Skip to main content

Macromolecular Imprinting for Improved Health Security

  • Chapter
  • First Online:
Biosensors for Security and Bioterrorism Applications

Abstract

There is a growing demand for rapid and reliable methods of determination of microorganism contamination of waters and food products to ensure quality assurance and to improve the health care system in general. Majority of the available methods for determination of microorganisms in foods are time consuming and expensive. In recent years, different approaches have been attempted to develop alternative procedures for determination of microorganisms. In the present chapter, we summarize the recent achievements in the development of synthetic recognition systems based devices for monitoring the presence of microorganisms, such as bacteria, bacteriophages, and viruses, in waters and food products. Molecular imprinting has been most successful in devising relevant synthetic receptors. Application of these recognition systems for determination of microorganisms is herein described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASPV:

Apple stem pitting virus

CV:

Cyclic voltammetry

cfu:

Colony forming unit

DMSO:

Dimethylsulfoxide

DLS:

Dynamic light scattering

DNA:

Deoxyribonucleic acid

µIDC:

Micro interdigited capacitor

EIS:

Electrochemical impedance spectroscopy

ELISA:

Enzyme-linked immunosorbent assay

FESEM:

Field emission scanning electron microscopy

LOD:

Limit of detection

LOQ:

Limit of quantitation

MIP:

Molecularly imprinted polymer

MIPPy:

Molecularly imprinted polypyrrole

OPPy:

Overoxidized polypyrrole

PM:

Piezoelectric microgravimetry

PMA:

Poly(methacrylic acid)

PPy:

Polypyrrole

PSS:

Poly(styrene sulfonate)

PVC:

Poly(vinyl chloride)

PVP:

Polyvinylpirrolidone

SG:

Sol-gel

SEM:

Scanning electron microscopy

SiNP:

Silica nanoparticle

SPR:

Surface plasmon resonance

SRB:

Sulfate-reducing bacteria

TMV:

Tobacco mosaic virus

TYMV:

Turnip yellow mosaic virus

VLP:

Virus like particle

References

  1. Lopez-Roldan R, Tusell P, Courtois S, Cortina JL (2013) On-line bacteriological detection in water. TrAC Trends Anal Chem 44:46–57

    Article  Google Scholar 

  2. Krejcova L, Hynek D, Adam V, Hubalek J, Kizek R (2012) Electrochemical sensors and biosensors for influenza detection. Int J Electrochem Sci 7:10779–10801

    Google Scholar 

  3. Huang W, Diallo AK, Dailey JL, Besar K, Katz HE (2015) Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules. J Mater Chem C 3:6445–6470

    Google Scholar 

  4. Farka Z, Kovář D, Skládal P (2015) Rapid detection of microorganisms based on active and passive modes of QCM. Sensors 15:79–92

    Article  Google Scholar 

  5. Szalontai H, Adanyi N, Kiss A (2014) Comparative determination of two probiotics by QCM and OWLS-based immunosensors. New Biotechnol 31:395–401

    Article  Google Scholar 

  6. Brogioni B, Berti F (2014) Surface plasmon resonance for the characterization of bacterial polysaccharide antigens: a review. Med Chem Commun 5:1058–1066

    Article  Google Scholar 

  7. Dudak FC, Boyacı IH (2009) Rapid and label-free bacteria detection by surface plasmon resonance (SPR) biosensors. Biotechnol J 4:1003–1011

    Article  Google Scholar 

  8. Huynh T-P, Sharma PS, Sosnowska M, D’Souza F, Kutner W (2015) Functionalized polythiophenes: recognition materials forchemosensors and biosensors of superior sensitivity, selectivity, and detectability. Prog Polym Sci 47:1–25

    Article  Google Scholar 

  9. Sharma PS, Iskierko Z, Pietrzyk-Le A, D’Souza F, Kutner W (2015) Bioinspired intelligent molecularly imprinted polymers for chemosensing: a mini review. Electrochem Commun 50:81–87

    Article  Google Scholar 

  10. Sharma PS, Pietrzyk-Le A, D’Souza F, Kutner W (2012) Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Anal Bioanal Chem 402:3177–3204

    Article  Google Scholar 

  11. Schirhagl R (2014) Bioapplications for molecularly imprinted polymers. Anal Chem 86:250–261

    Article  Google Scholar 

  12. Huang D-L, Wang R-Z, Liu Y-G, Zeng G-M, Lai C, Xu P, Lu B-A, Xu J-J, Wang C, Huang C (2015) Application of molecularly imprinted polymers in wastewater treatment: a review. Environ Sci Pollut Res 22:963–977

    Article  Google Scholar 

  13. Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 19:106–180

    Article  Google Scholar 

  14. Zhang H (2014) Water-compatible molecularly imprinted polymers: promising synthetic substitutes for biological receptors. Polymer 55:699–714

    Article  Google Scholar 

  15. Whitcombe MJ, Kirsch N, Nicholls IA (2014) Molecular imprinting science and technology: a survey of the literature for the years 2004–2011. J Mol Recognit 27:297–401

    Article  Google Scholar 

  16. Wulff G (1995) Molecular imprinting in cross-linked materials with the aid of molecular templates—a way towards artificial antibodies. Angew Chem Int Ed 34:1812–1832

    Article  Google Scholar 

  17. Huynh T-P, Pietrzyk-Le A, KC CB, Noworyta KR, Sobczak JW, Sharma PS, D’Souza F, Kutner W (2013) Electrochemically synthesized molecularly imprinted polymer of thiophene derivatives for flow-injection analysis determination of adenosine-5′-triphosphate (ATP). Biosens Bioelectron 41:634–641

    Article  Google Scholar 

  18. Pietrzyk A, Kutner W, Chitta R, Zandler ME, D’Souza F, Sannicolo F, Mussini PR (2009) Melamine acoustic chemosensor based on molecularly imprinted polymer film. Anal Chem 81:10061–10070

    Article  Google Scholar 

  19. Sharma PS, Dabrowski M, Noworyta K, Huynh T-P, KC CB, Sobczak JW, Pieta P, D’Souza F, Kutner W (2014) Fullerene derived molecularly imprinted polymer for chemosensing of adenosine-50-triphosphate (ATP). Anal Chim Acta 844:61–69

    Article  Google Scholar 

  20. Tang Y-W, Fang G-Z, Wang S, Li J-L (2011) Covalent imprinted polymer for selective and rapid enrichment of ractopamine by a noncovalent approach. Anal Bioanal Chem 401:2275–2282

    Article  Google Scholar 

  21. Hashim SNNS, Boysen RI, Schwarz LJ, Danylec B, Hearn MTW (2014) A comparison of covalent and non-covalent imprinting strategies for the synthesis of stigmasterol imprinted polymers. J Chromatogr A 1359:35–43

    Article  Google Scholar 

  22. Qi P, Wang J, Wang L, Li Y, Jin J, Su F, Tian Y, Chen J (2010) Molecularly imprinted polymers synthesized via semi-covalent imprinting with sacrificial spacer for imprinting phenols. Polymer 51:5417–5423

    Article  Google Scholar 

  23. Cheong WJ, Yang SH, Ali F (2013) Molecular imprinted polymers for separation science: a review of reviews. J Sep Sci 36:609–628

    Article  Google Scholar 

  24. Dias ACB, Figueiredo EC, Grassi V, Zagatto EAG, Arruda MAZ (2008) Molecularly imprinted polymer as a solid phase extractor in flow analysis. Talanta 76:988–996

    Article  Google Scholar 

  25. Toth B, Horvai G (2012) Chromatography, solid-phase extraction, and capillary electrochromatography with MIPs. Top Curr Chem 325:267–306

    Article  Google Scholar 

  26. Huynh T-P, Pieta P, D’Souza F, Kutner W (2013) Molecularly imprinted polymer for recognition of 5-fluorouracil by RNA-type nucleobase pairing. Anal Chem 85:8304–8312

    Article  Google Scholar 

  27. Pietrzyk A, Suriyanarayanan S, Kutner W, Chitta R, Zandler ME, D’Souza F (2010) Molecularly imprinted polymer (MIP) based piezoelectric microgravimetry chemosensor for selective determination of adenine. Biosens Bioelectron 25:2522–2529

    Article  Google Scholar 

  28. Pietrzyk A, Suriyanarayanan S, Kutner W, Chitta R, D’Souza F (2009) Selective histamine piezoelectric chemosensor using a recognition film of the molecularly imprinted polymer of bis(bithiophene) derivatives. Anal Chem 81:2633–2643

    Article  Google Scholar 

  29. Pietrzyk A, Suriyanarayanan S, Kutner W, Maligaspe E, Zandler ME, D’Souza F (2010) Molecularly imprinted poly[bis(2,2′-bithienyl)methane] film with built-in molecular recognition sites for a piezoelectric microgravimetry chemosensor for selective determination of dopamine. Bioelectrochemistry 80:62–72

    Article  Google Scholar 

  30. Bolisay LD, Culver JN, Kofinas P (2007) Optimization of virus imprinting methods to improve selectivity and reduce nonspecific binding. Biomacromolecules 8:3893–3899

    Article  Google Scholar 

  31. Sankarakumar N, Tong YW (2013) Preventing viral infections with polymeric virus catchers: a novel nanotechnological approach to anti-viral therapy. J Mater Chem B 1:2031–2037

    Article  Google Scholar 

  32. Aherne A, Alexander C, Payne MJ, Perez N, Vulfson EN (1996) Bacteria-mediated lithography of polymer surfaces. J Am Chem Soc 118:8771–8772

    Article  Google Scholar 

  33. Alexander C, Vulfson EN (1997) Spatially functionalized polymer surfaces produced via cell-mediated lithography. Adv Mater 9:751–755

    Article  Google Scholar 

  34. Bolisay LD, Culver JN, Kofinas P (2006) Molecularly imprinted polymers for tobacco mosaic virus recognition. Biomaterials 27:4165–4168

    Article  Google Scholar 

  35. Bolisay LD, Kofinas P (2010) Imprinted polymer hydrogels for the separation of viruses. Macromol Symp 291–292:302–306

    Article  Google Scholar 

  36. Bacskay I, Takátsy A, Végvári Á, Elfwing A, Ballagi-Pordány A, Kilár F, Hjertén S (2006) Universal method for synthesis of artificial gel antibodies by the imprinting approach combined with a unique electrophoresis technique for detection of minute structural differences of proteins, viruses, and cells (bacteria). III: gel antibodies against cells (bacteria). Electrophoresis 27:4682–4687

    Article  Google Scholar 

  37. Wang R, Li Y (2013) Hydrogel based QCM aptasensor for detection of avianin fluenza virus. Biosens Bioelectron 42:148–155

    Article  Google Scholar 

  38. Bai W, Spivak DA (2014) A double-imprinted diffraction-grating sensor based on a virus-responsive super-aptamer hydrogel derived from an impure extract. Angew Chem Int Ed 53:2095–2098

    Article  Google Scholar 

  39. Cohen T, Starosvetsky J, Cheruti U, Armon R (2010) Whole cell imprinting in sol-gel thin films for bacterial recognition in liquids: macromolecular fingerprinting. Int J Mol Sci 11:1236–1252

    Article  Google Scholar 

  40. Dickert FL, Hayden O, Halikias KP (2001) Synthetic receptors as sensor coatings for molecules and living cells. Analyst 126:766–771

    Article  ADS  Google Scholar 

  41. Hayden O, Dickert FL (2001) Selective microorganism detection with cell surface imprinted polymers. Adv Mater 13:1480–1483

    Article  Google Scholar 

  42. Dickert FL, Hayden O (2002) Bioimprinting of polymers and sol-gel phases. Selective detection of yeasts with imprinted polymers. Anal Chem 74:1302–1306

    Article  Google Scholar 

  43. Harvey SD, Mong GM, Ozanich RM, Mclean JS, Goodwin SM, Valentine NB, Fredrickson JK (2006) Preparation and evaluation of spore-specific affinity-augmented bio-imprinted beads. Anal Bioanal Chem 386:211–219

    Article  Google Scholar 

  44. Namvar A, Warriner K (2007) Microbial imprinted polypyrrole/poly(3-methylthiophene) composite films for the detection of Bacillus endospores. Biosens Bioelectron 22:2018–2024

    Article  Google Scholar 

  45. Tokonami S, Saimatsu K, Nakadoi Y, Furuta M, Shiigi H, Nagaoka T (2012) Vertical immobilization of viable bacilliform bacteria into polypyrrole films. Anal Sci 28:319–321

    Article  Google Scholar 

  46. Starosvetsky J, Cohen T, Cheruti U, Bilanović D, Armon R (2012) Effects of physical parameters on bacterial cell adsorption onto pre-imprinted sol-gel films. J Biomater Nanobiotechnol 3:499–507

    Article  Google Scholar 

  47. Qi P, Wan Y, Zhang D (2013) Impedimetric biosensor based on cell-mediated bioimprinted films for bacterial detection. Biosens Bioelectron 39:282–288

    Article  Google Scholar 

  48. Tokonami S, Nakadoi Y, Nakata H, Takami S, Kadoma T, Shiigi H, Nagaoka T (2014) Recognition of gram-negative and gram-positive bacteria with a functionalized conducting polymer film. Res Chem Intermed 40:2327–2335

    Article  Google Scholar 

  49. Hayden O, Bindeus R, Haderspock C, Mann K-J, Wirl B, Dickert FL (2003) Mass-sensitive detection of cells, viruses, and enzymes with artificial receptors. Sens Actuator B 91:316–319

    Article  Google Scholar 

  50. Birnbaumer GM, Lieberzeit PA, Richter L, Schirhagl R, Milnera M, Dickert FL, Bailey A, Ertl P (2009) Detection of viruses with molecularly imprinted polymers integrated on a microfluidic biochip using contact-less dielectric microsensors. Lab Chip 9:3549–3556

    Article  Google Scholar 

  51. Ikawa T, Kato Y, Yamada T, Shiozawa M, Narita M, Mouri M, Hoshino F, Watanabe O, Tawata M, Shimoyama H (2010) Virus-templated photoimprint on the surface of an azobenzene-containing polymer. Langmuir 26:12673–12679

    Article  Google Scholar 

  52. Tai D-F, Lin C-Y, Wu T-Z, Huang J-H, Shu P-Y (2006) Artificial receptors in serologic tests for the early diagnosis of dengue virus infection. Clin Chem 52:1486–1491

    Article  Google Scholar 

  53. Wangchareansak T, Thitithanyanont A, Chuakheaw D, Gleeson MP, Lieberzeit PA, Sangma C (2013) Influenza A virus molecularly imprinted polymers and their application in virus sub-type classification. J Mater Chem B 1:2190–2197

    Article  Google Scholar 

  54. Wangchareansak T, Thitithanyanont A, Chuakheaw D, Gleeson MP, Lieberzeit PA, Sangma C (2014) A novel approach to identify molecular binding to the influenza virus H5N1: screening using molecularly imprinted polymers (MIPs). Med Chem Commun 5:617–621

    Article  Google Scholar 

  55. Sykora S, Cumbo A, Belliot G, Pothier P, Arnal C, Dudal Y, Corvinia PF-X, Shahgaldian P (2015) Virus-like particles as virus substitutes to design artificial virus-recognition nanomaterials. Chem Commun 51:2256–2258

    Article  Google Scholar 

  56. Altintas Z, Gittens M, Guerreiro A, Thompson K-A, Walker J, Piletsky S, Tothill IE (2015) Detection of waterborne viruses using high affinity molecularly imprinted polymers. Anal Chem 87:6801–6807

    Article  Google Scholar 

  57. Dickert FL, Hayden O, Bindeus R, Mann K-J, Blaas D, Waigmann E (2004) Bioimprinted QCM sensors for virus detection–screening of plant sap. Anal Bioanal Chem 378:1929–1934

    Article  Google Scholar 

  58. Dickert FL, Lieberzeit P, Miarecka SG, Mann KJ, Hayden O, Palfinger C (2004) Synthetic receptors for chemical sensors-subnano- and micrometre patterning by imprinting techniques. Biosens Bioelectron 20:1040–1044

    Article  Google Scholar 

  59. Hayden O, Lieberzeit PA, Blaas D, Dickert FL (2006) Artificial antibodies for bioanalyte detection-sensing viruses and proteins. Adv Funct Mater 16:1269–1278

    Article  Google Scholar 

  60. Cumbo A, Lorber B, Corvini PF-X, Meier W, Shahgaldian P (2013) A synthetic nanomaterial for virus recognition produced by surface imprinting. Nat Commun 4:1503

    Article  ADS  Google Scholar 

  61. Ates M (2013) A review study of (bio) sensor systems based on conducting polymers. Mater Sci Eng C 33:1853–1859

    Article  Google Scholar 

  62. Gerard M, Chaubey A, Malhotra BD (2002) Application of conducting polymers to biosensors. Biosens Bioelectron 17:345–359

    Article  Google Scholar 

  63. Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32:876–921

    Article  Google Scholar 

  64. Guimard NKE, Sessler JL, Schmidt CE (2009) Towards a biocompatible, biodegradable copolymer incorporating electroactive oligothiophene units. Macromolecules 42:502–511

    Article  ADS  Google Scholar 

  65. Palamà I, Maria FD, Viola I, Fabiano E, Gigli G, Bettini C, Barbarella G (2011) Live-cell-permeant thiophene fluorophores and cell-mediated formation of fluorescent fibrils. J Am Chem Soc 133:17777–17785

    Article  Google Scholar 

  66. Nagaoka T, Shiigi H, Tokonami S, Saimatsu K (2012) Entrapment of whole cell bacteria into conducting polymers. J Flow Injection Anal 29:7–10

    Google Scholar 

  67. Chen Z, Takei Y, Deore BA, Nagaoka T (2000) Enantioselective uptake of amino acid with overoxidized polypyrrole colloid templated with L-lactate. Analyst 125:2249–2254

    Article  ADS  Google Scholar 

  68. Okuno H, Kitano T, Yakabe H, Kishimoto M, Deore BA, Siigi H, Nagaoka T (2002) Characterization of overoxidized polypyrrole colloids imprinted with L-lactate and their application to enantioseparation of amino acids. Anal Chem 74:4184–4190

    Article  Google Scholar 

  69. Ramanaviciene A, Ramanavicius A (2004) Molecularly imprinted polypyrrole-based synthetic receptor for direct detection of bovine leukemia virus glycoproteins. Biosens Bioelectron 20:1076–1082

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Polish National Science Centre, NCN (Grant Nos. 2013/11/N/ST5/01907 to Z.I., and 2014/15/B/NZ7/01011 to W.K.), and the Ministry of Science and Higher Education of Poland (Grant No. 0005/E-64/9/2014, and IP 2014-041473 to P.S.S.) and the U.S. National Science Foundation (Grant No. CHE-1401188 to F.D.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Piyush Sindhu Sharma , Francis D’Souza or Wlodzimierz Kutner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sharma, P.S., Iskierko, Z., D’Souza, F., Kutner, W. (2016). Macromolecular Imprinting for Improved Health Security. In: Nikolelis, D., Nikoleli, GP. (eds) Biosensors for Security and Bioterrorism Applications. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-28926-7_7

Download citation

Publish with us

Policies and ethics