Skip to main content

Tailored Responses to Simultaneous Drought Stress and Pathogen Infection in Plants

  • Chapter
  • First Online:
Drought Stress Tolerance in Plants, Vol 1

Abstract

Under field conditions plants are often challenged by combination of biotic and abiotic stressors and they severely affect crop productivity. An increasing number of studies suggest that plants “tailor” their adaptation strategies to combat simultaneously occurring stresses. The stress combat strategies of plants are customized according to the stress combination and vary with the intensity and timing of the stresses involved. While some of the responses seen under combined stress are commonly instigated by individual stresses, some other are uniquely triggered under combined stress. Since some responses are unique only to the combined stress, the outcome of a stress interaction cannot be completely predicted using results from individual stress studies. In this chapter, the effects of combinatorial drought stress and pathogen infection on plants are discussed with an emphasis on the molecular and physiological mechanisms that underpin how plants tolerate simultaneously occurring stresses. We also highlight the complexity involved in the responses of plants to multiple stresses and underscore the importance of studying plant stressors in combination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achuo EA, Prinsen E, Höfte M. Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathol. 2006;55:178–86.

    Article  CAS  Google Scholar 

  • Amtmann A, Troufflard S, Armengaud P. The effect of potassium nutrition on pest and disease resistance in plants. Physiol Plant. 2008;133:682–91.

    Article  CAS  PubMed  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell. 2004;16:3460–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asselbergh B, De Vleesschauwer D, Höfte M. Global switches and fine-tuning-ABA modulates plant-pathogen defense. Mol Plant Microbe Interact. 2008;21:709–19.

    Article  CAS  PubMed  Google Scholar 

  • Atkinson NJ, Urwin PE. The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot. 2012;63:3523–43.

    Article  CAS  PubMed  Google Scholar 

  • Atkinson NJ, Lilley CJ, Urwin PE. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol. 2013;162:2028–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audebert A, Coyne D, Dingkuhn M, Plowright R. The influence of cyst nematodes (Heterodera sacchari) and drought on water relations and growth of upland rice in Côte d’Ivoire. Plant Soil. 2000;220(1–2):235–42.

    Article  CAS  Google Scholar 

  • Bechtold U, Lawson T, Mejia-Carranza J, Meyer RC, Brown IR, Altmann T, Ton J, Mullineaux PM. Constitutive salicylic acid defences do not compromise seed yield, drought tolerance and water productivity in the Arabidopsis accession C24. Plant Cell Environ. 2010;33:1959–73.

    Article  CAS  PubMed  Google Scholar 

  • Bostock RM, Pye MF, Roubtsova TV. Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. Annu Rev Phytopathol. 2014;52:517–49.

    Article  CAS  PubMed  Google Scholar 

  • Carter AH, Chen XM, Garland-Campbell K, Kidwell KK. Identifying QTL for high-temperature adult-plant resistance to stripe rust (Puccinia striiformis f. sp.tritici) in the spring wheat (Triticum aestivum L.) cultivar ‘Louise’. Theor Appl Genet. 2009;119:1119–28.

    Article  PubMed  Google Scholar 

  • Choi H-K, Iandolino A, da Silva FG, Cook DR. Water deficit modulates the response of Vitis vinifera to the Pierce’s disease pathogen Xylella fastidiosa. Mol Plant Microbe Interact. 2013;26(6):643–57.

    Article  CAS  PubMed  Google Scholar 

  • English-Loeb G, Stout MJ, Duffey SS. Drought stress in tomatoes: changes in plant chemistry and potential nonlinear consequences for insect herbivores. Oikos. 1997;79:456–68.

    Article  Google Scholar 

  • Goel AK, Lundberg D, Torres MA, Matthews R, Akimoto-Tomiyama C, Farmer L, Dangl JL, Grant SR. The Pseudomonas syringae type III effector HopAM1 enhances virulence on water-stressed plants. Mol Plant Microbe Interact. 2008;21:361–70.

    Article  CAS  PubMed  Google Scholar 

  • Hanson AD, Hitz WD. Metabolic responses of mesophytes to plant water deficits. Annu Rev Plant Physiol Plant Mol Biol. 1982;33:163–203.

    Article  CAS  Google Scholar 

  • Herms DA, Mattson WJ. The dilemma of plants: to grow or defend. Q Rev Biol. 1992;67:283–335.

    Article  Google Scholar 

  • Huot B, Yao J, Montgomery BL, He SY. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant. 2014;7(8):1267–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson SM, Lim FL, Finkler A, Fromm H, Slabas AR, Knight MR. Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress. BMC Genomics. 2014;15:456.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Kwon SI, Saha D, Anyanwu NC, Gassmann W. Resistance to the Pseudomonas syringae effector HopA1 is governed by the TIR-NBSLRR protein RPS6 and is enhanced by mutations in SRFR1. Plant Physiol. 2009;150:1723–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Király L, Hafez YM, Fodor J, Király Z. Suppression of Tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. J Gen Virol. 2008;89:799–808.

    Article  PubMed  Google Scholar 

  • Kissoudis C, van de Wiel C, Visser RGF, van der Linden G. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front Plant Sci. 2014;5:207.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Zhang C, Lu Q, Wen X, Lu C. The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa. J Plant Physiol. 2011;168(15):1743–52.

    Article  CAS  PubMed  Google Scholar 

  • Mayek-Perez N, Garcia-Espinosa R, Lopez-Castaneda C, Acosta-Gallegos JA, Simpson J. Water relations, histopathology and growth of common bean (Phaseolus vulgaris L.) during pathogenesis of Macrophomina phaseolina under drought stress. Physiol Mol Plant Pathol. 2002;60:185–95.

    Article  Google Scholar 

  • Mayer MP, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci. 2005;62:670–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McElrone AJ, Forseth IN. Photosynthetic responses of a temperate liana to Xylella fastidiosa infection and water stress. J Phytopathol. 2004;152:9–20.

    Article  Google Scholar 

  • McElrone AJ, Sherald JL, Forseth IN. Effects of water stress on symptomatology and growth of Parthenocissus quinquefolia infected by Xylella fastidiosa. Plant Dis. 2001;85:1160–4.

    Article  Google Scholar 

  • McElrone AJ, Sherald JL, Forseth IN. Interactive effects of water stress and xylem-limited bacterial infection on the water relations of a host vine. J Exp Bot. 2003;54:419–30.

    Article  CAS  PubMed  Google Scholar 

  • Mittler R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006;11:15–9.

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Blumwald E. Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol. 2010;61:443–62.

    Article  CAS  PubMed  Google Scholar 

  • Mohr PG, Cahill DM. Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct Plant Biol. 2003;30:461–9.

    Article  CAS  Google Scholar 

  • Olson AJ, Pataky JK, D’Arcy CJ, Ford RE. Effects of drought stress and infection by maize dwarf mosaic virus on sweet corn. Plant Dis. 1990;74:147–51.

    Article  Google Scholar 

  • Ou X, Gan Y, Chen P, Qiu M, Jiang K, et al. Stomata prioritize their responses to multiple biotic and abiotic signal inputs. PLoS One. 2014;9(7), e101587.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey P, Ramegowda V, Senthil-Kumar M. Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci. 2015;6:723.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasch CM, Sonnewald U. Simultaneous application of heat, drought and virus to Arabidopsis thaliana plants reveals significant shifts in signaling networks. Plant Physiol. 2013;162(4):1849–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasch CM, Sonnewald U. Signaling events in plants: stress factors in combination change the picture. Environ Exp Bot. 2015;114:4–14. doi:10.1016/j.envexpbot.2014.06.020.

    Article  CAS  Google Scholar 

  • Ramegowda V, Senthil-Kumar M. The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol. 2015;176:47–54.

    Article  CAS  PubMed  Google Scholar 

  • Ramegowda V, Senthil-Kumar M, Ishiga Y, Kaundal A, Udayakumar M, Mysore KS. Drought stress acclimation imparts tolerance to Sclerotinia sclerotiorum and Pseudomonas syringae in Nicotiana benthamiana. Int J Mol Sci. 2013;14(5):9497–513.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rampino P, Mita G, Fasano P, Maria G, Aprile A, Dalessandro G, De Bellis L, Perrotta C. Novel durum wheat genes up-regulated in response to a combination of heat and drought stress. Plant Physiol Biochem. 2012;56:72–8.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, Bones AM, Nielsen HB, Mundy J. Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol. 2013;161:1783–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivero RM, Mestre TC, Mittler R, Rubio F, Garcia-Sanchez F, Martinez V. The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ. 2013;37:1059–73.

    Article  PubMed  Google Scholar 

  • Rizhsky L, Liang HJ, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol. 2002;130:1143–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 2004;134:1683–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Pande S. Unravelling effects of temperature and soil moisture stress response on development of dry root rot [Rhizoctonia bataticola (Taub.)] butler in chickpea. Am J Plant Sci. 2013;4:584–9.

    Article  Google Scholar 

  • Sharma RC, Duveiller E, Ortiz-Ferrara G. Progress and challenge towards reducing wheat spot blotch threat in the Eastern Gangetic Plains of South Asia: is climate change already taking its toll? Field Crop Res. 2007;103:109–18.

    Article  Google Scholar 

  • Smit AL, Vamerali T. The influence of potato cyst nematodes (Globodera pallida) and drought on rooting dynamics of potato (Solanum tuberosum L.). Eur J Agron. 1998;9(2–3):137–46.

    Article  Google Scholar 

  • Smith AM. Stitt M (2007) Coordination of carbon supply and plant growth. Plant Cell Environ. 2007;30:1126–49.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R. Abiotic and biotic stress combinations. New Phytol. 2014;203(1):32–43.

    Article  PubMed  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B. The multifaceted role of ABA in disease resistance. Trends Plant Sci. 2009;14:10–317.

    Article  Google Scholar 

  • Vile D, Pervent M, Belluau M, Vasseur F, Bresson J, Muller B, et al. Arabidopsis growth under prolonged high temperature and water deficit: independent or interactive effects? Plant Cell Environ. 2012;35:702–18.

    Article  PubMed  Google Scholar 

  • Wang Y, Bao Z, Zhu Y, Hua J. Analysis of temperature modulation of plant defense against biotrophic microbes. Mol Plant Microbe Interact. 2009;22:498–506.

    Article  CAS  PubMed  Google Scholar 

  • Whenham RJ, Fraser RSS, Brown LP, Payne JA. Tobacco-mosaic virus-induced increase in absicisic acid concentration in tobacco leaves: intracellular location in light and dark-green areas, and relationship to symptom development. Planta. 1986;168:592–8.

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Chen F, Mannas JP, Feldman T, Sumner LW, Roossinck MJ. Virus infection improves drought tolerance. New Phytol. 2008;180:911–21.

    Article  PubMed  Google Scholar 

  • Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T. Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell. 2008;20(6):1678–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Projects at MS-K Lab are supported by National Institute of Plant Genome Research core funding and DBT-Ramalingaswami re-entry fellowship grant (BT/RLF/re-entry/23/2012). A.C. and P.P. acknowledge DBT-Junior Research Fellowship (JRF, DBT/2014/NIPGR/261) and DST-SERB young scientist grant (SB/YS/LS-71/2014), respectively, for the financial support. Authors thank Mrs. Urooj Fatima for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthappa Senthil-Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Choudhary, A., Pandey, P., Senthil-Kumar, M. (2016). Tailored Responses to Simultaneous Drought Stress and Pathogen Infection in Plants. In: Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, LS. (eds) Drought Stress Tolerance in Plants, Vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-28899-4_18

Download citation

Publish with us

Policies and ethics