Skip to main content

Role of PET/CT and MRI in the Prediction of Response to Neoadjuvant Treatment

  • Chapter
  • First Online:
Adenocarcinoma of the Esophagogastric Junction

Abstract

Surgery is still considered the main treatment in patients with EGJ, but CRT has become an accepted choice for reducing the incidence of local recurrence and improving the overall survival rate.

Currently there is no definite standardized imaging method to determine tumor response to CRT. Nevertheless, the potential role of PET/CT in evaluation and investigation in responding and nonresponding patients is confirmed, avoiding unnecessary CRT and a delay in surgery.

However, RT may induce inflammatory alterations, difficult to differentiate from a persistent disease. Furthermore, there is some evidence that PET/CT provides additional valuable information for the diagnosis of recurrent disease.

Also MRI has great potential to impact the treatment of EGJ adenocarcinoma. It may improve the clinician’s ability to stage patients and to determine the most appropriate treatment. In patients who undergo CRT, it may provide a tool to gauge therapeutic response, a function that no other modality has been able to demonstrate, through a multiparametric approach that combines morphological and functional information about the cancer. Thus, cross-sectional imaging and its further optimization for this issue are mandatory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith JW et al (2009) The influence of (18)fluorodeoxyglucose positron emission tomography on the management of gastroesophageal junction carcinoma. Am J Surg 197(3):308–312

    Article  PubMed  Google Scholar 

  2. Shenfine J, Barbour AP, Wong D, Thomas J, Martin I, Gotley DC, Smithers BM (2009) Prognostic value of maximum standardized uptake values from preoperative positron emission tomography in resectable adenocarcinoma of the esophagus treated by surgery alone. Dis Esophagus 22:668–675

    Article  CAS  PubMed  Google Scholar 

  3. Boige V et al (2007) Final results of a randomized trial comparing preoperative 5-fluorouracil (F)/cisplatin (P) to surgery alone in adenocarcinoma of stomach and lower esophagus (ASLE): FNLCC ACCORD07-FFCD 9703 trial. J Clin Oncol 25(18S):4510

    Google Scholar 

  4. Chang EY et al (2008) The evaluation of esophageal adenocarcinoma using dynamic contrast-enhanced magnetic resonance imaging. J Gastrointest Surg 12(1):166–175

    Article  PubMed  Google Scholar 

  5. Suttie SA, Welch AE, Park KG (2009) Positron emission tomography for monitoring response to neoadjuvant therapy in patients with oesophageal and gastro-oesophageal junction carcinoma. Eur J Surg Oncol 35(10):1019–1029

    Article  CAS  PubMed  Google Scholar 

  6. Lorenzen S et al (2011) Sequential FDG-PET and induction chemotherapy in locally advanced adenocarcinoma of the oesophago-gastric junction (AEG): the Heidelberg imaging program in cancer of the oesophago-gastric junction during neoadjuvant treatment: HICON trial. BMC Cancer 11:266

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zacherl J (2014) The current evidence in support of multimodal treatment of locally advanced, potentially resectable esophageal cancer. Dig Dis 32(1–2):171–175

    Article  PubMed  Google Scholar 

  8. de Geus-Oei LF et al (2012) FDG-PET/CT based response-adapted treatment. Cancer Imaging 12:324–335

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li Z, Rice TW (2012) Diagnosis and staging of cancer of the esophagus and esophagogastric junction. Surg Clin North Am 92(5):1105–1126

    Article  PubMed  Google Scholar 

  10. Yoon HH et al (2009) The role of FDG-PET and staging laparoscopy in the management of patients with cancer of the esophagus or gastroesophageal junction. Gastroenterol Clin North Am 38(1):105–120, ix

    Article  PubMed  PubMed Central  Google Scholar 

  11. Drudi FM et al (2002) Esophagogram and CT vs endoscopic and surgical specimens in the diagnosis of esophageal carcinoma. Radiol Med 103(4):344–352

    CAS  PubMed  Google Scholar 

  12. Seol KH, Lee JE (2014) PET/CT planning during chemoradiotherapy for esophageal cancer. Radiat Oncol J 32(1):31–42

    Article  PubMed  PubMed Central  Google Scholar 

  13. Leong T et al (2006) A prospective study to evaluate the impact of FDG-PET on CT-based radiotherapy treatment planning for oesophageal cancer. Radiother Oncol 78(3):254–261

    Article  PubMed  Google Scholar 

  14. Moureau-Zabotto L et al (2005) Impact of CT and 18F-deoxyglucose positron emission tomography image fusion for conformal radiotherapy in esophageal carcinoma. Int J Radiat Oncol Biol Phys 63(2):340–345

    Article  PubMed  Google Scholar 

  15. Muijs CT et al (2009) Consequences of additional use of PET information for target volume delineation and radiotherapy dose distribution for esophageal cancer. Radiother Oncol 93(3):447–453

    Article  PubMed  Google Scholar 

  16. Taketa T et al (2012) Outcome of trimodality-eligible esophagogastric cancer patients who declined surgery after preoperative chemoradiation. Oncology 83(5):300–304

    Article  CAS  PubMed  Google Scholar 

  17. Weber MA et al (2013) Assessment of diffusion-weighted MRI and 18F-fluoro-deoxyglucose PET/CT in monitoring early response to neoadjuvant chemotherapy in adenocarcinoma of the esophagogastric junction. J Gastrointestin Liver Dis 22(1):45–52

    PubMed  Google Scholar 

  18. Lorenzen S et al (2011) Association of the VEGF 936C > T polymorphism with FDG uptake, clinical, histopathological, and metabolic response in patients with adenocarcinomas of the esophagogastric junction. Mol Imaging Biol 13(1):178–186

    Article  PubMed  Google Scholar 

  19. Schollaert P et al (2014) A systematic review of the predictive value of 18FDG-PET in esophageal and esophagogastric junction cancer after neoadjuvant chemoradiation on the survival outcome stratification. J Gastrointest Surg 18:894–905

    Article  PubMed  Google Scholar 

  20. Kwee R (2010) Prediction of tumor response to neoadjuvant therapy in patients with esophageal cancer with use of 18FDG PET: a systematic review. Radiology 254:707–717

    Article  PubMed  Google Scholar 

  21. Chen Y et al (2011) 18F-fluorodeoxyglucose positron emission tomography predict responses to neoadjuvant therapy in oesophageal cancer patients? a meta-analysis. Nucl Med Commun 32:1005–1010

    Article  CAS  PubMed  Google Scholar 

  22. Kato H et al (2002) Usefulness of positron emission tomography for assessing the response of neoadjuvant chemoradiotherapy in patients with esophageal cancer. Am J Surg 184(3):279–283

    Article  PubMed  Google Scholar 

  23. Arslan N et al (2002) Evaluation of response to neoadjuvant therapy by quantitative 2-deoxy-2-[18F]fluoro-D-glucose with positron emission tomography in patients with esophageal cancer. Mol Imaging Biol 4(4):301–310

    Article  PubMed  Google Scholar 

  24. Lordick F et al (2007) PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol 8(9):797–805

    Article  PubMed  Google Scholar 

  25. Ott K (2006) Metabolic imaging predicts response, survival, and recurrence in adenocarcinomas of the esophagogastric junction. J Clin Oncol 24(29):4692–4698

    Article  PubMed  Google Scholar 

  26. Ott K et al (2008) The new credo: induction chemotherapy in locally advanced gastric cancer: consequences for surgical strategies. Gastric Cancer 11(1):1–9

    Article  PubMed  Google Scholar 

  27. Wieder HA et al (2007) Prediction of tumor response by FDG-PET: comparison of the accuracy of single and sequential studies in patients with adenocarcinomas of the esophagogastric junction. Eur J Nucl Med Mol Imaging 34(12):1925–1932

    Article  PubMed  Google Scholar 

  28. Wu LF et al (2003) Preoperative TN staging of esophageal cancer: comparison of miniprobe ultrasonography, spiral CT and MRI. World J Gastroenterol 9(2):219–224

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jamil LH, Gill KR, Wallace MB (2008) Staging and restaging of advanced esophageal cancer. Curr Opin Gastroenterol 24(4):530–534

    Article  PubMed  Google Scholar 

  30. Jang KM et al (2002) The spectrum of benign esophageal lesions: imaging findings. Korean J Radiol 3(3):199–210

    Article  PubMed  PubMed Central  Google Scholar 

  31. van Rossum PS et al (2013) Imaging strategies in the management of oesophageal cancer: what’s the role of MRI? Eur Radiol 23(7):1753–1765

    Article  PubMed  Google Scholar 

  32. Oberholzer K et al (2008) Assessment of tumor microcirculation with dynamic contrast-enhanced MRI in patients with esophageal cancer: initial experience. J Magn Reson Imaging 27(6):1296–1301

    Article  PubMed  Google Scholar 

  33. Kwee RM et al (2014) Interobserver reproducibility of diffusion-weighted MRI in monitoring tumor response to neoadjuvant therapy in esophageal cancer. PLoS One 9(4):e92211

    Article  PubMed  PubMed Central  Google Scholar 

  34. Riddell AM et al (2006) Potential of surface-coil MRI for staging of esophageal cancer. AJR Am J Roentgenol 187(5):1280–1287

    Article  PubMed  Google Scholar 

  35. De Cobelli F et al (2013) Apparent diffusion coefficient modifications in assessing gastro-oesophageal cancer response to neoadjuvant treatment: comparison with tumour regression grade at histology. Eur Radiol 23(8):2165–2174

    Article  PubMed  Google Scholar 

  36. Sakurada A et al (2009) Diagnostic performance of diffusion-weighted magnetic resonance imaging in esophageal cancer. Eur Radiol 19(6):1461–1469

    Article  PubMed  Google Scholar 

  37. Aoyagi T et al (2011) Apparent diffusion coefficient values measured by diffusion-weighted imaging predict chemoradiotherapeutic effect for advanced esophageal cancer. Dig Surg 28(4):252–257

    Article  PubMed  Google Scholar 

  38. Aoyagi T et al (2012) Apparent diffusion coefficient correlation with oesophageal tumour stroma and angiogenesis. Eur Radiol 22(6):1172–1177

    Article  PubMed  Google Scholar 

  39. Law S et al (1997) Preoperative chemotherapy versus surgical therapy alone for squamous cell carcinoma of the esophagus: a prospective randomized trial. J Thorac Cardiovasc Surg 114(2):210–217

    Article  CAS  PubMed  Google Scholar 

  40. Krupski-Berdien G (2007) MRI of esophagus. N staging and more…. Radiologe 47(2):119–122

    Article  CAS  PubMed  Google Scholar 

  41. Pultrum BB et al (2009) Detection of lymph node metastases with ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging in oesophageal cancer: a feasibility study. Cancer Imaging 9:19–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Becker K et al (2003) Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy. Cancer 98(7):1521–1530

    Article  PubMed  Google Scholar 

  43. Becker K et al (2012) Proposal for a multifactorial prognostic score that accurately classifies 3 groups of gastric carcinoma patients with different outcomes after neoadjuvant chemotherapy and surgery. Ann Surg 256(6):1002–1007

    Article  PubMed  Google Scholar 

  44. zum Buschenfelde CM et al (2011) (18)F-FDG PET-guided salvage neoadjuvant radiochemotherapy of adenocarcinoma of the esophagogastric junction: the MUNICON II trial. J Nucl Med 52(8):1189–1196

    Article  PubMed  Google Scholar 

  45. Sun YS et al (2011) Early evaluation of cancer response by a new functional biomarker: apparent diffusion coefficient. AJR Am J Roentgenol 197(1):W23–W29

    Article  PubMed  Google Scholar 

  46. Kantarci M et al (2004) Comparison of CT and MRI for the diagnosis recurrent esophageal carcinoma after operation. Dis Esophagus 17(1):32–37

    Article  Google Scholar 

  47. Siersema PD (2007) Pathogenesis, diagnosis and therapeutic possibilities of esophageal cancer. Curr Opin Gastroenterol 23(4):456–461

    Article  CAS  PubMed  Google Scholar 

  48. Roedl JB et al (2008) Assessment of treatment response and recurrence in esophageal carcinoma based on tumor length and standardized uptake value on positron emission tomography-computed tomography. Ann Thorac Surg 86(4):1131–1138

    Article  PubMed  Google Scholar 

  49. Alper F et al (2011) Effectiveness of the STIR turbo spin-echo sequence MR imaging in evaluation of lymphadenopathy in esophageal cancer. Eur J Radiol 80(3):625–628

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Montemezzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cenzi, D., Zantedeschi, L., Zuffante, M., Strazimiri, E., Montemezzi, S. (2017). Role of PET/CT and MRI in the Prediction of Response to Neoadjuvant Treatment. In: Giacopuzzi, S., Zanoni, A., de Manzoni, G. (eds) Adenocarcinoma of the Esophagogastric Junction. Springer, Cham. https://doi.org/10.1007/978-3-319-28776-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28776-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28774-4

  • Online ISBN: 978-3-319-28776-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics