Skip to main content

Nutrition, Macrobiotics, and the Brain’s Neuroinflammatory Response

  • Chapter
  • First Online:
Neuro-Immuno-Gastroenterology

Abstract

Environmental factors play an important role in the development of chronic brain inflammatory and neurodegenerative conditions. Diet-derived bioactive molecules can modulate the blood-brain barrier and immune cell traffic to the brain. Alteration in the brain cytokine milieu results in microglial polarization that dictates the outcome of inflammatory process. Preclinical and clinical studies have revealed the anti-inflammatory properties of plant-derived compounds, such as polyphenols and polyunsaturated fatty acids. Nevertheless, no specific diets have been adopted in patients with multiple sclerosis (MS) or Alzheimer’s or Parkinson’s diseases.

The aim of this review was to provide a framework for nutritional interventions in patients with chronic brain inflammatory and neurodegenerative conditions. The effects of diet are analyzed in the context of complex interaction with gut microbiota and preexistent gut barrier defects as seen in patients with inflammatory bowel disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pachter JS, de Vries HE, Fabry Z. The blood–brain barrier and its role in immune privilege in the central nervous system. J Neuropathol Exp Neurol. 2003;62(6):593–604.

    Article  CAS  PubMed  Google Scholar 

  2. Ifergan I, et al. The blood–brain barrier induces differentiation of migrating monocytes into Th17-polarizing dendritic cells. Brain. 2008;131(Pt 3):785–99.

    Article  PubMed  Google Scholar 

  3. Walker DG, Lue LF. Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimers Res Ther. 2015;7(1):56.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol. 2011;11(11):775–87.

    Article  CAS  PubMed  Google Scholar 

  5. da Fonseca AC, et al. The impact of microglial activation on blood–brain barrier in brain diseases. Front Cell Neurosci. 2014;8:362.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Leblhuber F, et al. Elevated fecal calprotectin in patients with Alzheimer’s dementia indicates leaky gut. J Neural Transm (Vienna). 2015;122(9):1319–22.

    Article  CAS  Google Scholar 

  7. Candeias EM, et al. Gut-brain connection: the neuroprotective effects of the anti-diabetic drug liraglutide. World J Diabetes. 2015;6(6):807–27.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Robertson MD, et al. The influence of the colon on postprandial glucagon-like peptide 1 (7–36) amide concentration in man. J Endocrinol. 1999;161(1):25–31.

    Article  CAS  PubMed  Google Scholar 

  9. Bruck D, et al. Glia and alpha-synuclein in neurodegeneration: a complex interaction. Neurobiol Dis. 2016;85:262–74.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kelly LP, et al. Progression of intestinal permeability changes and alpha-synuclein expression in a mouse model of Parkinson’s disease. Mov Disord. 2014;29(8):999–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Braak H, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211.

    Article  PubMed  Google Scholar 

  12. Legroux L, Arbour N. Multiple sclerosis and T lymphocytes: an entangled story. J Neuroimmune Pharmacol. 2015;10(4):528–46.

    Article  PubMed  Google Scholar 

  13. Nouri M, et al. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells. PLoS One. 2014;9(9):e106335.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Drago S, et al. Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol. 2006;41(4):408–19.

    Article  CAS  PubMed  Google Scholar 

  15. Kieslich M, et al. Brain white-matter lesions in celiac disease: a prospective study of 75 diet-treated patients. Pediatrics. 2001;108(2):E21.

    Article  CAS  PubMed  Google Scholar 

  16. Rodrigo L, et al. Prevalence of celiac disease in multiple sclerosis. BMC Neurol. 2011;11:31.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gardiner RM. Transport of amino acids across the blood–brain barrier: implications for treatment of maternal phenylketonuria. J Inherit Metab Dis. 1990;13(4):627–33.

    Article  CAS  PubMed  Google Scholar 

  18. Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology. 2007;132(6):2169–80.

    Article  CAS  PubMed  Google Scholar 

  19. Swank RL, Goodwin JW. How saturated fats may be a causative factor in multiple sclerosis and other diseases. Nutrition. 2003;19(5):478.

    Article  CAS  PubMed  Google Scholar 

  20. Rey C, et al. Resolvin D1 and E1 promote resolution of inflammation in microglial cells in vitro. Brain Behav Immun. 2015. pii: S0889-1591(15)30075-1. doi: 10.1016/j.bbi.2015.12.013.

    Google Scholar 

  21. Chen S, et al. n-3 PUFA supplementation benefits microglial responses to myelin pathology. Sci Rep. 2014;4:7458.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Berman DR, et al. Docosahexaenoic acid pretreatment confers neuroprotection in a rat model of perinatal cerebral hypoxia-ischemia. Am J Obstet Gynecol. 2009;200(3):305.e1–6.

    Article  Google Scholar 

  23. Weinstock-Guttman B, et al. Low fat dietary intervention with omega-3 fatty acid supplementation in multiple sclerosis patients. Prostaglandins Leukot Essent Fatty Acids. 2005;73(5):397–404.

    Article  CAS  PubMed  Google Scholar 

  24. Torkildsen O, et al. omega-3 fatty acid treatment in multiple sclerosis (OFAMS Study): a randomized, double-blind, placebo-controlled trial. Arch Neurol. 2012;69(8):1044–51.

    Article  PubMed  Google Scholar 

  25. Banwell B, et al. Abnormal T-cell reactivities in childhood inflammatory demyelinating disease and type 1 diabetes. Ann Neurol. 2008;63(1):98–111.

    Article  PubMed  Google Scholar 

  26. Stefferl A, et al. Butyrophilin, a milk protein, modulates the encephalitogenic T cell response to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis. J Immunol. 2000;165(5):2859–65.

    Article  CAS  PubMed  Google Scholar 

  27. Mana P, et al. Tolerance induction by molecular mimicry: prevention and suppression of experimental autoimmune encephalomyelitis with the milk protein butyrophilin. Int Immunol. 2004;16(3):489–99.

    Article  CAS  PubMed  Google Scholar 

  28. Lahdeaho ML, et al. Antibodies to E1b protein-derived peptides of enteric adenovirus type 40 are associated with celiac disease and dermatitis herpetiformis. Clin Immunol Immunopathol. 1993;69(3):300–5.

    Article  CAS  PubMed  Google Scholar 

  29. Bushara KO. Neurologic presentation of celiac disease. Gastroenterology. 2005;128(4 Suppl 1):S92–7.

    Article  PubMed  Google Scholar 

  30. Shor DB, et al. Gluten sensitivity in multiple sclerosis: experimental myth or clinical truth? Ann N Y Acad Sci. 2009;1173:343–9.

    Article  CAS  PubMed  Google Scholar 

  31. Nicoletti A, et al. Frequency of celiac disease is not increased among multiple sclerosis patients. Mult Scler. 2008;14(5):698–700.

    Article  CAS  PubMed  Google Scholar 

  32. Hewson DC. Is there a role for gluten-free diets in multiple sclerosis? Hum Nutr Appl Nutr. 1984;38(6):417–20.

    CAS  PubMed  Google Scholar 

  33. Youdim KA, et al. Interaction between flavonoids and the blood–brain barrier: in vitro studies. J Neurochem. 2003;85(1):180–92.

    Article  CAS  PubMed  Google Scholar 

  34. Peng HW, et al. Determination of naringenin and its glucuronide conjugate in rat plasma and brain tissue by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl. 1998;714(2):369–74.

    Article  CAS  PubMed  Google Scholar 

  35. Levites Y, et al. Involvement of protein kinase C activation and cell survival/ cell cycle genes in green tea polyphenol (−)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem. 2002;277(34):30574–80.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Z, et al. Baicalein protects against 6-OHDA-induced neurotoxicity through activation of Keap1/Nrf2/HO-1 and involving PKC alpha and PI3K/AKT signaling pathways. J Agric Food Chem. 2012;60(33):8171–82.

    Article  CAS  PubMed  Google Scholar 

  37. Ono K, et al. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem. 2003;87(1):172–81.

    Article  CAS  PubMed  Google Scholar 

  38. Okello EJ, Leylabi R, McDougall GJ. Inhibition of acetylcholinesterase by green and white tea and their simulated intestinal metabolites. Food Funct. 2012;3(6):651–61.

    Article  CAS  PubMed  Google Scholar 

  39. Kim HG, et al. Acacetin protects dopaminergic cells against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neuroinflammation in vitro and in vivo. Biol Pharm Bull. 2012;35(8):1287–94.

    Article  CAS  PubMed  Google Scholar 

  40. Nichols M, et al. Synergistic neuroprotection by epicatechin and quercetin: activation of convergent mitochondrial signaling pathways. Neuroscience. 2015;308:75–94.

    Article  CAS  PubMed  Google Scholar 

  41. De Filippo C, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–6.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bruce-Keller AJ, et al. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol Psychiatry. 2015;77(7):607–15.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Miyake S, et al. Dysbiosis in the Gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLoS One. 2015;10(9):e0137429.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Frost G, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014;5:3611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shah P, et al. Short chain fatty acids induce TH gene expression via ERK-dependent phosphorylation of CREB protein. Brain Res. 2006;1107(1):13–23.

    Article  CAS  PubMed  Google Scholar 

  46. Harrison IF, Dexter DT. Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson’s disease? Pharmacol Ther. 2013;140(1):34–52.

    Article  CAS  PubMed  Google Scholar 

  47. Huuskonen J, et al. Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol. 2004;141(5):874–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marlow G, et al. Transcriptomics to study the effect of a Mediterranean-inspired diet on inflammation in Crohn’s disease patients. Hum Genomics. 2013;7:24.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Spalding KL, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153(6):1219–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Couillard-Despres S, et al. Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci. 2005;21(1):1–14.

    Article  PubMed  Google Scholar 

  51. Gruber L, et al. High fat diet accelerates pathogenesis of murine Crohn’s disease-like ileitis independently of obesity. PLoS One. 2013;8(8):e71661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ochoa-Reparaz J, et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol. 2009;183(10):6041–50.

    Article  CAS  PubMed  Google Scholar 

  53. Arsenescu R, et al. Role of the xenobiotic receptor in inflammatory bowel disease. Inflamm Bowel Dis. 2011;17(5):1149–62.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Arzuaga X, et al. Induction of gene pattern changes associated with dysfunctional lipid metabolism induced by dietary fat and exposure to a persistent organic pollutant. Toxicol Lett. 2009;189(2):96–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Arsenescu V, et al. Polychlorinated biphenyl-77 induces adipocyte differentiation and pro-inflammatory adipokines and promotes obesity and atherosclerosis. Environ Health Perspect. 2008;116(6):761–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zelante T, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39(2):372–85.

    Article  CAS  PubMed  Google Scholar 

  57. Li Y, et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell. 2011;147(3):629–40.

    Article  CAS  PubMed  Google Scholar 

  58. Li B, et al. Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice. Exp Neurol. 2013;250:239–49.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Violeta Arsenescu MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arsenescu, V. (2016). Nutrition, Macrobiotics, and the Brain’s Neuroinflammatory Response. In: Constantinescu, C., Arsenescu, R., Arsenescu, V. (eds) Neuro-Immuno-Gastroenterology. Springer, Cham. https://doi.org/10.1007/978-3-319-28609-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28609-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28607-5

  • Online ISBN: 978-3-319-28609-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics