Skip to main content

Mitochondrial Function and Dynamics Imaged In Vivo

  • Chapter
  • First Online:
Mitochondrial Dysfunction in Neurodegenerative Disorders

Abstract

The previous chapters have described the extraordinary depth of knowledge of mitochondrial biology revealed by in vitro observations where the environment can be closely controlled. However, in recent years there has been increased interest in the study of mitochondria in vivo, where their properties can be studied with high spatial and temporal resolution while ensuring that key factors such as the oxygen and glucose concentrations are physiologically accurate. Advances facilitating such in vivo research include improved microscope systems and mitochondrially targeted dyes, as well as a wide range of transgenic animals expressing fluorescent proteins. Such in vivo observations provide a more realistic picture of mitochondrial involvement in health and disease and also offer the potential to reveal novel targets for therapeutic interventions. For example, loss of mitochondrial membrane potential and alterations in mitochondrial morphology and trafficking have been reported in mouse models of multiple sclerosis and Alzheimer’s disease, and redox potential changes have been reported during (patho)physiological changes in oxygen supply and demand.

In this chapter we summarise some techniques used in imaging of mitochondria in vivo, followed by a summary of key findings and recent advances in the study of mitochondrial function and dynamics. We aim to provide insight into the benefits and limitations of intravital imaging of mitochondria in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nikić I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M, Bareyre FM, et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med. 2011;17(4):495–9.

    Article  PubMed  Google Scholar 

  2. Kasischke KA, Lambert EM, Panepento B, Sun A, Gelbard HA, Burgess RW, et al. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions. J Cereb Blood Flow Metab. 2011;31(1):68–81.

    Article  CAS  PubMed  Google Scholar 

  3. Xie H, Guan J, Borrelli LA, Xu J, Serrano-Pozo A, Bacskai BJ. Mitochondrial alterations near amyloid plaques in an Alzheimer’s disease mouse model. J Neurosci. 2013;33(43):17042–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sajic M, Mastrolia V, Lee CY, Trigo D, Sadeghian M, Mosley AJ, et al. Impulse conduction increases mitochondrial transport in adult mammalian peripheral nerves in vivo. Barres BA, editor. PLoS Biol. 2013; 11(12):e1001754.

    Google Scholar 

  5. Sadeghian M, Rezaei Haddad A, Mastrolia V, Schiza D, Marija S, Duchen M, et al. Loss of mitochondrial function and impaired trafficking at the onset of neurological deficits in a neuroinflammatory model of multiple sclerosis (MS) studied by in vivo confocal imaging. Mult Scler J. 2013;19:46–7.

    Article  Google Scholar 

  6. Chisholm KI, Ida KK, Davies AL, Tachtsidis I, Papkovsky DB, Dyson A, et al. Hypothermia protects brain mitochondrial function from hypoxemia in a murine model of sepsis. J Cereb Blood Flow Metab. 1–10.

    Google Scholar 

  7. Weigert R, Porat-Shliom N, Amornphimoltham P. Imaging cell biology in live animals: ready for prime time. J Cell Biol. 2013;201(7):969–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Theer P, Hasan MT, Denk W. Two-photon imaging to a depth of 1000 microns in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett. 2003;28(12):1022–4.

    Article  CAS  PubMed  Google Scholar 

  9. Levene MJ, Dombeck D, Kasischke K, Molloy RP, Webb WW. In vivo multiphoton microscopy of deep brain tissue. J Neurophysiol. 2004;91(4):1908–12.

    Google Scholar 

  10. Benninger RKP, Piston DW. Two-photon excitation microscopy for the study of living cells and tissues. Curr Protoc Cell Biol. 2013; Chap. 4: Unit 4.11.1–24.

    Google Scholar 

  11. Masedunskas A, Milberg O, Porat-shliom N, Sramkova M, Wigand T, Amornphimoltham P, et al. Intravital microscopy: a practical guide on imaging intracellular structures in live animals. Bioarchitecture. 2012;2(5):143–57.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Davalos D, Akassoglou K. In vivo imaging of the mouse spinal cord using two-photon microscopy. J Vis Exp. 2012;59:1–5.

    Google Scholar 

  13. Davalos D, Lee JK, Smith WB, Brinkman B, Ellisman MH, Zheng B, et al. Stable in vivo imaging of densely populated glia, axons and blood vessels in the mouse spinal cord using two-photon microscopy. J Neurosci Methods. 2008;169(1):1–7.

    Article  PubMed  Google Scholar 

  14. Li W, Nava RG, Bribriesco AC, Zinselmeyer BH, Spahn JH, Gelman AE, et al. Intravital 2-photon imaging of leukocyte trafficking in beating heart. J Clin Invest. 2012;122(7):2499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Presson RG, Brown MB, Fisher AJ, Sandoval RM, Dunn KW, Lorenz KS, et al. Two-photon imaging within the murine thorax without respiratory and cardiac motion artifact. Am J Pathol. 2011;179(1):75–82.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pittet MJ, Weissleder R. Intravital imaging. Cell. 2011;147(5):983–91.

    Article  CAS  PubMed  Google Scholar 

  17. Thévenaz P, Ruttimann UE, Unser M. A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process. 1998;7(1):27–41.

    Article  PubMed  Google Scholar 

  18. Preibisch S, Saalfeld S, Schindelin J, Tomancak P. Software for bead-based registration of selective plane illumination microscopy data. Nat Methods. 2010;7(6):418–9.

    Article  CAS  PubMed  Google Scholar 

  19. Megens RT, Reitsma S, Prinzen L, Oude Egbrink MG, Engels W, Leenders PJ, et al. In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy. J Biomed Opt. 2010;15(1):011108.

    Article  PubMed  Google Scholar 

  20. Holtmaat A, Bonhoeffer T, Chow DK, Chuckowree J, Paola D, Hofer SB, et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc. 2009;4(8):1128–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang G, Pan F, Parkhurst CN, Grutzendler J, Gan W-B. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat Protoc. 2010;5(2):201–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Helmchen F, Denk W, Kerr JND. Miniaturization of two-photon microscopy for imaging in freely moving animals. Cold Spring Harb Protoc. 2013;10:904–13.

    Google Scholar 

  23. Dombeck DA, Khabbaz AN, Collman F, Adelman TL, Tank DW. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron. 2007;56(1):43–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Masters BR, So PT, Gratton E. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys J. 1997;72(6):2405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Webb RH, Hughes GW, Delori FC. Confocal scanning laser ophthalmoscope. Appl Opt. 1987;26(8):1492–9.

    Article  CAS  PubMed  Google Scholar 

  26. Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard H. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques. 2011;50(2):98–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Poot M, Zhang YZ, Kramer JA, Wells KS, Jones LJ, Hanzel DK, et al. Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J Histochem Cytochem. 1996;44(12):1363–72.

    Article  CAS  PubMed  Google Scholar 

  28. Mathur A. Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res. 2000;46(1):126–38.

    Article  CAS  PubMed  Google Scholar 

  29. Zheng W, Talley Watts L, Holstein DM, Wewer J, Lechleiter JD. P2Y1R-initiated, IP3R-dependent stimulation of astrocyte mitochondrial metabolism reduces and partially reverses ischemic neuronal damage in mouse. J Cereb Blood Flow Metab. 2013;33(4):600–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nimmerjahn A, Kirchhoff F, Kerr JND, Helmchen F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods. 2004;1(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  31. Nicholls DG. Fluorescence measurement of mitochondrial membrane potential changes in cultured cells. In: Palmeira CM, Moreno AJ, editors. Methods in molecular biology. Totowa: Humana Press; 2012. p. 119–33.

    Google Scholar 

  32. Nicholls DG, Ward MW. Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci. 2000;23(4):166–74.

    Article  CAS  PubMed  Google Scholar 

  33. Nicholls DG, Ferguson S. Bioenergetics. 4th ed. Philadelphia: Elsevier Science; 2013.

    Google Scholar 

  34. Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011;435(2):297–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gerencser A, Chinopoulos C, Birket MJ, Jastroch M, Vitelli C, Nicholls DG, et al. Quantitative measurement of mitochondrial membrane potential in cultured cells: calcium-induced de- and hyperpolarization of neuronal mitochondria. J Physiol. 2012;590(Pt 12):2845–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Romanelli E, Sorbara CD, Nikić I, Dagkalis A, Misgeld T, Kerschensteiner M. Cellular, subcellular and functional in vivo labeling of the spinal cord using vital dyes. Nat Protoc. 2013;8(3):481–90.

    Article  CAS  PubMed  Google Scholar 

  37. Chance B, Jöbsis F. Changes in fluorescence in a frog sartorius muscle following a twitch. Nature. 1959;184:195–6.

    Article  CAS  Google Scholar 

  38. Chance B, Schoener B. Fluorometric studies of flavin component of the respiratory chain. Flavins and flavoproteins. 1966. 510 p.

    Google Scholar 

  39. Blacker TS, Mann ZF, Gale JE, Ziegler M, Bain AJ, Szabadkai G, et al. Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat Commun. 2014;5:3936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chance B, Schoener B, Oshino R, Itshak F, Nakase Y. Oxidation-reduction ratio studies of mitochondria in freeze-trapped Samples – NADH and flavoprotein fluorescence signals. J Biol Chem. 1979;254(11):4764–71.

    CAS  PubMed  Google Scholar 

  41. Chisholm KI, Ida KK, Davies AL, Papkovsky DB, Singer M, Dyson A, et al. In vivo imaging of flavoprotein fluorescence during hypoxia reveals the importance of direct arterial oxygen supply to cerebral cortex tissue. Oxyg Transp to Tissue XXXVII Adv Exp Med. Chap. 30, 233–41.

    Google Scholar 

  42. Fein A, Tsacopoulos M. Activation of mitochondrial oxidative-metabolism by calcium-ions in limulus ventral photoreceptor. Nature. 1988;331(6155):437–40.

    Article  CAS  PubMed  Google Scholar 

  43. Shibuki K. Calcium-dependent and ouabain-resistant oxygen-consumption in the rat neurohypophysis. Brain Res. 1989;487(1):96–104.

    Article  CAS  PubMed  Google Scholar 

  44. Kann O, Schuchmann S, Buchheim K, Heinemann U. Coupling of neuronal activity and mitochondrial metabolism as revealed by NAD(P)H fluorescence signals in organotypic hippocampal slice cultures of the rat. Neuroscience. 2003;119(1):87–100.

    Article  CAS  PubMed  Google Scholar 

  45. Reinert KC, Gao WC, Chen G, Ebner TJ. Flavoprotein autofluorescence imaging in the cerebellar cortex in vivo. J Neurosci Res. 2007;85(15):3221–32.

    Article  CAS  PubMed  Google Scholar 

  46. Reinert KC, Gao WC, Chen G, Wang XM, Peng YP, Ebner TJ. Cellular and metabolic origins of flavoprotein autofluorescence in the cerebellar cortex in vivo. Cerebellum. 2011;10(3):585–99.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Reinert KC, Dunbar RL, Gao WC, Chen G, Ebner TJ. Flavoprotein autofluorescence imaging of neuronal activation in the cerebellar cortex in vivo. J Neurophysiol. 2004;92(1):199–211.

    Article  CAS  PubMed  Google Scholar 

  48. Gao WC, Chen G, Reinert KC, Ebner TJ. Cerebellar cortical molecular layer inhibition is organized in parasagittal zones. J Neurosci. 2006;26(32):8377–87.

    Article  CAS  PubMed  Google Scholar 

  49. Husson TR, Mallik AK, Zhang JX, Issa NP. Functional imaging of primary visual cortex using flavoprotein autofluorescence. J Neurosci. 2007;27(32):8665–75.

    Article  CAS  PubMed  Google Scholar 

  50. Shibuki K, Hishida R, Murakami H, Kudoh M, Kawaguchi T, Watanabe M, et al. Dynamic imaging of somatosensory cortical activity in the rat visualized by flavoprotein autofluorescence. J Physiol. 2003;549(3):919–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Takahashi K, Hishida R, Kubota Y, Kudoh M, Takahashi S, Shibuki K. Transcranial fluorescence imaging of auditory cortical plasticity regulated by acoustic environments in mice. Eur J Neurosci. 2006;23(5):1365–76.

    Article  PubMed  Google Scholar 

  52. Tohmi M, Kitaura H, Komagata S, Kudoh M, Shibuki K. Enduring critical period plasticity visualized by transcranial flavoprotein imaging in mouse primary visual cortex. J Neurosci. 2006;26(45):11775–85.

    Article  CAS  PubMed  Google Scholar 

  53. Kitaura H, Uozumi N, Tohmi M, Yamazaki M, Sakimura K, Kudoh M, et al. Roles of nitric oxide as a vasodilator in neurovascular coupling of mouse somatosensory cortex. Neurosci Res. 2007;59(2):160–71.

    Article  CAS  PubMed  Google Scholar 

  54. Weber B, Burger C, Wyss MT, von Schulthess GK, Scheffold F, Buck A. Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex. Eur J Neurosci. 2004;20(10):2664–70.

    Article  CAS  PubMed  Google Scholar 

  55. Moseley ML, Zu T, Ikeda Y, Gao WC, Mosemiller AK, Daughters RS, et al. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat Genet. 2006;38(7):758–69.

    Article  CAS  PubMed  Google Scholar 

  56. Mayevsky A, Weiss HR. Cerebral blood flow and oxygen consumption in cortical spreading depression. J Cereb Blood Flow Metab. 1991;11(5):829–36.

    Article  CAS  PubMed  Google Scholar 

  57. Takano T, Tian GF, Peng WG, Lou NH, Lovatt D, Hansen AJ, et al. Cortical spreading depression causes and coincides with tissue hypoxia. Nat Neurosci. 2007;10(6):754–62.

    Article  CAS  PubMed  Google Scholar 

  58. Chang JJJ, Youn TS, Benson D, Mattick H, Andrade N, Harper CR, et al. Physiologic and functional outcome correlates of brain tissue hypoxia in traumatic brain injury. Crit Care Med. 2009;37(1):283–90.

    Article  CAS  PubMed  Google Scholar 

  59. Read SJ, Hirano T, Abbott DF, Markus R, Sachinidis JI, Tochon-Danguy HJ, et al. The fate of hypoxic tissue on18F-fluoromisonidazole positron emission tomography after ischemic stroke. Ann Neurol. 2000;48(2):228–35.

    Article  CAS  PubMed  Google Scholar 

  60. Davies AL, Desai RA, Bloomfield PS, McIntosh PR, Chapple KJ, Linington C, et al. Neurological deficits caused by tissue hypoxia in neuroinflammatory disease. Ann Neurol. 2013;74(6):815–25.

    Article  CAS  PubMed  Google Scholar 

  61. Kubota Y, Kamatani D, Tsukano H, Ohshima S, Takahashi K, Hishida R, et al. Transcranial photo-inactivation of neural activities in the mouse auditory cortex. Neurosci Res. 2008;60(4):422–30.

    Article  PubMed  Google Scholar 

  62. Bilsland LG, Sahai E, Kelly G, Golding M, Greensmith L, Schiavo G. Deficits in axonal transport precede ALS symptoms in vivo. Proc Natl Acad Sci U S A. 2010;107(47):20523–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mar FM, Simões AR, Leite S, Morgado MM, Santos TE, Rodrigo IS, et al. CNS axons globally increase axonal transport after peripheral conditioning. J Neurosci. 2014;34(17):5965–70.

    Article  PubMed  Google Scholar 

  64. Misgeld T, Kerschensteiner M, Bareyre FM, Burgess RW, Lichtman JW. Imaging axonal transport of mitochondria in vivo. Nat Methods. 2007;4(7):559–61.

    Article  CAS  PubMed  Google Scholar 

  65. Jendrach M, Pohl S, Vöth M, Kowald A, Hammerstein P, Bereiter-Hahn J. Morpho-dynamic changes of mitochondria during ageing of human endothelial cells. Mech Ageing Dev. 2005;126:813–21.

    Article  CAS  PubMed  Google Scholar 

  66. Arnold B, Cassady SJ, VanLaar VS, Berman SB. Integrating multiple aspects of mitochondrial dynamics in neurons: age-related differences and dynamic changes in a chronic rotenone model. Neurobiol Dis. 2011;41(1):189–200.

    Article  CAS  PubMed  Google Scholar 

  67. Figge MT, Reichert AS, Meyer-Hermann M, Osiewacz HD. Deceleration of fusion-fission cycles improves mitochondrial quality control during aging. PLoS Comput Biol. 2012;8(6), e1002576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ross JM, Stewart JB, Hagström E, Brené S, Mourier A, Coppotelli G, et al. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature. 2013;501:412–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Payne BA, Wilson IJ, Hateley C, Horvath R, Santibanez-Koref M, Samuels DC, et al. Mitochondrial aging is accelerated by anti-retroviral therapy through the clonal expansion of mtDNA mutations. Nat Genet. 2011;43(8):806–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ma H, Folmes CDL, Wu J, Morey R, Mora-Castilla S, Ocampo A, et al. Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature. 2015;7564:234–8.

    Article  Google Scholar 

  71. Wahlestedt M, Ameur A, Moraghebi R, Norddahl GL, Sten G, Woods N-B, et al. Somatic cells with a heavy mitochondrial DNA mutational load render induced pluripotent stem cells with distinct differentiation defects. Stem Cells. 2014;32(5):1173–82.

    Article  CAS  PubMed  Google Scholar 

  72. Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid SL, et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods. 2008;5(8):695–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jaqaman K, Danuser G. Computational image analysis of cellular dynamics: a case study based on particle tracking. Cold Spring Harb Protoc. 2009;2009(12):pdb.top65.

    Google Scholar 

  74. Miller KE, Sheetz MP. Axonal mitochondrial transport and potential are correlated. J Cell Sci. 2004;117(Pt 13):2791–804.

    Article  CAS  PubMed  Google Scholar 

  75. Zambonin JL, Zhao C, Ohno N, Campbell GR, Engeham S, Ziabreva I, et al. Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis. Brain. 2011;134(Pt 7):1901–13.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zala D, Hinckelmann M-V, Yu H, da Cunha MM L, Liot G, Cordelières FP, et al. Vesicular glycolysis provides on-board energy for fast axonal transport. Cell. 2013;152(3):479–91.

    Article  CAS  PubMed  Google Scholar 

  77. Obashi K, Okabe S. Regulation of mitochondrial dynamics and distribution by synapse position and neuronal activity in the axon. Eur J Neurosci. 2013;38(3):2350–63.

    Article  PubMed  Google Scholar 

  78. Zhang, Ho PL, Kintner DB, Sun D, Chiu SY. Activity-dependent regulation of mitochondrial motility by calcium and Na/K-ATPase at nodes of Ranvier of myelinated nerves. J Neurosci. 2010;30(10):3555–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kiryu-Seo S, Ohno N, Kidd GJ, Komuro H, Trapp BD. Demyelination increases axonal stationary mitochondrial size and the speed of axonal mitochondrial transport. J Neurosci. 2010;30(19):6658–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Andrews S, Gilley J, Coleman MP. Difference tracker: imageJ plugins for fully automated analysis of multiple axonal transport parameters. J Neurosci Methods. 2010;193(2):281–7.

    Article  PubMed  Google Scholar 

  81. Winter MR, Fang C, Banker G, Roysam B, Cohen AR. Axonal transport analysis using Multitemporal Association Tracking. Int J Comput Biol Drug Des. 2012;5(1):35–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sorbara CD, Wagner NE, Ladwig A, Nikić I, Merkler D, Kleele T, et al. Pervasive axonal transport deficits in multiple sclerosis models. Neuron. 2014;84(6):1–8.

    Google Scholar 

  83. Chenouard N, Smal I, de Chaumont F, Maška M, Sbalzarini IF, Gong Y, et al. Objective comparison of particle tracking methods. Nat Methods. 2014;11(3):281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Plucinska G, Paquet D, Hruscha A, Godinho L, Haass C, Schmid B, et al. In vivo imaging of disease-related mitochondrial dynamics in a vertebrate model system. J Neurosci. 2012;32(46):16203–12.

    Article  CAS  PubMed  Google Scholar 

  85. Cai Q, Zakaria HM, Simone A, Sheng Z-H. Spatial parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons. Curr Biol. 2012;22(6):545–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ashrafi G, Schlehe JS, LaVoie MJ, Schwarz TL. Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J Cell Biol. 2014;206(5):655–70.

    Google Scholar 

  87. Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D, et al. PINK1 and Parkin target miro for phosphorylation and degradation to arrest mitochondrial motility. Cell. 2011;147(4):893–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Magrané J, Cortez C, Gan WB, Manfredi G. Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum Mol Genet. 2014;23(6):1413–24.

    Article  PubMed  Google Scholar 

  89. Ohno N, Kidd GJ, Mahad D, Kiryu-Seo S, Avishai A, Komuro H, et al. Myelination and axonal electrical activity modulate the distribution and motility of mitochondria at CNS nodes of Ranvier. J Neurosci. 2011;31(20):7249–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Neumann S, Woolf CJ. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron. 1999;23:83–91.

    Article  CAS  PubMed  Google Scholar 

  91. Ohno N, Chiang H, Mahad DJ, Kidd GJ, Liu L, Ransohoff RM, et al. Mitochondrial immobilization mediated by syntaphilin facilitates survival of demyelinated axons. Proc Natl Acad Sci U S A. 2014;111(27):1–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Chisholm BSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Chisholm, K., Peters, F., Schiza, D.G., Sadeghian, M., Smith, K. (2016). Mitochondrial Function and Dynamics Imaged In Vivo. In: Reeve, A., Simcox, E., Duchen, M., Turnbull, D. (eds) Mitochondrial Dysfunction in Neurodegenerative Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-28637-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28637-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28635-8

  • Online ISBN: 978-3-319-28637-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics