy as a highly active electrocatalyst for the oxygen-reduction reaction and formic acid electrooxidation. Chem Asian J 8(11):2721–2728

    Article  Google Scholar 

  46. Zhao D, Wang Z, Wang J, Xu C (2014) The nanoporous PdCr alloy as a nonenzymatic electrochemical sensor for hydrogen peroxide and glucose. J Mater Chem B 2(32):5195–5201

    Google Scholar 

  47. Qi Z, Zhao C, Wang X, Lin J, Shao W, Zhang Z et al (2009) Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al–Cu alloys. J Phys Chem C 113(16):6694–6698

    Article  Google Scholar 

  48. Jin H-J, Wang X-L, Parida S, Wang K, Seo M, Weissmüller J (2009) Nanoporous Au–Pt alloys as large strain electrochemical actuators. Nano Lett 10(1):187–194

    Article  Google Scholar 

  49. Yan X, Xiong H, Bai Q, Frenzel J, Si C, Chen X, et al (2015) Atomic layer-by-layer construction of Pd on nanoporous gold via underpotential deposition and displacement reaction. RSC Adv 5(25):19409–19417

    Google Scholar 

  50. Huang JF, Sun IW (2005) Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au–Zn in an ionic liquid, and the self-assembly of L-Cysteine monolayers. Adv Funct Mater 15(6):989–994

    Article  MathSciNet  Google Scholar 

  51. Liu L, Pippel E, Scholz R, Gösele U (2009) Nanoporous Pt–Co alloy nanowires: fabrication, characterization, and electrocatalytic properties. Nano Lett 9(12):4352–4358

    Article  Google Scholar 

  52. Gu X, Xu L, Tian F, Ding Y (2009) Au-Ag alloy nanoporous nanotubes. Nano Res 2(5):386–393

    Article  Google Scholar 

  53. Wang D, Zhao P, Li Y (2011) General preparation for Pt-based alloy nanoporous nanoparticles as potential nanocatalysts. Sci Rep 1:37

    Google Scholar 

  54. Fujita T, Qian L-H, Inoke K, Erlebacher J, Chen M-W (2008) Three-dimensional morphology of nanoporous gold. Appl Phys Lett 92(25):251902

    Article  Google Scholar 

  55. Fujita T, Guan P, McKenna K, Lang X, Hirata A, Zhang L et al (2012) Atomic origins of the high catalytic activity of nanoporous gold. Nat Mater 11(9):775–780

    Article  Google Scholar 

  56. Yu J, Ding Y, Xu C, Inoue A, Sakurai T, Chen M (2008) Nanoporous metals by dealloying multicomponent metallic glasses. Chem Mater 20(14):4548–4550

    Article  Google Scholar 

  57. Zhang Z, Wang Y, Qi Z, Lin J, Bian X (2009) Nanoporous gold ribbons with bimodal channel size distributions by chemical dealloying of Al–Au alloys. J Phys Chem C 113(4):1308–1314

    Article  Google Scholar 

  58. Ding Y, Erlebacher J (2003) Nanoporous metals with controlled multimodal pore size distribution. J Am Chem Soc 125(26):7772–7773

    Article  Google Scholar 

  59. Qi Z, Weissmüller J (2013) Hierarchical nested-network nanostructure by dealloying. ACS Nano 7(7):5948–5954

    Article  Google Scholar 

  60. Qi Z, Vainio U, Kornowski A, Ritter M, Weller H, Jin H et al (2015) Porous gold with a nested-network architecture and ultrafine structure. Adv Funct Mater 25(17):2530–2536

    Article  Google Scholar 

  61. Lee MN, Santiago-Cordoba MA, Hamilton CE, Subbaiyan NK, Duque JG, Obrey KAD (2014) Developing monolithic nanoporous gold with hierarchical bicontinuity using colloidal bijels. J Phys Chem Lett 5(5):809–812

    Article  Google Scholar 

  62. Sattayasamitsathit S, Gu Y, Kaufmann K, Minteer S, Polsky R, Wang J (2013) Tunable hierarchical macro/mesoporous gold microwires fabricated by dual-templating and dealloying processes. Nanoscale 5(17):7849–7854

    Article  Google Scholar 

  63. Sattayasamitsathit S, O’Mahony AM, Xiao X, Brozik SM, Washburn CM, Wheeler DR et al (2012) Highly ordered tailored three-dimensional hierarchical nano/microporous gold–carbon architectures. J Mater Chem 22(24):11950

    Article  Google Scholar 

  64. Wang D, Ji R, Albrecht A, Schaaf P (2012) Ordered arrays of nanoporous gold nanoparticles. Beilstein J Nanotechnol 3:651–657

    Article  Google Scholar 

  65. Dong W, Ihlemann J, Schaaf P (2014) Complex patterned gold structures fabricated via laser annealing and dealloying. Appl Surf Sci 302:74–78

    Article  Google Scholar 

  66. Isasa M, Pérez N, Tavera T, Trueba M, Alkorta J, Gil Sevillano J (2013) Nanoporous gold periodical linear patterns obtained by laser interference thermal treatment. Thin Solid Films 548:69–74

    Article  Google Scholar 

  67. Zhang Z, Wang Y, Qi Z, Somsen C, Wang X, Zhao C (2009) Fabrication and characterization of nanoporous gold composites through chemical dealloying of two phase Al–Au alloys. J Mater Chem 19(33):6042

    Article  Google Scholar 

  68. Zhang Z, Wang Y, Wang X (2011) Nanoporous bimetallic Pt-Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid. Nanoscale 3(4):1663–1674

    Article  Google Scholar 

  69. Qi Z, Gong Y, Zhang C, Xu J, Wang X, Zhao C et al (2011) Fabrication and characterization of magnetic nanoporous Cu/(Fe, Cu)3O4 composites with excellent electrical conductivity by one-step dealloying. J Mater Chem 21(26):9716

    Article  Google Scholar 

  70. Zhang C, Wang X, Sun J, Kou T, Zhang Z (2013) Synthesis and antibacterial properties of magnetically recyclable nanoporous silver/Fe3O4 nanocomposites through one-step dealloying. CrystEngComm 15(19):3965

    Article  Google Scholar 

  71. Guo X, Ye W, Sun H, Zhang Q, Yang J (2013) A dealloying process of core-shell Au@AuAg nanorods for porous nanorods with enhanced catalytic activity. Nanoscale 5(24):12582–12588

    Article  Google Scholar 

  72. Lee C-L, Huang K-L, Tsai Y-L, Chao Y-J (2013) A comparison of alloyed and dealloyed silver/palladium/platinum nanoframes as electrocatalysts in oxygen reduction reaction. Electrochem Commun 34:282–285

    Article  Google Scholar 

  73. Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin HL et al (2014) Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343(6177):1339–1343

    Article  Google Scholar 

  74. Zhang L, Roling LT, Wang X, Vara M, Chi M, Liu J et al (2015) Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349(6246):412–416

    Article  Google Scholar 

  75. Schaefer S (2015) Double-walled Ag-Pt nanotubes fabricated by galvanic replacement and dealloying: effect of composition on the methanol oxidation activity. NANO 10(6):66–77

    Article  Google Scholar 

  76. Fujita T, Okada H, Koyama K, Watanabe K, Maekawa S, Chen M (2008) Unusually small electrical resistance of three-dimensional nanoporous gold in external magnetic fields. Phys Rev Lett 101(16):166601

    Article  Google Scholar 

  77. Xia R, Wang JL, Wang R, Li X, Zhang X, Feng X-Q et al (2010) Correlation of the thermal and electrical conductivities of nanoporous gold. Nanotechnology 21(8):085703

    Article  Google Scholar 

  78. Yang Q, Liang S, Han B, Wang J, Mao R (2012) Preparation and properties of enhanced bulk nanoporous coppers. Mater Lett 73:136–138

    Article  Google Scholar 

  79. Mishra A, Bansal C, Hahn H (2008) Surface charge induced variation in the electrical conductivity of nanoporous gold. J Appl Phys 103(9):094308

    Article  Google Scholar 

  80. Wahl P, Traußnig T, Landgraf S, Jin H-J, Weissmüller J, Würschum R (2010) Adsorption-driven tuning of the electrical resistance of nanoporous gold. J Appl Phys 108(7):073706

    Article  Google Scholar 

  81. Steyskal E-M, Besenhard M, Landgraf S, Zhong Y, Weissmüller J, Pölt P et al (2012) Sign-inversion of charging-induced variation of electrical resistance of nanoporous platinum. J Appl Phys 112(7):073703

    Article  Google Scholar 

  82. Sun L, Chien C-L, Searson PC (2004) Fabrication of nanoporous nickel by electrochemical dealloying. Chem Mater 16(16):3125–3129

    Article  Google Scholar 

  83. Hakamada M, Takahashi M, Furukawa T, Mabuchi M (2009) Coercivity of nanoporous Ni produced by dealloying. Appl Phys Lett 94(15):153105

    Article  Google Scholar 

  84. Hakamada M, Takahashi M, Furukawa T, Mabuchi M (2010) Surface effects on saturation magnetization in nanoporous Ni. Philos Mag 90(14):1915–1924

    Article  Google Scholar 

  85. Maaroof A, Cortie M, Smith G (2005) Optical properties of mesoporous gold films. J Opt A: Pure Appl Opt 7(7):303

    Article  Google Scholar 

  86. Maaroof A, Gentle A, Smith G, Cortie M (2007) Bulk and surface plasmons in highly nanoporous gold films. J Phys D Appl Phys 40(18):5675

    Article  Google Scholar 

  87. Yu F, Ahl S, Caminade A-M, Majoral J-P, Knoll W, Erlebacher J (2006) Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes. Anal Chem 78(20):7346–7350

    Article  Google Scholar 

  88. Ahl S, Cameron PJ, Liu J, Knoll W, Erlebacher J, Yu F (2008) A comparative plasmonic study of nanoporous and evaporated gold films. Plasmonics 3(1):13–20

    Article  Google Scholar 

  89. Schilling J, Sardana N, Heyroth F (2012) Propagating surface plasmons on nanoporous gold

    Google Scholar 

  90. Qian L, Shen W, Das B, Shen B, Qin GW (2009) Alumina coating of ultrafine nanoporous gold at room temperature and their optical properties. Chem Phys Lett 479(4):259–263

    Article  Google Scholar 

  91. Qian L, Shen W, Shen B, Qin GW, Das B (2010) Nanoporous gold–alumina core–shell films with tunable optical properties. Nanotechnology 21(30):305705

    Article  Google Scholar 

  92. Zeng J, Zhao F, Qi J, Li Y, Li C-H, Yao Y et al (2014) Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles. RSC Adv 4(69):36682–36688

    Article  Google Scholar 

  93. Lang X, Guan P, Zhang L, Fujita T, Chen M (2010) Size dependence of molecular fluorescence enhancement of nanoporous gold. Appl Phys Lett 96(7):073701

    Article  Google Scholar 

  94. Lang XY, Guan PF, Fujita T, Chen MW (2011) Tailored nanoporous gold for ultrahigh fluorescence enhancement. Phys Chem Chem Phys 13(9):3795–3799

    Article  Google Scholar 

  95. Kucheyev S, Hayes J, Biener J, Huser T, Talley C, Hamza A (2006) Surface-enhanced Raman scattering on nanoporous Au. Appl Phys Lett 89(5):053102

    Article  Google Scholar 

  96. Dixon MC, Daniel TA, Hieda M, Smilgies DM, Chan MH, Allara DL (2007) Preparation, structure, and optical properties of nanoporous gold thin films. Langmuir 23(5):2414–2422

    Article  Google Scholar 

  97. Qian L, Yan X, Fujita T, Inoue A, Chen M (2007) Surface enhanced Raman scattering of nanoporous gold: smaller pore sizes stronger enhancements. Appl Phys Lett 90(15):153120

    Article  Google Scholar 

  98. Qian L, Inoue A, Chen M (2008) Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold. Appl Phys Lett 92(9):093113

    Article  Google Scholar 

  99. Lang XY, Chen LY, Guan PF, Fujita T, Chen MW (2009) Geometric effect on surface enhanced Raman scattering of nanoporous gold: improving Raman scattering by tailoring ligament and nanopore ratios. Appl Phys Lett 94(21):213109

    Article  Google Scholar 

  100. Lang X, Guan P, Zhang L, Fujita T, Chen M (2009) Characteristic length and temperature dependence of surface enhanced Raman scattering of nanoporous gold. J Phys Chem C 113(25):10956–10961

    Article  Google Scholar 

  101. Zhang L, Chen L, Liu H, Hou Y, Hirata A, Fujita T et al (2011) Effect of residual silver on surface-enhanced raman scattering of dealloyed nanoporous gold. J Phys Chem C 115(40):19583–19587

    Article  Google Scholar 

  102. Chen L-Y, Yu J-S, Fujita T, Chen M-W (2009) Nanoporous copper with tunable nanoporosity for SERS applications. Adv Funct Mater 19(8):1221–1226

    Article  Google Scholar 

  103. Chen L, Zhang L, Fujita T, Chen M (2009) Surface-enhanced raman scattering of silver@ nanoporous copper core-shell composites synthesized by an in situ sacrificial template approach. J Phys Chem C 113(32):14195–14199

    Article  Google Scholar 

  104. Qian L, Das B, Li Y, Yang Z (2010) Giant Raman enhancement on nanoporous gold film by conjugating with nanoparticles for single-molecule detection. J Mater Chem 20(33):6891–6895

    Article  Google Scholar 

  105. Li R, Sieradzki K (1992) Ductile-brittle transition in random porous Au. Phys Rev Lett 68(8):1168

    Article  Google Scholar 

  106. Biener J, Hodge AM, Hamza AV (2005) Microscopic failure behavior of nanoporous gold. Appl Phys Lett 87(12):121908

    Article  Google Scholar 

  107. Biener J, Hodge AM, Hamza AV, Hsiung LM, Satcher JH Jr (2005) Nanoporous Au: a high yield strength material. J Appl Phys 97(2):024301

    Article  Google Scholar 

  108. Volkert C, Lilleodden E, Kramer D, Weissmüller J (2006) Approaching the theoretical strength in nanoporous Au. Appl Phys Lett 89(6):1920

    Article  Google Scholar 

  109. Hodge AM, Hayes JR, Caro JA, Biener J, Hamza AV (2006) Characterization and mechanical behavior of nanoporous gold. Adv Eng Mater 8(9):853

    Article  Google Scholar 

  110. Lee D, Wei X, Chen X, Zhao M, Jun SC, Hone J et al (2007) Microfabrication and mechanical properties of nanoporous gold at the nanoscale. Scr Mater 56(5):437–440

    Article  Google Scholar 

  111. Lee D, Wei X, Zhao M, Chen X, Jun SC, Hone J et al (2007) Plastic deformation in nanoscale gold single crystals and open-celled nanoporous gold. Modell Simul Mater Sci Eng 15(1):S181

    Article  Google Scholar 

  112. Biener J, Hodge AM, Hayes JR, Volkert CA, Zepeda-Ruiz LA, Hamza AV et al (2006) Size effects on the mechanical behavior of nanoporous Au. Nano Lett 6(10):2379–2382

    Article  Google Scholar 

  113. Mathur A, Erlebacher J (2007) Size dependence of effective Young’s modulus of nanoporous gold. Appl Phys Lett 90(6):1910

    Article  Google Scholar 

  114. Hodge AM, Biener J, Hayes JR, Bythrow PM, Volkert CA, Hamza AV (2007) Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater 55(4):1343–1349

    Article  Google Scholar 

  115. Hodge A, Doucette R, Biener M, Biener J, Cervantes O, Hamza A (2009) Ag effects on the elastic modulus values of nanoporous Au foams. J Mater Res 24(04):1600–1606

    Article  Google Scholar 

  116. Seker E, Gaskins JT, Bart-Smith H, Zhu J, Reed ML, Zangari G et al (2007) The effects of post-fabrication annealing on the mechanical properties of freestanding nanoporous gold structures. Acta Mater 55(14):4593–4602

    Article  Google Scholar 

  117. Seker E, Gaskins JT, Bart-Smith H, Zhu J, Reed ML, Zangari G et al (2008) The effects of annealing prior to dealloying on the mechanical properties of nanoporous gold microbeams. Acta Mater 56(3):324–332

    Article  Google Scholar 

  118. Jin H-J, Kurmanaeva L, Schmauch J, Rösner H, Ivanisenko Y, Weissmüller J (2009) Deforming nanoporous metal: role of lattice coherency. Acta Mater 57(9):2665–2672

    Article  Google Scholar 

  119. Jin H-J, Weissmüller J (2011) A material with electrically tunable strength and flow stress. Science 332(6034):1179–1182

    Article  Google Scholar 

  120. Liu R, Antoniou A (2013) A relationship between the geometrical structure of a nanoporous metal foam and its modulus. Acta Mater 61(7):2390–2402

    Article  Google Scholar 

  121. Wang K, Kobler A, Kuebel C, Jelitto H, Schneider G, Weissmueller J (2015) Nanoporous-gold-based composites: toward tensile ductility. NPG Asia Mater 7(6):e187

    Article  Google Scholar 

  122. Volkmar Z, Birte J, Christian S, Juergen B, Biener MM, Hamza AV et al (2006) Gold catalysts: nanoporous gold foams. Angew Chem Int Ed 45(48):8241–8244

    Article  Google Scholar 

  123. Xu C, Su J, Xu X, Liu P, Zhao H, Tian F et al (2007) Low temperature CO oxidation over unsupported nanoporous gold. J Am Chem Soc 129(1):42–43

    Article  Google Scholar 

  124. Wittstock A, Zielasek V, Biener J, Friend CM, Baumer M (2010) Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327(5963):319–322

    Article  Google Scholar 

  125. Han D, Xu T, Su J, Xu X, Ding Y (2010) Gas-phase selective oxidation of benzyl alcohol to benzaldehyde with molecular oxygen over unsupported nanoporous gold. ChemCatChem 2(4):383–386

    Article  Google Scholar 

  126. Haruta M (2007) New generation of gold catalysts: nanoporous foams and tubes—is unsupported gold catalytically active? ChemPhysChem 8(13):1911–1913

    Article  Google Scholar 

  127. Moskaleva LV, Röhe S, Wittstock A, Zielasek V, Klüner T, Neyman KM et al (2011) Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold. Phys Chem Chem Phys 13(10):4529–4539

    Article  Google Scholar 

  128. Liu XY, Wang A, Zhang T, Mou C-Y (2013) Catalysis by gold: new insights into the support effect. Nano Today 8(4):403–416

    Article  Google Scholar 

  129. Asao N, Ishikawa Y, Hatakeyama N, Yamamoto Y, Chen M, Zhang W et al (2010) Nanostructured materials as catalysts: nanoporous-gold-catalyzed oxidation of organosilanes with water. Angew Chem Int Ed 49(52):10093–10095

    Article  Google Scholar 

  130. Zhang J, Liu P, Ma H, Ding Y (2007) Nanostructured porous gold for methanol electro-oxidation. J Phys Chem C 111(28):10382–10388

    Article  Google Scholar 

  131. Yu C, Jia F, Ai Z, Zhang L (2007) Direct oxidation of methanol on self-supported nanoporous gold film electrodes with high catalytic activity and stability. Chem Mater 19(25):6065–6067

    Article  Google Scholar 

  132. Ge X, Wang R, Liu P, Ding Y (2007) Platinum-decorated nanoporous gold leaf for methanol electrooxidation. Chem Mater 19(24):5827–5829

    Article  Google Scholar 

  133. Wang R, Wang C, Cai WB, Ding Y (2010) Ultralow-platinum-loading high-performance nanoporous electrocatalysts with nanoengineered surface structures. Adv Mater 22(16):1845–1848

    Article  Google Scholar 

  134. Shao M, Shoemaker K, Peles A, Kaneko K, Protsailo L (2010) Pt monolayer on porous Pd–Cu alloys as oxygen reduction electrocatalysts. J Am Chem Soc 132(27):9253–9255

    Article  Google Scholar 

  135. Liu L, Scholz R, Pippel E, Gösele U (2010) Microstructure, electrocatalytic and sensing properties of nanoporous Pt46Ni54 alloy nanowires fabricated by mild dealloying. J Mater Chem 20(27):5621

    Article  Google Scholar 

  136. Snyder J, Fujita T, Chen M, Erlebacher J (2010) Oxygen reduction in nanoporous metal–ionic liquid composite electrocatalysts. Nat Mater 9(11):904–907

    Article  Google Scholar 

  137. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4270

    Article  Google Scholar 

  138. Peng Z, Freunberger SA, Chen Y, Bruce PG (2012) A reversible and higher-rate Li-O2 battery. Science 337(6094):563–566

    Article  Google Scholar 

  139. Lang X, Hirata A, Fujita T, Chen M (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6(4):232–236

    Article  Google Scholar 

  140. Liu Z, Searson PC (2006) Single nanoporous gold nanowire sensors. J Phys Chem B 110(9):4318–4322

    Article  Google Scholar 

  141. Liu Z, Du J, Qiu C, Huang L, Ma H, Shen D et al (2009) Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochem Commun 11(7):1365–1368

    Article  Google Scholar 

  142. Feng R, Zhang Y, Yu H, Wu D, Ma H, Zhu B et al (2013) Nanoporous PtCo-based ultrasensitive enzyme-free immunosensor for zeranol detection. Biosens Bioelectron 42:367–372

    Article  Google Scholar 

  143. Weissmüller J, Viswanath R, Kramer D, Zimmer P, Würschum R, Gleiter H (2003) Charge-induced reversible strain in a metal. Science 300(5617):312–315

    Article  Google Scholar 

  144. Kramer D, Viswanath RN, Weissmüller J (2004) Surface-stress induced macroscopic bending of nanoporous gold cantilevers. Nano Lett 4(5):793–796

    Article  Google Scholar 

  145. Viswanath R, Kramer D, Weissmüller J (2008) Adsorbate effects on the surface stress–charge response of platinum electrodes. Electrochim Acta 53(6):2757–2767

    Article  Google Scholar 

  146. Detsi E, Onck P, De Hosson JTM (2013) Metallic muscles at work: high rate actuation in nanoporous gold/polyaniline composites. ACS Nano 7(5):4299–4306

    Article  Google Scholar 

  147. Viswanath R, Weissmüller J (2013) Electrocapillary coupling coefficients for hydrogen electrosorption on palladium. Acta Mater 61(16):6301–6309

    Article  Google Scholar 

  148. Detsi E, Sellès MS, Onck PR, De Hosson JTM (2013) Nanoporous silver as electrochemical actuator. Scr Mater 69(2):195–198

    Article  Google Scholar 

  149. Biener J, Wittstock A, Zepeda-Ruiz L, Biener M, Zielasek V, Kramer D et al (2009) Surface-chemistry-driven actuation in nanoporous gold. Nat Mater 8(1):47–51

    Article  Google Scholar 

  150. Bai Q, Wang Y, Zhang J, Ding Y, Peng Z, Zhang Z (2016) Hierarchically nanoporous nickel-based actuators with giant reversible strain and ultrahigh work density. J Mater Chem C 4:45–52

    Google Scholar 

  151. Cai J, Xu J, Wang J, Zhang L, Zhou H, Zhong Y et al (2013) Fabrication of three-dimensional nanoporous nickel films with tunable nanoporosity and their excellent electrocatalytic activities for hydrogen evolution reaction. Int J Hydrogen Energy 38(2):934–941

    Article  Google Scholar 

  152. Liu T, Xie L, Li Y, Li X, Pang S, Zhang T (2013) Hydrogen/deuterium storage properties of Pd nanoparticles. J Power Sources 237:74–79

    Article  Google Scholar 

  153. Mimatsu H, Mizuno J, Kasahara T, Saito M, Nishikawa H, Shoji S (2013) Low-temperature Au–Au bonding using nanoporous Au–Ag sheets. Japan J Appl Phys 52(5R):050204

    Article  Google Scholar 

  154. Garcia-Gradilla V, Sattayasamitsathit S, Soto F, Kuralay F, Yardimci C, Wiitala D et al (2014) Ultrasound-propelled nanoporous gold wire for efficient drug loading and release. Small 10(20):4154–4159

    Google Scholar 

  155. Chapman CAR, Chen H, Stamou M, Biener J, Biener MM, Lein PJ et al (2015) Nanoporous gold as a neural interface coating: effects of topography, surface chemistry, and feature size. ACS Appl Mater Interfaces 7(13):7093–7100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ding .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ding, Y., Zhang, Z. (2016). Introduction to Nanoporous Metals. In: Nanoporous Metals for Advanced Energy Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-29749-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29749-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29747-7

  • Online ISBN: 978-3-319-29749-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics