Skip to main content

The Putative Role of Measles Virus in the Pathogenesis of Otosclerosis

  • Chapter
  • First Online:
Surgery of Stapes Fixations

Abstract

The main goal of this report is to review our current knowledge about the etiopathogenesis of otosclerotic bone remodeling disorder focusing on measles virus infection. Otosclerosis is a disease of pathologically increased bone turnover of the human otic capsule; however, the etiopathogenesis remained unclear. Persisting measles virus infection, genetic predisposition, disturbed bone metabolism, inflammatory processes, autoimmunity, and hormonal and environmental factors also may play contributing roles in the pathogenesis of otosclerosis. In the future, prospective studies based on comprehensive histopathologic, molecular biologic, and genetic analysis are necessary to get further information about the background of disease in order to clarify the role of measles in the etiopathogenesis and to find the most promising treatment option.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chole RA, McKenna M. Pathophysiology of otosclerosis. Otol Neurotol. 2001;22:249–57.

    Article  CAS  PubMed  Google Scholar 

  2. Karosi T, Szekanecz Z, Sziklai I. Otosclerosis: an autoimmune disease? Autoimmun Rev. 2009;9:95–101.

    Article  PubMed  Google Scholar 

  3. Yoo TJ. Etiopathogenesis of otosclerosis: a hypothesis. Ann Otol Rhinol Laryngol. 1984;93:28–33.

    Article  CAS  PubMed  Google Scholar 

  4. McKenna MJ, Kristiansen AG. Molecular biology of otosclerosis. Adv Otorhinolaryngol. 2007;65:68–74.

    PubMed  Google Scholar 

  5. Wang PC, Merchant SN, McKenna MJ, Glynn RJ, Nadol Jr JB. Does otosclerosis occur only in the temporal bone? Am J Otol. 1999;20:162–5.

    Article  CAS  PubMed  Google Scholar 

  6. Declau F, Van Spaendonck M, Timmermans JP, Michaels L, Liang J, Qiu JP, Van de Heyning P. Prevalence of otosclerosis in an unselected series of temporal bones. Otol Neurotol. 2001;22:596–602.

    Article  CAS  PubMed  Google Scholar 

  7. Gros A, Vatovec J, Sereg-Bahar M. Histologic changes on stapedial footplate in otosclerosis. Correlations between histologic activity and clinical findings. Otol Neurotol. 2003;24:43–7.

    Article  PubMed  Google Scholar 

  8. Stankovic KM, McKenna MJ. Current research in otosclerosis. Curr Opin Otolaryngol Head Neck Surg. 2006;14:347–51.

    Article  PubMed  Google Scholar 

  9. Sziklai I. Human otosclerotic bone-derived peptide decreases the gain of the electromotility in isolated outer hair cells. Hear Res. 1996;95:100–7.

    Article  CAS  PubMed  Google Scholar 

  10. Sziklai I, Batta TJ, Karosi T. Otosclerosis: an organ-specific inflammatory disease with sensorineural hearing loss. Eur Arch Otorhinolaryngol. 2009;266:1711–8.

    Article  PubMed  Google Scholar 

  11. Michaels L. The temporal bone: an organ in search of a histopathology. Histopathology. 1991;18:391–4.

    Article  CAS  PubMed  Google Scholar 

  12. Niedermeyer HP, Arnold W. Etiopathogenesis of otosclerosis. ORL J Otorhinolaryngol Relat Spec. 2002;64:114–9.

    Article  CAS  PubMed  Google Scholar 

  13. Cureoglu S, Schachern PA, Ferlito A, Rinaldo A, Tsuprun V, Paparella MM. Otosclerosis: etiopathogenesis and histopathology. Am J Otolaryngol. 2006;27:334–40.

    Article  PubMed  Google Scholar 

  14. Arnold W, Niedermeyer HP, Lehn N, Neubert W, Höfler H. Measles virus in otosclerosis and the specific immune response of the inner ear. Acta Otolaryngol. 1996;116:705–9.

    Article  CAS  PubMed  Google Scholar 

  15. Niedermeyer HP, Arnold W. Otosclerosis: a measles virus associated inflammatory disease. Acta Otolaryngol. 1995;115:300–3.

    Article  CAS  PubMed  Google Scholar 

  16. Karosi T, Jókay I, Kónya J, Szabó LZ, Pytel J, Jóri J, Szalmás A, Sziklai I. Detection of osteoprotegerin and TNF-alpha mRNA in ankylotic Stapes footplates in connection with measles virus positivity. Laryngoscope. 2006;116:1427–33.

    Article  CAS  PubMed  Google Scholar 

  17. Karosi T, Kónya J, Szabó LZ, Pytel J, Jóri J, Szalmás A, Sziklai I. Codetection of measles virus and tumor necrosis factor-alpha mRNA in otosclerotic stapes footplates. Laryngoscope. 2005;115:1291–7.

    Article  CAS  PubMed  Google Scholar 

  18. Valsalva A. De aurae humana tractatus. Venetiis. Joanne Baptista Margagnus. 1740.

    Google Scholar 

  19. Politzer A. Über primare erkrankung der knöchernen labyrinthkapsel. Z Ohrenheilk. 1894;25:309–27.

    Google Scholar 

  20. Guild SR. Histologic otosclerosis. Ann Otol. 1947;24:246–66.

    Google Scholar 

  21. Dahlqvist A, Diamant H, Dahlqvist SR, Cedergren B. HLA antigens in patients with otosclerosis. Acta Otolaryngol. 1985;100:33–5.

    Article  CAS  PubMed  Google Scholar 

  22. Miyazawa T, Tago C, Ueda H, Niwa H, Yanagita N. HLA associations in otosclerosis in Japanese patients. Eur Arch Otorhinolaryngol. 1996;253:501–3.

    Article  CAS  PubMed  Google Scholar 

  23. Bernstein JM, Shanahan TC, Schaffer FM. Further observations on the role of the MHC genes and certain hearing disorders. Acta Otolaryngol. 1996;116:666–71.

    Article  CAS  PubMed  Google Scholar 

  24. Sølvsten Sørensen M, Nielsen LP, Bretlau P, Jørgensen MB. The role of type II collagen autoimmunity in otosclerosis revisited. Acta Otolaryngol. 1988;105:242–7.

    Article  PubMed  Google Scholar 

  25. Joliat T, Seyer J, Bernstein J, Krug M, Ye XJ, Cho JS, Fujiyoshi T, Yoo TJ. Antibodies against a 30 kilodalton cochlear protein and type II and IX collagens in the serum of patients with inner ear diseases. Ann Otol Rhinol Laryngol. 1992;101:1000–6.

    CAS  PubMed  Google Scholar 

  26. Bujía J, Alsalameh S, Jerez R, Sittinger M, Wilmes E, Burmester G. Antibodies to the minor cartilage collagen type IX in otosclerosis. Am J Otol. 1994;15:222–4.

    Article  PubMed  Google Scholar 

  27. Helfgott SM, Mosciscki RA, San Martin J, Lorenzo C, Kieval R, McKenna M, Nadol J, Trentham DE. Correlation between antibodies to type II collagen and treatment outcome in bilateral progressive sensorineural hearing loss. Lancet. 1991;337:387–9.

    Article  CAS  PubMed  Google Scholar 

  28. Yoo TJ, Shea Jr JJ, Floyd RA. Enchondral cartilage rests collagen-induced autoimmunity: a possible pathogenetic mechanism of otosclerosis. Am J Otolaryngol. 1987;8:317–24.

    Article  CAS  PubMed  Google Scholar 

  29. Harris JP, Woolf NK, Ryan AF. A reexamination of experimental type II collagen autoimmunity: middle and inner ear morphology and function. Ann Otol Rhinol Laryngol. 1986;95:176–80.

    Article  CAS  PubMed  Google Scholar 

  30. Jesić S, Radulović R, Arsović N. Altered immunoregulations in otosclerosis: presence of autoantibodies in otosclerotic sera samples. Eur Arch Otorhinolaryngol. 1997;254 Suppl 1:S50–2.

    Article  PubMed  Google Scholar 

  31. Iyer PV, Gristwood RE. Histopathology of the stapes in otosclerosis. Pathology. 1984;16:30–8.

    Article  CAS  PubMed  Google Scholar 

  32. Linthicum Jr FH. Histopathology of otosclerosis. Otolaryngol Clin N Am. 1993;26:335–52.

    Google Scholar 

  33. Schuknecht HF, Barber W. Histologic variants in otosclerosis. Laryngoscope. 1985;95:1307–17.

    Article  CAS  PubMed  Google Scholar 

  34. Karosi T, Kónya J, Petkó M, Szabó LZ, Pytel J, Jóri J, Sziklai I. Two subgroups of stapes fixation: otosclerosis and pseudo-otosclerosis. Laryngoscope. 2005;115:1968–73.

    Article  PubMed  Google Scholar 

  35. Karosi T, Kónya J, Petkó M, Sziklai I. Histologic otosclerosis is associated with the presence of measles virus in the stapes footplate. Otol Neurotol. 2005;26:1128–33.

    Article  PubMed  Google Scholar 

  36. Karosi T, Csomor P, Petkó M, Liktor B, Szabó LZ, Pytel J, Jóri J, Sziklai I. Histopathology of nonotosclerotic stapes fixations. Otol Neurotol. 2009;30:1058–66.

    Article  PubMed  Google Scholar 

  37. Arnold W, Friedmann I. Otosclerosis – an inflammatory disease of the otic capsule of viral aetiology? J Laryngol Otol. 1988;102:865–71.

    Article  CAS  PubMed  Google Scholar 

  38. McKenna MJ, Mills BG. Ultrastructural and immunohistochemical evidence of measles virus in active otosclerosis. Acta Otolaryngol Suppl. 1990;470:130–40.

    CAS  PubMed  Google Scholar 

  39. Niedermeyer HP, Arnold W, Schuster M, Baumann C, Kramer J, Neubert WJ, Sedlmeier R. Persistent measles virus infection and otosclerosis. Ann Otol Rhinol Laryngol. 2001;110:897–903.

    Article  CAS  PubMed  Google Scholar 

  40. Horner KC. The effect of sex hormones on bone metabolism of the otic capsule – an overview. Hear Res. 2009;252:56–60.

    Article  CAS  PubMed  Google Scholar 

  41. Clayton AE, Mikulec AA, Mikulec KH, Merchant SN, McKenna MJ. Association between osteoporosis and otosclerosis in women. J Laryngol Otol. 2004;118:617–21.

    Article  PubMed  Google Scholar 

  42. Ealy M, Chen W, Ryu GY, Yoon JG, Welling DB, Hansen M, Madan A, Smith RJ. Gene expression analysis of human otosclerotic stapedial footplates. Hear Res. 2008;240:80–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chevance LG, Bretlau P, Jorgensen MB, Causse J. Otosclerosis. An electron microscopic and cytochemical study. Acta Otolaryngol (Stockh) Suppl. 1970;272:1–44.

    CAS  Google Scholar 

  44. Zehnder AF, Kristiansen AG, Adams JC, Kujawa SG, Merchant SN, McKenna MJ. Osteoprotegrin knockout mice demonstrate abnormal remodeling of the otic capsule and progressive hearing loss. Laryngoscope. 2006;116:201–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arnold W. Some remarks on the histopathology of otosclerosis. Adv Otorhinolaryngol. 2007;65:25–30.

    PubMed  Google Scholar 

  46. Moscicki RA, San Martin JE, Quintero CH, Rauch SD, Nadol JB, Bloch KJ. Serum antibody to inner ear proteins in patients with progressive hearing loss. Correlation with disease activity and response to corticosteroid treatment. JAMA. 1994;272:611–6.

    Article  CAS  PubMed  Google Scholar 

  47. Karosi T, Csomor P, Sziklai I. The value of HRCT in stapes fixations corresponding to hearing thresholds and histologic findings. Otol Neurotol. 2012;33:1300–7.

    Article  PubMed  Google Scholar 

  48. Marx M, Lagleyre S, Escudé B, Demeslay J, Elhadi T, Deguine O, Fraysse B. Correlations between CT scan findings and hearing thresholds in otosclerosis. Acta Otolaryngol. 2011;131:351–7.

    Article  PubMed  Google Scholar 

  49. Brookler K. Basis for understanding otic capsule bony dyscrasias. Laryngoscope. 2006;116:160–1.

    Article  PubMed  Google Scholar 

  50. Mannel DN, Echtenacher B. TNF in the inflammatory response. Chem Immunol. 2000;74:141–61.

    Article  CAS  PubMed  Google Scholar 

  51. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001;104:487–501.

    Article  CAS  PubMed  Google Scholar 

  52. Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10(1):45–65.

    Article  CAS  PubMed  Google Scholar 

  53. Theoleyre S, Wittrant Y, Tat SK, Fortun Y, Redini F, Heymann D. The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodelling. Cytokine Growth Factor Rev. 2004;15(6):457–75.

    Article  CAS  PubMed  Google Scholar 

  54. Thys M, Schrauwen I, Vanderstraeten K, Dieltjens N, Fransen E, Ealy M, Cremers CW, van de Heyning P, Vincent R, Offeciers E, Smith RH, van Camp G. Detection of rare nonsynonymous variants in TGFB1 in otosclerosis patients. Ann Hum Genet. 2009;73:171–5.

    Article  CAS  PubMed  Google Scholar 

  55. Bodo M, Venti G, Baroni T, Bellucci C, Giammarioli M, Donti E, Paludetti G, Stabellini G, Carinci P. Phenotype of in vitro human otosclerotic cells and its modulation by TGF beta. Cell Mol Biol (Noisy-le-grand). 1995;41:1039–49.

    CAS  Google Scholar 

  56. Schrauwen I, Thys M, Vanderstraeten K, Fransen E, Dieltjens N, Huyghe JR, Ealy M, Claustres M, Cremers CR, Dhooge I, Declau F, Van de Heyning P, Vincent R, Somers T, Offeciers E, Smith RJ, Van Camp G. Association of bone morphogenetic proteins with otosclerosis. J Bone Miner Res. 2008;23:507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lehnerdt G, Metz KA, Trellakis S, Jahnke K, Neumann A. Signaling by way of type IB and II bone morphogenetic protein receptors regulates bone formation in otospongiosis. Laryngoscope. 2007;117:812–6. Erratum in: Laryngoscope. 2007; 117:1510.

    Article  CAS  PubMed  Google Scholar 

  58. Lehnerdt G, Unkel C, Metz KA, Jahnke K, Neumann A. Immunohistochemical evidence of BMP-2, -4 and -7 activity in otospongiosis. Acta Otolaryngol. 2008;128:13–7.

    Article  CAS  PubMed  Google Scholar 

  59. Csomor P, Liktor B, Liktor B, Szekanecz Z, Sziklai I, Karosi T. Expression of bone morphogenetic protein 2, 4, 5, and 7 correlates with histological activity of otosclerotic foci. Acta Otolaryngol. 2012;132:624–31.

    Article  CAS  PubMed  Google Scholar 

  60. Karosi T, Csomor P, Szalmás A, Kónya J, Petkó M, Sziklai I. Osteoprotegerin expression and sensitivity in otosclerosis with different histological activity. Eur Arch Otorhinolaryngol. 2011;268:357–65.

    Article  PubMed  Google Scholar 

  61. Csomor P, Sziklai I, Liktor B, Szabó L, Pytel J, Jóri J, Karosi T. Otosclerosis: disturbed balance between cell survival and apoptosis. Otol Neurotol. 2010;31:867–74.

    Article  PubMed  Google Scholar 

  62. Grayeli AB, Escoubet B, Bichara M, Julien N, Silve C, Friedlander G, Sterkers O, Ferrary E. Increased activity of the diastrophic dysplasia sulfate transporter in otosclerosis and its inhibition by sodium fluoride. Otol Neurotol. 2003;24:854–62.

    Article  PubMed  Google Scholar 

  63. Imauchi Y, Lombès M, Lainé P, Sterkers O, Ferrary E, Grayeli AB. Glucocorticoids inhibit diastrophic dysplasia sulfate transporter activity in otosclerosis by interleukin-6. Laryngoscope. 2006;116:1647–50.

    Article  CAS  PubMed  Google Scholar 

  64. Grayeli AB, Sterkers O, Roulleau P, Elbaz P, Ferrary E, Silve C. Parathyroid hormone-parathyroid hormone-related peptide receptor expression and function in otosclerosis. Am J Physiol. 1999;277:1005–12.

    Google Scholar 

  65. Fanó G, Venti-Donti G, Belia S, Paludetti G, Antonica A, Donti E, Maurizi M. PTH induces modification of transductive events in otosclerotic bone cell cultures. Cell Biochem Funct. 1993;11:257–61.

    Article  PubMed  Google Scholar 

  66. Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol. 2007;7:292–304.

    Article  CAS  PubMed  Google Scholar 

  67. Sørensen MS, Frisch T, Bretlau P. Dynamic bone studies of the labyrinthine capsule in relation to otosclerosis. Adv Otorhinolaryngol. 2007;65:53–8.

    PubMed  Google Scholar 

  68. Frisch T, Bretlau P, Sorensen MS. Intravital microlesions in the human otic capsule. Detection, classification and pathogenetic significance revisited. ORL J Otorhinolaryngol Relat Spec. 2008;70:195–201.

    Article  PubMed  Google Scholar 

  69. Frisch T, Sørensen MS, Overgaard S, Bretlau P. Predilection of otosclerotic foci related to the bone turnover in the otic capsule. Acta Otolaryngol Suppl. 2000;543:111–3.

    CAS  PubMed  Google Scholar 

  70. Wittrant Y, Theoleyre S, Chipoy C, Padrines M, Blanchard F, Heymann D, Redini F. RANKL/RANK/OPG: new therapeutic targets in bone tumours and associated osteolysis. Biochim Biophys Acta. 2004;1704:49–57.

    CAS  PubMed  Google Scholar 

  71. Karosi T, Jókay I, Kónya J, Petkó M, Szabó LZ, Pytel J, Jóri J, Sziklai I. Activated osteoclasts with CD51/61 expression in otosclerosis. Laryngoscope. 2006;116:1478–84.

    Article  CAS  PubMed  Google Scholar 

  72. Ye SN, Yi ZX, Wang PY, Jiang SC. The role and significance of chondroitin sulfate in the development of otosclerosis. Laryngoscope. 1995;105:1005–9.

    Article  CAS  PubMed  Google Scholar 

  73. Niedermeyer HP, Becker ET, Arnold W. Expression of collagens in the otosclerotic bone. Adv Otorhinolaryngol. 2007;65:45–9.

    CAS  PubMed  Google Scholar 

  74. Karosi T, Jokay I, Konya J, Petko M, Szabo LZ, Sziklai I. Expression of measles virus receptors in otosclerotic, non-otosclerotic and in normal stapes footplates. Eur Arch Otorhinolaryngol. 2007;264:607–13.

    Article  PubMed  Google Scholar 

  75. Karosi T, Szalmas A, Csomor P, Konya J, Petko M, Sziklai I. Disease-associated novel CD46 splicing variants and pathologic bone remodeling in otosclerosis. Laryngoscope. 2008;118:1669–76.

    Article  CAS  PubMed  Google Scholar 

  76. Moumoulidis I, Axon P, Baguley D, Reid E. A review on the genetics of otosclerosis. Clin Otolaryngol. 2007;32:239–47.

    Article  CAS  PubMed  Google Scholar 

  77. Norrby E, Oxman MN. Measles virus. In: Fields BN, Knipe DM, editors. Fields virology. New York: Raven; 1990. p. 1013–44.

    Google Scholar 

  78. Niedermeyer HP, Arnold W, Neubert WJ, Sedlmeier R. Persistent measles virus infection as a possible cause of otosclerosis: state of the art. Ear Nose Throat J. 2000;79:552–8.

    CAS  PubMed  Google Scholar 

  79. Altermatt HJ, Gerber HA, Gaeng D, Müller C, Arnold W. Immunohistochemical findings in otosclerotic lesions. HNO. 1990;40:476–9.

    Google Scholar 

  80. Arnold W, Altermatt HJ, Kraft R, Pfaltz CR. Die Otosklerose, eine durch Paramyxoviren unterhaltene Entzündunsreaktion. HNO. 1989;37:236–41.

    CAS  PubMed  Google Scholar 

  81. Arnold W, Friedmann I. Immunohistochemistry of otosclerosis. Acta Otolaryngol Suppl. 1990;470:124–8.

    CAS  PubMed  Google Scholar 

  82. Arnold W, Busch R, Arnold A, Ritscher B, Neiss A, Niedermeyer HP. The influence of measles vaccination on the incidence of otosclerosis in Germany. Eur Arch Otorhinolaryngol. 2007;264:741–8.

    Article  PubMed  Google Scholar 

  83. Altermatt HJ, Gerber HA, Gaeng D, Müller C, Arnold W. Immunohistochemical findings in otosclerotic lesions. HNO. 1992;40:476–9.

    CAS  PubMed  Google Scholar 

  84. Schrader M, Poppendieck J, Weber B. Immunohistologic findings in otosclerosis. Ann Otol Rhinol Laryngol. 1990;99:349–52.

    Article  CAS  PubMed  Google Scholar 

  85. McKenna MJ, Mills BG. Immunohistochemical evidence of measles virus antigens in active otosclerosis. Otolaryngol Head Neck Surg. 1989;101:415–21.

    CAS  PubMed  Google Scholar 

  86. Lolov SR, Encheva VI, Kyurkchiev SD, Edrev GE, Kehayov IR. Antimeasles immunoglobulin G in sera of patients with otosclerosis is lower than that in healthy people. Otol Neurotol. 2001;22:766–70.

    Article  CAS  PubMed  Google Scholar 

  87. Karosi T, Kónya J, Petkó M, Szabó LZ, Pytel J, Jóri J, Sziklai I. Antimeasles IgG for serologic diagnosis of otosclerotic hearing loss. Laryngoscope. 2006;116:488–93.

    Article  CAS  PubMed  Google Scholar 

  88. McKenna MJ, Kristiansen AG, Haines J. Polymerase chain reaction amplification of a measles virus sequence from human temporal bone sections with active otosclerosis. Am J Otol. 1996;17:827–30.

    CAS  PubMed  Google Scholar 

  89. Karosi T, Kónya J, Szabó LZ, Sziklai I. Measles virus prevalence in otosclerotic stapes footplate samples. Otol Neurotol. 2004;25:451–6.

    Article  PubMed  Google Scholar 

  90. Gantumur T, Niedermeyer HP, Neubert WJ, Arnold W. Molecular detection of measles virus in primary cell cultures of otosclerotic tissue. Acta Otolaryngol. 2006;126:811–6.

    Article  CAS  PubMed  Google Scholar 

  91. Grayeli AB, Palmer P, Tran Ba Huy P, Soudant J, Sterkers O, Lebon P, Ferrary E. No evidence of measles virus in stapes samples from patients with otosclerosis. J Clin Microbiol. 2000;38:2655–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Dhiman N, Jacobson RM, Poland GA. Measles virus receptors: SLAM and CD46. Rev Med Virol. 2004;14:217–29.

    Article  CAS  PubMed  Google Scholar 

  93. Erlenhofer C, Duprex WP, Rima BK, ter Meulen V, Schneider-Schaulies J. Analysis of receptor (CD46, CD150) usage by measles virus. J Gen Virol. 2002;83:1431–6.

    Article  CAS  PubMed  Google Scholar 

  94. Manchester M, Naniche D, Stehle T. CD46 as a measles receptor: form follows function. Virology. 2000;274:5–10.

    Article  CAS  PubMed  Google Scholar 

  95. Liszewski MK, Kemper C, Price JD, Atkinson JP. Emerging roles and new functions of CD46. Springer Semin Immunopathol. 2005;27:345–58.

    Article  CAS  PubMed  Google Scholar 

  96. Riley-Vargas RC, Gill DB, Kemper C, Liszewski MK, Atkinson JP. CD46: expanding beyond complement regulation. Trends Immunol. 2004;25:496–503.

    Article  CAS  PubMed  Google Scholar 

  97. Zaffran Y, Destaing O, Roux A, Ory S, Nheu T, Jurdic P, Rabourdin-Combe C, Astier AL. CD46/CD3 costimulation induces morphological changes of human T cells and activation of Vav, Rac and extracellular signal-regulated kinase mitogen–activated protein kinase. J Immunol. 2001;167:6780–5.

    Article  CAS  PubMed  Google Scholar 

  98. Astier A, Trescol-Biemont MC, Azocar O, Lamouille B, Rabourdin-Combe C. Cutting edge: CD46, a new costimulatory molecular for T cells that induces p120CBL and LAT phosphorylation. J Immunol. 2000;164:6091–5.

    Article  CAS  PubMed  Google Scholar 

  99. Kemper C, Chan AC, Green JM, Brett KA, Murphy KM, Atkinson JP. Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature. 2003;421:388–92.

    Article  CAS  PubMed  Google Scholar 

  100. Karp CL, Wysocka M, Wahl LM, Ahearn JM, Cuomo PJ, Sherry B, Trinchieri G, Griffin DE. Mechanism of suppression of cell-mediated immunity by measles virus. Science. 1996;273:228–31.

    Article  CAS  PubMed  Google Scholar 

  101. Kurita-Taniguchi M, Fukui A, Hazeki K, Hirano A, Tsuji S, Matsumoto M, Watanabe M, Ueda S, Seya T. Functional modulation of human macrophages through CD46 (measles virus receptor): production of IL-12 p40 and nitric oxide in association with recruitment of protein-tyrosine phosphatase SHP-1 to CD46. J Immunol. 2000;165:5143–52.

    Article  CAS  PubMed  Google Scholar 

  102. Kawano M, Seya T, Koni I, Mabuchi H. Elevated serum levels of soluble membrane cofactor protein (CD46, MCP) in patients with systemic lupus erythematosus (SLE). Clin Exp Immunol. 1999;116:542–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kroshus TJ, Salerno CT, Yeh CG, Higgins PJ, Bolman 3rd RM, Dalmasso AP. A recombinant soluble chimeric complement inhibitor composed of human CD46 and CD55 reduces acute cardiac tissue injury in models of pig-to-human heart transplantation. Transplantation. 2000;69:2282–9.

    Article  CAS  PubMed  Google Scholar 

  104. Lanteri MB, Powell MS, Christiansen D, Li YQ, Hogarth M, Sandrin MS, McKenzie IF, Loveland BE. Inhibition of hyperacute transplant rejection by soluble proteins with the functional domains of CD46 and FcgammaRII. Transplantation. 2000;69:1128–36.

    Article  CAS  PubMed  Google Scholar 

  105. Avota E, Gassert E, Schneider-Saulines S. Measles virus-induced immunosuppression: from effectors to mechanisms. Med Microbiol Immunol. 2010;199:227–37.

    Article  CAS  PubMed  Google Scholar 

  106. Tomek MS, Brown MR, Mani SR, Ramesh A, Srisailapathy CR, Coucke P, Zbar RI, Bell AM, McGuirt WT, Fukushima K, Willems PJ, Van Camp G, Smith RJ. Localization of a gene for otosclerosis to chromosome 15q25-q26. Hum Mol Genet. 1998;7:285–90.

    Article  CAS  PubMed  Google Scholar 

  107. Thys M, Van Den Bogaert K, Iliadou V, Vanderstraeten K, Dieltjens N, Schrauwen I, Chen W, Eleftheriades N, Grigoriadou M, Pauw RJ, Cremers CR, Smith RJ, Petersen MB, Van Camp G. A seventh locus for otosclerosis, OTSC7, maps to chromosome 6q13-16.1. Eur J Hum Genet. 2007;15:362–8.

    Article  CAS  PubMed  Google Scholar 

  108. Van Den Bogaert K, De Leenheer EM, Chen W, Lee Y, Nürnberg P, Pennings RJ, Vanderstraeten K, Thys M, Cremers CW, Smith RJ, Van Camp G. A fifth locus for otosclerosis, OTSC5, maps to chromosome 3q22-24. J Med Genet. 2004;41:450–3.

    Article  CAS  Google Scholar 

  109. Van Den Bogaert K, Govaerts PJ, De Leenheer EM, Schatteman I, Verstreken M, Chen W, Declau F, Cremers CW, Van De Heyning PH, Offeciers FE, Somers T, Smith RJ, Van Camp G. Otosclerosis: a genetically heterogeneous disease involving at least three different genes. Bone. 2002;30:624–30.

    Article  Google Scholar 

  110. Van Den Bogaert K, Govaerts PJ, Schatteman I, Brown MR, Caethoven G, Offeciers FE, Somers T, Declau F, Coucke P, Van de Heyning P, Smith RJ, Van Camp G. A second gene for otosclerosis, OTSC2, maps to chromosome 7q34-36. Am J Hum Genet. 2001;68:495–500.

    Article  Google Scholar 

  111. Bel Hadj Ali I, Thys M, Beltaief N, Schrauwen I, Hilgert N, Vanderstraeten K, Dieltjens N, Mnif E, Hachicha S, Besbes G, Ben Arab S, Van Camp G. A new locus for otosclerosis, OTSC8, maps to the pericentromeric region of chromosome 9. Hum Genet. 2008;123:267–72.

    Article  PubMed  Google Scholar 

  112. Brownstein Z, Goldfarb A, Levi H, Frydman M, Avraham KB. Chromosomal mapping and phenotypic characterization of hereditary otosclerosis linked to the OTSC4 locus. Arch Otolaryngol Head Neck Surg. 2006;132:416–24.

    Article  PubMed  Google Scholar 

  113. McKenna MJ, Kristiansen AG, Bartley ML, Rogus JJ, Haines JL. Association of COL1A1 and otosclerosis: evidence for a shared genetic etiology with mild osteogenesis imperfecta. Am J Otol. 1998;19:604–10.

    CAS  PubMed  Google Scholar 

  114. McKenna MJ, Nguyen-Huynh AT, Kristiansen AG. Association of otosclerosis with Sp1 binding site polymorphism in COL1A1 gene: evidence for a shared genetic etiology with osteoporosis. Otol Neurotol. 2004;25:447–50.

    Article  PubMed  Google Scholar 

  115. Rodríguez L, Rodríguez S, Hermida J, Frade C, Sande E, Visedo G, Martín C, Zapata C. Proposed association between the COL1A1 and COL1A2 genes and otosclerosis is not supported by a case-control study in Spain. Am J Med Genet A. 2004;128:19–22.

    Article  Google Scholar 

  116. Thys M, Schrauwen I, Vanderstraeten K, Janssens K, Dieltjens N, Van Den Bogaert K, Fransen E, Chen W, Ealy M, Claustres M, Cremers CR, Dhooge I, Declau F, Claes J, Van de Heyning P, Vincent R, Somers T, Offeciers E, Smith RJ, Van Camp G. The coding polymorphism T263I in TGF-beta1 is associated with otosclerosis in two independent populations. Hum Mol Genet. 2007;16:2021–30.

    Article  CAS  PubMed  Google Scholar 

  117. Schrauwen I, Ealy M, Huentelman MJ, Thys M, Homer N, Vanderstraeten K, Fransen E, Corneveaux JJ, Craig DW, Claustres M, Cremers CW, Dhooge I, Van de Heyning P, Vincent R, Offeciers E, Smith RJ, Van Camp G. A genome-wide analysis identifies genetic variants in the RELN gene associated with otosclerosis. Am J Hum Genet. 2009;84:328–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schett G, Zwerina J, David JP. The role of Wnt proteins in arthritis. Nat Clin Pract Rheumatol. 2008;4(9):473–80.

    Article  CAS  PubMed  Google Scholar 

  119. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med. 2007;13:156–63.

    Article  CAS  PubMed  Google Scholar 

  120. Chai R, Xia A, Wang T, Jan TA, Hayashi T, Bermingham-McDonogh O, et al. Dynamic expression of Lgr5, a Wnt target gene, in the developing and mature mouse cochlea. J Assoc Res Otolaryngol. 2011;12:455–69.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Sienknecht UJ, Fekete DM. Mapping of Wnt, frizzled, and Wnt inhibitor gene expression domains in the avian otic primordium. J Comp Neurol. 2009;517:751–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hawkins RD, Bashiardes S, Powder KE, Sajan SA, Bhonagiri V, Alvarado DM, et al. Large scale gene expression profiles of regenerating inner ear sensory epithelia. PLoS ONE. 2007;2, e525.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Matsuda M, Keino H. Roles of beta-catenin in inner ear development in rat embryos. Anat Embryol (Berl). 2000;202:39–48.

    Article  CAS  Google Scholar 

  124. Hamersma H, Hofmeyr L. Too much bone: the middle ear in sclerosing bone dysplasias. Adv Otorhinolaryngol. 2007;65:61–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Karosi MD, HSc, PhD .

Editor information

Editors and Affiliations

Additional information

Declarations

Authors have no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karosi, T., Sziklai, I. (2016). The Putative Role of Measles Virus in the Pathogenesis of Otosclerosis. In: Sziklai, I. (eds) Surgery of Stapes Fixations. Springer, Cham. https://doi.org/10.1007/978-3-319-28576-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28576-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28574-0

  • Online ISBN: 978-3-319-28576-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics