Skip to main content

Neurological Complications of Anti-TNF Treatments and Other Neurological Aspects of Inflammatory Bowel Disease

  • Chapter
  • First Online:
Neuro-Immuno-Gastroenterology

Abstract

Inflammatory bowel diseases (IBD) result from dysregulated immune responses in the bowel. They are characterised by pathology mediated by immune cells with upregulated inflammatory profile. These disorders of immune regulation often coexist with other inflammatory conditions with altered immunoregulatory activities, including multiple sclerosis, rheumatoid arthritis, psoriasis, etc. Treatments targeting the pro-inflammatory cytokine, tumour necrosis factor alpha (TNFα), such as antibodies or soluble receptors, have revolutionised the management of IBD. However, paradoxically, such treatments have been associated with a risk of developing demyelinating disease, often typical multiple sclerosis. This chapter reviews the literature on the known prevalence and risk of demyelination in patients with IBD receiving TNF inhibitors, discusses potential mechanisms and also addresses the immunopathogenic, environmental and genetic commonalities of IBD and central nervous system demyelinating disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol. 2003;3(7):521–33.

    Article  CAS  PubMed  Google Scholar 

  2. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448(7152):427–34.

    Article  CAS  PubMed  Google Scholar 

  3. Nielsen OH, Ainsworth MA. Tumor necrosis factor inhibitors for inflammatory bowel disease. N Engl J Med. 2013;369(8):754–62.

    Article  CAS  PubMed  Google Scholar 

  4. Rossard TP. Tumor necrosis factor, vol. xii. New York: Nova Biomedical Books; 2009. p. 246.

    Google Scholar 

  5. Hehlgans T, Pfeffer K. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology. 2005;115(1):1–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arnett HA, et al. TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci. 2001;4(11):1116–22.

    Article  CAS  PubMed  Google Scholar 

  7. Tartaglia LA, Pennica D, Goeddel DV. Ligand passing: the 75-kDa tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kDa TNF receptor. J Biol Chem. 1993;268(25):18542–8.

    CAS  PubMed  Google Scholar 

  8. Weiss T, et al. Enhancement of TNF receptor p60-mediated cytotoxicity by TNF receptor p80: requirement of the TNF receptor-associated factor-2 binding site. J Immunol. 1997;158(5):2398–404.

    CAS  PubMed  Google Scholar 

  9. Hanauer SB, et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet. 2002;359(9317):1541–9.

    Article  CAS  PubMed  Google Scholar 

  10. Present DH, et al. Infliximab for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med. 1999;340(18):1398–405.

    Article  CAS  PubMed  Google Scholar 

  11. Rutgeerts P, et al. Efficacy and safety of retreatment with anti-tumor necrosis factor antibody (infliximab) to maintain remission in Crohn’s disease. Gastroenterology. 1999;117(4):761–9.

    Article  CAS  PubMed  Google Scholar 

  12. Sands BE, et al. Infliximab maintenance therapy for fistulizing Crohn’s disease. N Engl J Med. 2004;350(9):876–85.

    Article  CAS  PubMed  Google Scholar 

  13. Targan SR, et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s Disease cA2 Study Group. N Engl J Med. 1997;337(15):1029–35.

    Article  CAS  PubMed  Google Scholar 

  14. Rutgeerts P, et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2005;353(23):2462–76.

    Article  CAS  PubMed  Google Scholar 

  15. Colombel JF, et al. Adalimumab for maintenance of clinical response and remission in patients with Crohn’s disease: the CHARM trial. Gastroenterology. 2007;132(1):52–65.

    Article  CAS  PubMed  Google Scholar 

  16. Hanauer SB, et al. Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: the CLASSIC-I trial. Gastroenterology. 2006;130(2):323–33; quiz 591.

    Article  CAS  PubMed  Google Scholar 

  17. Sandborn WJ, et al. Adalimumab for maintenance treatment of Crohn’s disease: results of the CLASSIC II trial. Gut. 2007;56(9):1232–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sandborn WJ, et al. Adalimumab induces and maintains clinical remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 2012;142(2):257–65.e1–3.

    Article  CAS  PubMed  Google Scholar 

  19. Afif W, et al. Open-label study of adalimumab in patients with ulcerative colitis including those with prior loss of response or intolerance to infliximab. Inflamm Bowel Dis. 2009;15(9):1302–7.

    Article  PubMed  Google Scholar 

  20. Schreiber S. Crohn’s disease--infliximab, adalimumab and certolizumab-pegol: clinical value of anti-TNF-alpha treatment. Dtsch Med Wochenschr. 2007;132(34–35):1770–4.

    Article  CAS  PubMed  Google Scholar 

  21. Sandborn WJ, et al. Subcutaneous golimumab maintains clinical response in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 2014;146(1):96–109.e1.

    Article  CAS  PubMed  Google Scholar 

  22. Lichtenstein GR, et al. Infliximab maintenance treatment reduces hospitalizations, surgeries, and procedures in fistulizing Crohn’s disease. Gastroenterology. 2005;128(4):862–9.

    Article  CAS  PubMed  Google Scholar 

  23. Mackenzie IS, et al. Incidence and prevalence of multiple sclerosis in the UK 1990–2010: a descriptive study in the General Practice Research Database. J Neurol Neurosurg Psychiatry. 2013;85(1):76–84.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ebers GC. Environmental factors and multiple sclerosis. Lancet Neurol. 2008;7(3):268–77.

    Article  PubMed  Google Scholar 

  25. Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol. 2005;23:683–747.

    Article  CAS  PubMed  Google Scholar 

  26. Selmaj K, et al. Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J Clin Invest. 1991;87(3):949–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hauser SL, et al. Cytokine accumulations in CSF of multiple sclerosis patients: frequent detection of interleukin-1 and tumor necrosis factor but not interleukin-6. Neurology. 1990;40(11):1735–9.

    Article  CAS  PubMed  Google Scholar 

  28. Sharief MK, Hentges R. Association between tumor necrosis factor-alpha and disease progression in patients with multiple sclerosis. N Engl J Med. 1991;325(7):467–72.

    Article  CAS  PubMed  Google Scholar 

  29. Beck J, et al. Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: do cytokines trigger off exacerbations? Acta Neurol Scand. 1988;78(4):318–23.

    Article  CAS  PubMed  Google Scholar 

  30. Selmaj K, et al. Cytokine cytotoxicity against oligodendrocytes. Apoptosis induced by lymphotoxin. J Immunol. 1991;147(5):1522–9.

    CAS  PubMed  Google Scholar 

  31. Selmaj KW, Raine CS. Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol. 1988;23(4):339–46.

    Article  CAS  PubMed  Google Scholar 

  32. Carlos TM, et al. Vascular cell adhesion molecule-1 mediates lymphocyte adherence to cytokine-activated cultured human endothelial cells. Blood. 1990;76(5):965–70.

    CAS  PubMed  Google Scholar 

  33. Lavi E, et al. Tumor necrosis factor induces expression of MHC class I antigens on mouse astrocytes. J Neuroimmunol. 1988;18(3):245–53.

    Article  CAS  PubMed  Google Scholar 

  34. Benveniste EN, Sparacio SM, Bethea JR. Tumor necrosis factor-alpha enhances interferon-gamma-mediated class II antigen expression on astrocytes. J Neuroimmunol. 1989;25(2–3):209–19.

    Article  CAS  PubMed  Google Scholar 

  35. Kuroda Y, Shimamoto Y. Human tumor necrosis factor-alpha augments experimental allergic encephalomyelitis in rats. J Neuroimmunol. 1991;34(2–3):159–64.

    Article  CAS  PubMed  Google Scholar 

  36. Probert L, et al. Spontaneous inflammatory demyelinating disease in transgenic mice showing central nervous system-specific expression of tumor necrosis factor alpha. Proc Natl Acad Sci U S A. 1995;92(24):11294–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Baker D, et al. Control of established experimental allergic encephalomyelitis by inhibition of tumor necrosis factor (TNF) activity within the central nervous system using monoclonal antibodies and TNF receptor-immunoglobulin fusion proteins. Eur J Immunol. 1994;24(9):2040–8.

    Article  CAS  PubMed  Google Scholar 

  38. Ruddle NH, et al. An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis. J Exp Med. 1990;172(4):1193–200.

    Article  CAS  PubMed  Google Scholar 

  39. Selmaj K, Raine CS, Cross AH. Anti-tumor necrosis factor therapy abrogates autoimmune demyelination. Ann Neurol. 1991;30(5):694–700.

    Article  CAS  PubMed  Google Scholar 

  40. van Oosten BW, et al. Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology. 1996;47(6):1531–4.

    Article  PubMed  Google Scholar 

  41. TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. The Lenercept Multiple Sclerosis Study Group and the University of British Columbia MS/MRI Analysis Group. Neurology. 1999;53(3):457–65.

    Google Scholar 

  42. Klinkert WE, et al. TNF-alpha receptor fusion protein prevents experimental auto-immune encephalomyelitis and demyelination in Lewis rats: an overview. J Neuroimmunol. 1997;72(2):163–8.

    Article  CAS  PubMed  Google Scholar 

  43. Andersen NN, et al. Occurrence of demyelinating diseases after anti-TNFalpha treatment of inflammatory bowel disease: a Danish Crohn Colitis Database study. J Crohns Colitis. 2008;2(4):304–9.

    Article  PubMed  Google Scholar 

  44. Bouchra A, Benbouazza K, Hajjaj-Hassouni N. Guillain-Barre in a patient with ankylosing spondylitis secondary to ulcerative colitis on infliximab therapy. Clin Rheumatol. 2009;28 Suppl 1:S53–5.

    Article  PubMed  Google Scholar 

  45. Dubcenco E, et al. Neurological symptoms suggestive of demyelination in Crohn’s disease after infliximab therapy. Eur J Gastroenterol Hepatol. 2006;18(5):565–6.

    Article  PubMed  Google Scholar 

  46. Enayati PJ, Papadakis KA. Association of anti-tumor necrosis factor therapy with the development of multiple sclerosis. J Clin Gastroenterol. 2005;39(4):303–6.

    Article  PubMed  Google Scholar 

  47. Felekis T, et al. Reversible bilateral optic neuritis after Infliximab discontinuation in a patient with Crohn’s disease. J Crohns Colitis. 2009;3(3):212–4.

    Article  PubMed  Google Scholar 

  48. Freeman HJ, Flak B. Demyelination-like syndrome in Crohn’s disease after infliximab therapy. Can J Gastroenterol. 2005;19(5):313–6.

    Article  PubMed  Google Scholar 

  49. Gondim FA, et al. Peripheral neuropathy in patients with inflammatory bowel disease. Brain. 2005;128(Pt 4):867–79.

    Article  CAS  PubMed  Google Scholar 

  50. Lees CW, et al. The safety profile of anti-tumour necrosis factor therapy in inflammatory bowel disease in clinical practice: analysis of 620 patient-years follow-up. Aliment Pharmacol Ther. 2009;29(3):286–97.

    Article  CAS  PubMed  Google Scholar 

  51. Lozeron P, et al. Long-term course of demyelinating neuropathies occurring during tumor necrosis factor-alpha-blocker therapy. Arch Neurol. 2009;66(4):490–7.

    Article  PubMed  Google Scholar 

  52. Mejico LJ. Infliximab-associated retrobulbar optic neuritis. Arch Ophthalmol. 2004;122(5):793–4.

    Article  PubMed  Google Scholar 

  53. Nozaki K, et al. Neurological deficits during treatment with tumor necrosis factor-alpha antagonists. Am J Med Sci. 2011;342(5):352–5.

    Article  PubMed  Google Scholar 

  54. Ohyagi M, et al. Chronic inflammatory demyelinating polyradiculoneuropathy in a patient with Crohn’s disease. Intern Med. 2013;52(1):125–8.

    Article  PubMed  Google Scholar 

  55. Ouakaa-Kchaou A, et al. Retrobulbar optic neuritis associated with infliximab in a patient with Crohn’s disease. J Crohns Colitis. 2009;3(2):131–3.

    Article  PubMed  Google Scholar 

  56. Shin IS, et al. Guillain-Barre and Miller Fisher syndromes occurring with tumor necrosis factor alpha antagonist therapy. Arthritis Rheum. 2006;54(5):1429–34.

    Article  CAS  PubMed  Google Scholar 

  57. Solomon AJ, et al. Inflammatory neurological disease in patients treated with tumor necrosis factor alpha inhibitors. Mult Scler. 2011;17(12):1472–87.

    Article  CAS  PubMed  Google Scholar 

  58. Weinshenker BG, Sandborn WJ. Demyelination during anti-tumor necrosis factor alpha therapy with infliximab for Crohn’s disease. Inflamm Bowel Dis. 2004;10(1):28–31.

    Article  PubMed  Google Scholar 

  59. Deepak P, et al. Neurological events with tumour necrosis factor alpha inhibitors reported to the Food and Drug Administration Adverse Event Reporting System. Aliment Pharmacol Ther. 2013;38(4):388–96.

    Article  CAS  PubMed  Google Scholar 

  60. Caspersen S, et al. Infliximab for inflammatory bowel disease in Denmark 1999–2005: clinical outcome and follow-up evaluation of malignancy and mortality. Clin Gastroenterol Hepatol. 2008;6(11):1212–7; quiz 1176.

    Article  PubMed  Google Scholar 

  61. Colombel JF, et al. The safety profile of infliximab in patients with Crohn’s disease: the Mayo clinic experience in 500 patients. Gastroenterology. 2004;126(1):19–31.

    Article  CAS  PubMed  Google Scholar 

  62. De Felice KM, et al. Idiopathic inflammatory demyelinating disease of the central nervous system in patients with inflammatory bowel disease: retrospective analysis of 9095 patients. Aliment Pharmacol Ther. 2015;41(1):99–107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Hamzaoglu H, et al. Safety of infliximab in Crohn’s disease: a large single-center experience. Inflamm Bowel Dis. 2010;16(12):2109–16.

    Article  CAS  PubMed  Google Scholar 

  64. Bernstein CN, Wajda A, Blanchard JF. The clustering of other chronic inflammatory diseases in inflammatory bowel disease: a population-based study. Gastroenterology. 2005;129(3):827–36.

    Article  PubMed  Google Scholar 

  65. Gupta G, Gelfand JM, Lewis JD. Increased risk for demyelinating diseases in patients with inflammatory bowel disease. Gastroenterology. 2005;129(3):819–26.

    Article  PubMed  Google Scholar 

  66. Kimura K, et al. Concurrence of inflammatory bowel disease and multiple sclerosis. Mayo Clin Proc. 2000;75(8):802–6.

    Article  CAS  PubMed  Google Scholar 

  67. Rang EH, Brooke BN, Hermon-Taylor J. Association of ulcerative colitis with multiple sclerosis. Lancet. 1982;2(8297):555.

    Article  CAS  PubMed  Google Scholar 

  68. Katsanos AH, Katsanos KH. Inflammatory bowel disease and demyelination: more than just a coincidence? Expert Rev Clin Immunol. 2014;10(3):363–73.

    Article  CAS  PubMed  Google Scholar 

  69. Langer-Gould A, et al. Autoimmune diseases prior to the diagnosis of multiple sclerosis: a population-based case–control study. Mult Scler. 2010;16(7):855–61.

    Article  CAS  PubMed  Google Scholar 

  70. Marrie RA, et al. A systematic review of the incidence and prevalence of comorbidity in multiple sclerosis: overview. Mult Scler. 2013;21(3):263–81.

    Article  Google Scholar 

  71. Tremlett HL, et al. Asthma and multiple sclerosis: an inverse association in a case–control general practice population. QJM. 2002;95(11):753–6.

    Article  CAS  PubMed  Google Scholar 

  72. Oliveira GR, et al. Peripheral neuropathy and neurological disorders in an unselected Brazilian population-based cohort of IBD patients. Inflamm Bowel Dis. 2008;14(3):389–95.

    Article  CAS  PubMed  Google Scholar 

  73. Cruz Fernandez-Espartero M, et al. Demyelinating disease in patients treated with TNF antagonists in rheumatology: data from BIOBADASER, a pharmacovigilance database, and a systematic review. Semin Arthritis Rheum. 2011;41(3):524–33.

    Article  CAS  PubMed  Google Scholar 

  74. Mohan N, et al. Demyelination occurring during anti-tumor necrosis factor alpha therapy for inflammatory arthritides. Arthritis Rheum. 2001;44(12):2862–9.

    Article  CAS  PubMed  Google Scholar 

  75. Constantinescu CS, Gran B. Multiple sclerosis: autoimmune associations in multiple sclerosis. Nat Rev Neurol. 2010;6(11):591–2.

    Article  CAS  PubMed  Google Scholar 

  76. Pokorny CS, Beran RG, Pokorny MJ. Association between ulcerative colitis and multiple sclerosis. Intern Med J. 2007;37(10):721–4.

    Article  CAS  PubMed  Google Scholar 

  77. Robinson WH, Genovese MC, Moreland LW. Demyelinating and neurologic events reported in association with tumor necrosis factor alpha antagonism: by what mechanisms could tumor necrosis factor alpha antagonists improve rheumatoid arthritis but exacerbate multiple sclerosis? Arthritis Rheum. 2001;44(9):1977–83.

    Article  CAS  PubMed  Google Scholar 

  78. Prinz JC. Autoimmune-like syndromes during TNF blockade: does infection have a role? Nat Rev Rheumatol. 2011;7(7):429–34.

    Article  CAS  PubMed  Google Scholar 

  79. Cope AP. Regulation of autoimmunity by proinflammatory cytokines. Curr Opin Immunol. 1998;10(6):669–76.

    Article  CAS  PubMed  Google Scholar 

  80. Kassiotis G, Kollias G. Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level: implications for pathogenesis and therapy of autoimmune demyelination. J Exp Med. 2001;193(4):427–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. van der Bijl AE, et al. Advanced magnetic resonance imaging of the brain in patients treated with TNF-alpha blocking agents. Clin Exp Rheumatol. 2007;25(2):301–4.

    PubMed  Google Scholar 

  82. Mottershead JP, et al. High field MRI correlates of myelin content and axonal density in multiple sclerosis–a post-mortem study of the spinal cord. J Neurol. 2003;250(11):1293–301.

    Article  CAS  PubMed  Google Scholar 

  83. Kaltsonoudis E, et al. Neurological adverse events in patients receiving anti-TNF therapy: a prospective imaging and electrophysiological study. Arthritis Res Ther. 2014;16(3):R125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Nancey S, et al. Infliximab treatment does not induce organ-specific or nonorgan-specific autoantibodies other than antinuclear and anti-double-stranded DNA autoantibodies in Crohn’s disease. Inflamm Bowel Dis. 2005;11(11):986–91.

    Article  PubMed  Google Scholar 

  85. Jonsdottir T, et al. Treatment with tumour necrosis factor alpha antagonists in patients with rheumatoid arthritis induces anticardiolipin antibodies. Ann Rheum Dis. 2004;63(9):1075–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ramos-Casals M, et al. Autoimmune diseases induced by biological agents: a double-edged sword? Autoimmun Rev. 2010;9(3):188–93.

    Article  CAS  PubMed  Google Scholar 

  87. Miehsler W, et al. A decade of infliximab: the Austrian evidence based consensus on the safe use of infliximab in inflammatory bowel disease. J Crohns Colitis. 2010;4(3):221–56.

    Article  CAS  PubMed  Google Scholar 

  88. Ramos-Casals M, et al. Autoimmune diseases induced by TNF-targeted therapies: analysis of 233 cases. Medicine (Baltimore). 2007;86(4):242–51.

    Article  Google Scholar 

  89. Baker HW, et al. Multiple sclerosis and autoimmune diseases. Aust N Z J Med. 1972;2(3):256–60.

    Article  CAS  PubMed  Google Scholar 

  90. Barcellos LF, et al. Clustering of autoimmune diseases in families with a high-risk for multiple sclerosis: a descriptive study. Lancet Neurol. 2006;5(11):924–31.

    Article  CAS  PubMed  Google Scholar 

  91. Broadley SA, et al. Autoimmune disease in first-degree relatives of patients with multiple sclerosis. A UK survey. Brain. 2000;123(Pt 6):1102–11.

    Article  PubMed  Google Scholar 

  92. de Lau LM, et al. Acute CNS white matter lesions in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2009;15(4):576–80.

    Article  PubMed  Google Scholar 

  93. Gotkine M, Fellig Y, Abramsky O. Occurrence of CNS demyelinating disease in patients with myasthenia gravis. Neurology. 2006;67(5):881–3.

    Article  PubMed  Google Scholar 

  94. Heinzlef O, et al. Autoimmune diseases in families of French patients with multiple sclerosis. Acta Neurol Scand. 2000;101(1):36–40.

    Article  CAS  PubMed  Google Scholar 

  95. Lo R, Feasby TE. Multiple sclerosis and autoimmune diseases. Neurology. 1983;33(1):97–8.

    Article  CAS  PubMed  Google Scholar 

  96. Midgard R, et al. Multiple sclerosis and chronic inflammatory diseases. A case–control study. Acta Neurol Scand. 1996;93(5):322–8.

    Article  CAS  PubMed  Google Scholar 

  97. Toussirot E, et al. Association of rheumatoid arthritis with multiple sclerosis: report of 14 cases and discussion of its significance. J Rheumatol. 2006;33(5):1027–8.

    PubMed  Google Scholar 

  98. Minuk GY, Lewkonia RM. Possible familial association of multiple sclerosis and inflammatory bowel disease. N Engl J Med. 1986;314(9):586.

    Article  CAS  PubMed  Google Scholar 

  99. Sadovnick AD, Paty DW, Yannakoulias G. Concurrence of multiple sclerosis and inflammatory bowel disease. N Engl J Med. 1989;321(11):762–3.

    CAS  PubMed  Google Scholar 

  100. Edwards LJ, Constantinescu CS. A prospective study of conditions associated with multiple sclerosis in a cohort of 658 consecutive outpatients attending a multiple sclerosis clinic. Mult Scler. 2004;10(5):575–81.

    Article  CAS  PubMed  Google Scholar 

  101. Dobson R, Giovannoni G. Autoimmune disease in people with multiple sclerosis and their relatives: a systematic review and meta-analysis. J Neurol. 2013;260(5):1272–85.

    Article  CAS  PubMed  Google Scholar 

  102. Nielsen NM, et al. Autoimmune diseases in patients with multiple sclerosis and their first-degree relatives: a nationwide cohort study in Denmark. Mult Scler. 2008;14(6):823–9.

    Article  CAS  PubMed  Google Scholar 

  103. Ramagopalan SV, et al. Autoimmune disease in families with multiple sclerosis: a population-based study. Lancet Neurol. 2007;6(7):604–10.

    Article  PubMed  Google Scholar 

  104. Roshanisefat H, et al. Shared genetic factors may not explain the raised risk of comorbid inflammatory diseases in multiple sclerosis. Mult Scler. 2012;18(10):1430–6.

    Article  CAS  PubMed  Google Scholar 

  105. De Keyser J. Autoimmunity in multiple sclerosis. Neurology. 1988;38(3):371–4.

    Article  PubMed  Google Scholar 

  106. Figueroa JJ, et al. Peripheral neuropathy incidence in inflammatory bowel disease: a population-based study. Neurology. 2013;80(18):1693–7.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Green C, et al. A population-based ecologic study of inflammatory bowel disease: searching for etiologic clues. Am J Epidemiol. 2006;164(7):615–23; discussion 624–8.

    Article  PubMed  Google Scholar 

  108. Ramagopalan SV, Sadovnick AD. Epidemiology of multiple sclerosis. Neurol Clin. 2011;29(2):207–17.

    Article  PubMed  Google Scholar 

  109. Maddur MS, et al. Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol. 2012;181(1):8–18.

    Article  CAS  PubMed  Google Scholar 

  110. Khalili H, et al. Geographical variation and incidence of inflammatory bowel disease among US women. Gut. 2012;61(12):1686–92.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Fernando MM, et al. Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet. 2008;4(4), e1000024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Lettre G, Rioux JD. Autoimmune diseases: insights from genome-wide association studies. Hum Mol Genet. 2008;17(R2):R116–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cho JH, Brant SR. Recent insights into the genetics of inflammatory bowel disease. Gastroenterology. 2011;140(6):1704–12.

    Article  CAS  PubMed  Google Scholar 

  114. Kamada N, et al. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13(5):321–35.

    Article  CAS  PubMed  Google Scholar 

  115. Ochoa-Reparaz J, et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol. 2009;183(10):6041–50.

    Article  CAS  PubMed  Google Scholar 

  116. Hansen JJ, Sartor RB. Therapeutic manipulation of the microbiome in IBD: current results and future approaches. Curr Treat Options Gastroenterol. 2015;13(1):105–20.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Aranow C. Vitamin D and the immune system. J Invest Med. 2011;59(6):881–6.

    Article  CAS  Google Scholar 

  118. Smolders J, et al. Vitamin D status is positively correlated with regulatory T cell function in patients with multiple sclerosis. PLoS One. 2009;4(8), e6635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Ramagopalan SV, et al. Expression of the multiple sclerosis-associated MHC class II Allele HLA-DRB1*1501 is regulated by vitamin D. PLoS Genet. 2009;5(2), e1000369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Munger KL, et al. Vitamin D intake and incidence of multiple sclerosis. Neurology. 2004;62(1):60–5.

    Article  CAS  PubMed  Google Scholar 

  121. Wang TT, et al. Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn disease. J Biol Chem. 2010;285(4):2227–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ananthakrishnan AN, et al. Higher predicted vitamin D status is associated with reduced risk of Crohn’s disease. Gastroenterology. 2012;142(3):482–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Danese S, et al. Extraintestinal manifestations in inflammatory bowel disease. World J Gastroenterol. 2005;11(46):7227–36.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Lossos A, et al. Neurologic aspects of inflammatory bowel disease. Neurology. 1995;45(3 Pt 1):416–21.

    Article  CAS  PubMed  Google Scholar 

  125. Moris G. Inflammatory bowel disease: an increased risk factor for neurologic complications. World J Gastroenterol. 2014;20(5):1228–37.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cris S. Constantinescu MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lim, SY., Constantinescu, C.S. (2016). Neurological Complications of Anti-TNF Treatments and Other Neurological Aspects of Inflammatory Bowel Disease. In: Constantinescu, C., Arsenescu, R., Arsenescu, V. (eds) Neuro-Immuno-Gastroenterology. Springer, Cham. https://doi.org/10.1007/978-3-319-28609-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28609-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28607-5

  • Online ISBN: 978-3-319-28609-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics