Skip to main content

Advertisement

Log in

The Evaluation of Esophageal Adenocarcinoma Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging

  • Published:
Journal of Gastrointestinal Surgery Aims and scope

Abstract

Although neoadjuvant chemoradiation eradicates esophageal adenocarcinoma in a substantial proportion of patients, conventional imaging techniques cannot accurately detect this response. Dynamic contrast-enhanced magnetic resonance imaging is an emerging approach that may be well suited to fill this role. This pilot study evaluates the ability of this method to discriminate adenocarcinoma from normal esophageal tissue. Patients with esophageal adenocarcinoma and control subjects underwent scanning. Patients treated with neoadjuvant therapy underwent pre- and postchemoradiation scans. Parameters were extracted for each pixel were K trans (equilibrium rate for transfer of contrast reagent across the vascular wall), v e (volume fraction of interstitial space), and τ i (mean intracellular water lifetime). Five esophageal adenocarcinoma patients and two tumor-free control subjects underwent scanning. The mean K trans value was 5.7 times greater in esophageal adenocarcinoma, and τ i is 2.0 times smaller, than in the control subjects. K trans decreased by 11.4-fold after chemoradiation. Parametric maps qualitatively demonstrate a difference in K trans. DCE MRI of the esophagus is feasible. K trans, a parameter that has demonstrated discriminative ability in other malignancies, also shows promise in differentiating esophageal adenocarcinoma from benign tissue. The determination of K trans represents an in vivo assay for endothelial permeability and thus may serve as a quantitative measure of response to induction chemoradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Daly JM, Karnell LH, Menck HR. National Cancer Data Base report on esophageal carcinoma. Cancer 1996;78:1820–1828.

    Article  PubMed  CAS  Google Scholar 

  2. Ide H, Nakamura T, Hayashi K, Endo T, Kobayashi A, Eguchi R, Hanyu F. Esophageal squamous cell carcinoma: pathology and prognosis. World J Surg 1994;18:321–330.

    Article  PubMed  CAS  Google Scholar 

  3. Torres C, Turner JR, Wang HH, Richards W, Sugarbaker D, Shahsafaei A, Odze RD. Pathologic prognostic factors in Barrett’s associated adenocarcinoma: a follow-up study of 96 patients. Cancer 1999;85:520–528.

    Article  PubMed  CAS  Google Scholar 

  4. Gopal DV, Powers J. Barrett’s esophagus and esophageal adenocarcioma: a pratical approach to diagnosis and management. Ann Long Term Care 2002;10:27–31.

    Google Scholar 

  5. Spechler SJ. Screening and surveillance for complications related to gastroesophageal reflux disease. Am J Med 2001;111(Suppl 8A):130S–136S.

    Article  PubMed  Google Scholar 

  6. Spechler SJ. Clinical practice. Barrett’s esophagus. N Engl J Med 2002;346:836–842.

    Article  PubMed  Google Scholar 

  7. Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, Feuer EJ, Thun MJ. Cancer statistics, 2004. CA Cancer J Clin 2004;54:8–29.

    PubMed  Google Scholar 

  8. Stahl M, Wilke H, Stuschke M, Walz MK, Fink U, Molls M, Siewert JR, Schroeder M, Makoski HB, Schmidt U, Seeber S, Vanhoefer U. Clinical response to induction chemotherapy predicts local control and long-term survival in multimodal treatment of patients with locally advanced esophageal cancer. J Cancer Res Clin Oncol 2005;131:67–72.

    Article  PubMed  Google Scholar 

  9. Zuccaro G Jr, Rice TW, Goldblum J, Medendorp SV, Becker M, Pimentel R, Gitlin L, Adelstein DJ. Endoscopic ultrasound cannot determine suitability for esophagectomy after aggressive chemoradiotherapy for esophageal cancer. Am J Gastroenterol 1999;94:906–912.

    PubMed  Google Scholar 

  10. Melcher L, Wong W, Sanghera B, Bentzen SM, Hall M, Chambers J. Sequential FDG-PET scanning in the assessment of response to neoadjuvant chemotherapy in operable oesophageal cancer. J Clin Oncol 2004;22:327s.

    Google Scholar 

  11. Jones DR, Parker LA Jr, Detterbeck FC, Egan TM. Inadequacy of computed tomography in assessing patients with esophageal carcinoma after induction chemoradiotherapy. Cancer 1999;85:1026–1032.

    Article  PubMed  CAS  Google Scholar 

  12. Hordijk ML, Kok TC, Wilson JH, Mulder AH. Assessment of response of esophageal carcinoma to induction chemotherapy. Endoscopy 1993;25:592–596.

    Article  PubMed  CAS  Google Scholar 

  13. Laterza E, de Manzoni G, Guglielmi A, Rodella L, Tedesco P, Cordiano C. Endoscopic ultrasonography in the staging of esophageal carcinoma after preoperative radiotherapy and chemotherapy. Ann Thorac Surg 1999;67:1466–1469.

    Article  PubMed  CAS  Google Scholar 

  14. Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 1997;7:91–101.

    Article  PubMed  CAS  Google Scholar 

  15. Tofts PS, Berkowitz B, Schnall MD. Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model. Magn Reson Med 1995;33:564–568.

    Article  PubMed  CAS  Google Scholar 

  16. Couvelard A, Paraf F, Gratio V, Scoazec JY, Henin D, Degott C, Flejou JF. Angiogenesis in the neoplastic sequence of Barrett’s oesophagus. Correlation with VEGF expression. J Pathol 2000;192:14–18.

    Article  PubMed  CAS  Google Scholar 

  17. Lord RV, Park JM, Wickramasinghe K, DeMeester SR, Oberg S, Salonga D, Singer J, Peters JH, Danenberg KD, Demeester TR, Danenberg PV. Vascular endothelial growth factor and basic fibroblast growth factor expression in esophageal adenocarcinoma and Barrett esophagus. J Thorac Cardiovasc Surg 2003;125:246–253.

    Article  PubMed  Google Scholar 

  18. Torres C, Wang H, Turner J, Shahsafaei A, Odze RD. Prognostic significance and effect of chemoradiotherapy on microvessel density (angiogenesis) in esophageal Barrett’s esophagus-associated adenocarcinoma and squamous cell carcinoma. Human Pathol 1999;30:753–758.

    Article  CAS  Google Scholar 

  19. Auvinen MI, Sihvo EI, Ruohtula T, Salminen JT, Koivistoinen A, Siivola P, Ronnholm R, Ramo JO, Bergman M, Salo JA. Incipient angiogenesis in Barrett’s epithelium and lymphangiogenesis in Barrett’s adenocarcinoma. J Clin Oncol 2002;20:2971–2979.

    Article  PubMed  Google Scholar 

  20. Yankeelov TE, Rooney WD, Huang W, Dyke JP, Li X, Tudorica A, Lee J-H, Koutcher JA, Springer CS. Evidence for shutter-speed variation in CR bolus-tracking studies of human pathology. NMR Biomed 2005;18:173–185.

    Article  PubMed  Google Scholar 

  21. Huang W, Li X, Morris EA, Tudorica LA, Venkatraman ES, Wang Y, Xu J, Springer CS. Shutter speed analysis of CR bolus-tracking data facilitates discrimination of benign and malignant breast disease. Proc Int Soc Magn Reson Med 2007;15:141.

    Google Scholar 

  22. Li X, Huang W, Yankeelov TE, Tudorica A, Rooney WD, Springer CS. Shutter-speed analysis of contrast reagent bolus-tracking data: Preliminary observations in benign and malignant breast disease. Magn Reson Med 2005;53:724–729.

    Article  PubMed  Google Scholar 

  23. Li X, Rooney WD, Springer CS. A unified MRI pharmacokinetic theory: intravascular and extracellular contrast reagents. Magn Reson Med 2005;54:1351–1359 (Erratum: Magn Reson Med 2006;55:1217).

    Article  PubMed  CAS  Google Scholar 

  24. Yankeelov TE, Rooney WD, Li X, Springer CS. Variation of the relaxographic “shutter-speed” for transcytolemmal water exchange affects the CR bolus-tracking curve shape. Magn Reson Med 2003;50:1151–1169.

    Article  PubMed  Google Scholar 

  25. Zhou R, Pickup S, Yankeelov TE, Springer CS, Glickson JD. Simultaneous measurement of arterial input function and tumor pharmacokinetics in mice by dynamic contrast enhanced imaging: effects of transcytolemmal water exchange. Magn Reson Med 2004;52:248–257.

    Article  PubMed  Google Scholar 

  26. Knopp MV, Weiss E, Sinn HP, Mattern J, Junkermann H, Radeleff J, Magener A, Brix G, Delorme S, Zuna I, van Kaick G. Pathophysiologic basis of contrast enhancement in breast tumors. J Magn Reson Imaging 1999;10:260–266.

    Article  PubMed  CAS  Google Scholar 

  27. Knopp MV, von Tengg-Kobligk H, Choyke PL. Functional magnetic resonance imaging in oncology for diagnosis and therapy monitoring. Mol Cancer Ther 2003;2:419–426.

    PubMed  CAS  Google Scholar 

  28. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999;10:223–232.

    Article  PubMed  CAS  Google Scholar 

  29. Hiraishi K, Narabayashi I, Fujita O, Yamamoto K, Sagami A, Hisada Y, Saika Y, Adachi I, Hasegawa H. Blueberry juice: preliminary evaluation as an oral contrast agent in gastrointestinal MR imaging. Radiology 1995;194:119–123.

    PubMed  CAS  Google Scholar 

  30. Karantanas AH, Papanikolaou N, Kalef-Ezra J, Challa A, Gourtsoyiannis N. Blueberry juice used per os in upper abdominal MR imaging: composition and initial clinical data. Eur Radiol 2000;10:909–913.

    Article  PubMed  CAS  Google Scholar 

  31. Schmid MR, Hany TF, Knesplova L, Schlumpf R, Debatin JF. 3D MR gastrography: exoscopic and endoscopic analysis of the stomach. Eur Radiol 1999;9:73–77.

    Article  PubMed  CAS  Google Scholar 

  32. Walsh TN, Noonan N, Hollywood D, Kelly A, Keeling N, Hennessy TP. A comparison of multimodal therapy and surgery for esophageal adenocarcinoma. N Engl J Med 1996;335:462–467.

    Article  PubMed  CAS  Google Scholar 

  33. Mooney MM. Neoadjuvant and adjuvant chemotherapy for esophageal adenocarcinoma. J Surg Oncol 2005;92:230–238.

    Article  PubMed  CAS  Google Scholar 

  34. Donington JS, Miller DL, Allen MS, Deschamps C, Nichols FC 3rd, Pairolero PC. Tumor response to induction chemoradiation: influence on survival after esophagectomy. Eur J Cardiothorac Surg 2003;24:631–636; discussion 636–637.

    Article  PubMed  Google Scholar 

  35. Forastiere AA, Goepfert H, Maor M, Pajak TF, Weber R, Morrison W, Glisson B, Trotti A, Ridge JA, Chao C, Peters G, Lee DJ, Leaf A, Ensley J, Cooper J. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. N Engl J Med 2003;349:2091–2098.

    Article  PubMed  CAS  Google Scholar 

  36. Swisher SG, Ajani JA, Komaki R, Nesbitt JC, Correa AM, Cox JD, Lahoti S, Martin F, Putnam JB, Smythe WR, Vaporciyan AA, Walsh GL, Roth JA. Long-term outcome of phase II trial evaluating chemotherapy, chemoradiotherapy, and surgery for locoregionally advanced esophageal cancer. Int J Radiat Oncol Biol Phys 2003;57:120–127.

    Article  PubMed  Google Scholar 

  37. Berger AC, Farma J, Scott WJ, Freedman G, Weiner L, Cheng JD, Wang H, Goldberg M. Complete response to neoadjuvant chemoradiotherapy in esophageal carcinoma is associated with significantly improved survival. J Clin Oncol 2005;23:4330–4337.

    Article  PubMed  Google Scholar 

  38. Roth JA, Pass HI, Flanagan MM, Graeber GM, Rosenberg JC, Steinberg S. Randomized clinical trial of preoperative and postoperative adjuvant chemotherapy with cisplatin, vindesine, and bleomycin for carcinoma of the esophagus. J Thorac Cardiovasc Surg 1988;96:242–248.

    PubMed  CAS  Google Scholar 

  39. Kelsen DP, Ginsberg R, Pajak TF, Sheahan DG, Gunderson L, Mortimer J, Estes N, Haller DG, Ajani J, Kocha W, Minsky BD, Roth JA. Chemotherapy followed by surgery compared with surgery alone for localized esophageal cancer. N Engl J Med 1998;339:1979–1984.

    Article  PubMed  CAS  Google Scholar 

  40. Urba SG, Orringer MB, Turrisi A, Iannettoni M, Forastiere A, Strawderman M. Randomized trial of preoperative chemoradiation versus surgery alone in patients with locoregional esophageal carcinoma. J Clin Oncol 2001;19:305–313.

    PubMed  CAS  Google Scholar 

  41. Swisher SG, Hofstetter W, Wu TT, Correa AM, Ajani JA, Komaki RR, Chirieac L, Hunt KK, Liao Z, Phan A, Rice DC, Vaporciyan AA, Walsh GL, Roth JA. Proposed revision of the esophageal cancer staging system to accommodate pathologic response (pP) following preoperative chemoradiation (CRT). Ann Surg 2005;241:810–817; discussion 817–820.

    Article  PubMed  Google Scholar 

  42. Kim SB, Kim SH, Lee KH, Lee JW, Kim SW, Suh CW, Lee JS, Song HY, Chang HS, Choi EK, et al. Preoperative chemoradiotherapy for locoregional esophageal cancer: preliminary report. J Korean Med Sci 1995;10:111–120.

    PubMed  CAS  Google Scholar 

  43. Yang Q, Cleary KR, Yao JC, Swisher SG, Roth JA, Lynch PM, Komaki R, Ajani JA, Rashid A, Hamilton SR, Wu TT. Significance of post-chemoradiation biopsy in predicting residual esophageal carcinoma in the surgical specimen. Dis Esophagus 2004;17:38–43.

    Article  PubMed  CAS  Google Scholar 

  44. Beseth BD, Bedford R, Isacoff WH, Holmes EC, Cameron RB. Endoscopic ultrasound does not accurately assess pathologic stage of esophageal cancer after neoadjuvant chemoradiotherapy. Am Surg 2000;66:827–831.

    PubMed  CAS  Google Scholar 

  45. Cerfolio RJ, Bryant AS, Ohja B, Bartolucci AA, Eloubeidi MA. The accuracy of endoscopic ultrasonography with fine-needle aspiration, integrated positron emission tomography with computed tomography, and computed tomography in restaging patients with esophageal cancer after neoadjuvant chemoradiotherapy. J Thorac Cardiovasc Surg 2005;129:1232–1241.

    Article  PubMed  Google Scholar 

  46. Flamen P, Van Cutsem E, Lerut A, Cambier JP, Haustermans K, Bormans G, De Leyn P, Van Raemdonck D, De Wever W, Ectors N, Maes A, Mortelmans L. Positron emission tomography for assessment of the response to induction radiochemotherapy in locally advanced oesophageal cancer. Ann Oncol 2002;13:361–368.

    Article  PubMed  CAS  Google Scholar 

  47. Weber WA, Ott K, Becker K, Dittler HJ, Helmberger H, Avril NE, Meisetschlager G, Busch R, Siewert JR, Schwaiger M, Fink U. Prediction of response to preoperative chemotherapy in adenocarcinomas of the esophagogastric junction by metabolic imaging. J Clin Oncol 2001;19:3058–3065.

    PubMed  CAS  Google Scholar 

  48. Song SY, Kim JH, Ryu JS, Lee GH, Kim SB, Park SI, Song HY, Cho KJ, Ahn SD, Lee SW, Shin SS, Choi EK. FDG-PET in the prediction of pathologic response after neoadjuvant chemoradiotherapy in locally advanced, resectable esophageal cancer. Int J Radiat Oncol Biol Phys 2005;63:1053–1059.

    Article  PubMed  Google Scholar 

  49. Kato H, Kuwano H, Nakajima M, Miyazaki T, Yoshikawa M, Masuda N, Fukuchi M, Manda R, Tsukada K, Oriuchi N, Endo K. Usefulness of positron emission tomography for assessing the response of neoadjuvant chemoradiotherapy in patients with esophageal cancer. Am J Surg 2002;184:279–283.

    Article  PubMed  Google Scholar 

  50. Brink I, Hentschel M, Bley TA, Walch A, Mix M, Kleimaier M, Moser E, Imdahl A. Effects of neoadjuvant radio-chemotherapy on 18F-FDG-PET in esophageal carcinoma. Eur J Surg Oncol 2004;30:544–550.

    Article  PubMed  CAS  Google Scholar 

  51. Downey RJ, Akhurst T, Ilson D, Ginsberg R, Bains MS, Gonen M, Koong H, Gollub M, Minsky BD, Zakowski M, Turnbull A, Larson SM, Rusch V. Whole body 18FDG-PET and the response of esophageal cancer to induction therapy: results of a prospective trial. J Clin Oncol 2003;21:428–432.

    Article  PubMed  Google Scholar 

  52. Brucher BL, Weber W, Bauer M, Fink U, Avril N, Stein HJ, Werner M, Zimmerman F, Siewert JR, Schwaiger M. Neoadjuvant therapy of esophageal squamous cell carcinoma: response evaluation by positron emission tomography. Ann Surg 2001;233:300–309.

    Article  PubMed  CAS  Google Scholar 

  53. Arslan N, Miller TR, Dehdashti F, Battafarano RJ, Siegel BA. Evaluation of response to neoadjuvant therapy by quantitative 2-deoxy-2-[18F]fluoro-D-glucose with positron emission tomography in patients with esophageal cancer. Mol Imaging Biol 2002;4:301–310.

    Article  PubMed  Google Scholar 

  54. Briel JW, Tamhankar AP, Hagen JA, DeMeester SR, Johansson J, Choustoulakis E, Peters JH, Bremner CG, DeMeester TR. Prevalence and risk factors for ischemia, leak, and stricture of esophageal anastomosis: gastric pull-up versus colon interposition. J Am Coll Surg 2004;198:536–541; discussion 541–532.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

Financial support is provided by SAGES Research Grant (EYC), Medical Research Foundation of Oregon Early Clinical Investigator Grant (EYC), OHSU GCRC Mentored Medical Student Clinical Research Award (RAP), and NIH grants RO1 NS40801 and RO1 EB00422 (CSS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blair A. Jobe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, E.Y., Li, X., Jerosch-Herold, M. et al. The Evaluation of Esophageal Adenocarcinoma Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging. J Gastrointest Surg 12, 166–175 (2008). https://doi.org/10.1007/s11605-007-0253-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-007-0253-5

Keywords

Navigation