Skip to main content
Log in

On the failure mechanism of chemically embrittled Cu3Au single crystals

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

In order to distinguish between “true” transgranular stress-corrosion cracking (T-SCC) and the “chemical embrittlement” previously described for Cu3Au single crystals (Bakish,AIME Trans., 1957), copper-25 atomic percent gold single crystals were subject to constant deflection (a) while immersed in aqueous ferric chloride or (b) in air after undergoing stress-free corrosion for 10 and 30 days in aqueous ferric chloride. In the conventional stress-corrosion testing mode carried out at the corrosion potential and at applied anodic and cathodic overpotentials, SEM observation and microprobe analysis revealed that characteristic T-SCC fracture surfaces were produced without the occurrence of massive dealloying, at least over a 0.1 micrometer depth. For bending tests in air following stress-free corrosion at the corrosion potential, a 30-day sample was completely converted into a brittle, virtually pure gold “sponge” while retaining the external shape and orientation of the original alloy single crystal. The fracture surface of this sample revealed relatively flat facets separated by irregularly serrated steps, as are seen in conventional cleavage. However, the surface is porous with a mean pore size of ∼0.1 micrometer. For the 10-day sample, bending produced multiple cracks in a massively dealloyed layer (gold-rich sponge). Several of these cracks propagated into the unattacked, normally ductile alloy for distances up to ∼20 micrometers. Interpretation of these results leads to an alternative explanation for the “chemical embrittlement” previously observed and offers significant new insights on the mechanisms of T-SCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bakish:Trans. AIME, 1957, vol. 209, pp. 494–95.

    Google Scholar 

  2. K. Sieradzki and R.C. Newman:Philos. Mag., 1985, vol. 51, pp. 95–132.

    CAS  Google Scholar 

  3. B.D. Lichter, T.B. Cassagne, W. F. Flanagan, and E.N. Pugh:Microstructural Science, 1985, vol. 13, pp. 361–78.

    Google Scholar 

  4. C. Edeleanu:Physical Metallurgy of Stress Corrosion Fracture, Inter- science, New York, NY, 1959, pp. 79–98; C. Edeleanu and A. J. Forty:Philos. Mag., I960, vol. 5, pp. 1029-40.

    Google Scholar 

  5. A. J. Bursle and E. N. Pugh:Environment-Sensitive Fracture of Engi- neering Materials, TMS-AIME, Warrendale, PA, 1979, pp. 18–47.

    Google Scholar 

  6. J. A. Beavers and E. N. Pugh:Metall. Trans. A, 1980, vol. 11A, pp. 809–19.

    CAS  Google Scholar 

  7. E. N. Pugh:Atomistics of Fracture, NATO Conference Series VI, Plenum Press, New York, NY, 1983, vol. 5, pp. 997–1010.

    Google Scholar 

  8. J. L. Nelson: Ph.D. Thesis, University of Illinois at Champaign-Urbana, IL, 1976.

    Google Scholar 

  9. R. Liu, N. Narita, C. Altstetter, H. Birnbaum, and E. N. Pugh:Metall. Trans. A, 1980, vol. 11A, pp. 1563–73.

    CAS  Google Scholar 

  10. E.I. Meletis and R. F. Hochman:Corros. Sci., 1984, vol. 24, pp. 843–62.

    Article  CAS  Google Scholar 

  11. S.P. Lynch:Scripta Metall., 1984, vol. 18, pp. 321–26.

    Article  CAS  Google Scholar 

  12. T. B. Cassagne: M.S. Thesis, Vanderbilt University, Nashville, TN, 1985.

    Google Scholar 

  13. T. B. Cassagne, W. F. Flanagan, and B. D. Lichter: Vanderbilt University, Nashville, TN, unpublished research, 1985.

  14. E. Kuramoto and D. P. Pope:Philos. Mag., 1976, vol. 33, pp. 675–83.

    CAS  Google Scholar 

  15. R. Bakish and W. D. Robertson:Acta Metall., 1956, vol. 4, pp. 342–51.

    Article  CAS  Google Scholar 

  16. H.W. Pickering and P. R. Swann:Corrosion, 1963, vol. 19, pp. 373t-89t.

    CAS  Google Scholar 

  17. K. Hashimoto, T. Goto, W. Suetaka, and S. Shimodaira:Trans. JIM, 1965, vol. 6, pp. 107–13.

    CAS  Google Scholar 

  18. W. D. Robertson and A. S. Tetelman:Strengthening Mechanisms in Solids, American Society for Metals, Metals Park, OH, 1962, pp. 217–52.

    Google Scholar 

  19. H.W. Pickering:Corrosion, 1969, vol. 25, pp. 289–90.

    CAS  Google Scholar 

  20. A. Paskin, K. Sieradzki, D. K. Som, and G. J. Dienes:Acta Metall., 1982, vol. 30, pp. 1781–88 ; ibid., 1983, vol. 31, pp. 1253-65.

    Article  CAS  Google Scholar 

  21. A. J. Forty:Physical Metallurgy of Stress Corrosion Fracture, Inter- science, New York, NY, 1959, pp. 99–120.

    Google Scholar 

  22. J. M. Davidson, C. M. Austin, and M. L. Robinson:Metall. Trans. A, 1983, vol. 14A, pp. 1516–18.

    CAS  Google Scholar 

  23. K. Sieradzki:Acta Metall., 1982, vol. 30, pp. 973–82.

    Article  CAS  Google Scholar 

  24. C.J. McMahon and M. Cohen:Acta Metall., 1965, vol. 13, pp. 591–604.

    Article  CAS  Google Scholar 

  25. J. R. Rice and R. Thomson:Philos. Mag., 1974, vol. 29, pp. 73–97.

    CAS  Google Scholar 

  26. Rui-Huan Zhao and J. C. M. Li: “Dynamic Emission of Dislocations from a Moving Crack,”J. of Engineering Materials and Technology, 1985, vol. 107, pp. 277–81.

    Article  Google Scholar 

  27. J. S. Kim: Ph.D. Thesis, Vanderbilt University, Nashville, TN, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the Department of Mechanical and Materials Engineering, Vanderbilt University, Nashville, TN

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassagne, T.B., Flanagan, W.F. & Lichter, B.D. On the failure mechanism of chemically embrittled Cu3Au single crystals. Metall Trans A 17, 703–710 (1986). https://doi.org/10.1007/BF02643991

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643991

Keywords

Navigation