Skip to main content
Log in

Otosclerosis: an organ-specific inflammatory disease with sensorineural hearing loss

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Otosclerosis is an inflammatory disease associated with persistent measles virus (MV) infection of the otic capsule. The nature of sensorineural hearing loss (SNHL) related to otosclerosis can be due to the chronic TNF-α release from the foci. TNF-α enters the inner ear fluid spaces in histologically active stages of otosclerosis and may cause outer hair cell functional disorder and subsequent SNHL without morphological changes of the organ of Corti. On the contrary, non-otosclerotic stapes ankylosis being a non-inflammatory disease is not harmful for hair cells. Theoretically, SNHL should not associate to this type of stapes fixation. Stapes footplates (N = 248) were examined by hematoxylin–eosin staining and corresponding MV-, OPG- and TNF-α-specific RT-PCR. Anti-measles IgG levels of serum specimens were measured by ELISA. Preoperative audiological results were correlated with otosclerotic and non-otosclerotic histopathologies. Among patients with stapes fixation, we found 93 active and 67 inactive otosclerosis, and 88 non-otosclerotic stapes ankylosis. MV could only be detected in otosclerotic stapes footplates. Audiometry revealed bone conduction threshold elevation toward the high frequencies in otosclerotic patients, which was associated to the duration of hearing loss. OPG mRNA expression was significantly lower in the TNF-α positive specimens, which was independent from virus positivity. In about one-third of stapes fixations, the etiology is non-otosclerotic stapes ankylosis. Histologic otosclerosis exhibits a strong correlation with MV presence in the bone as a sign of persistent MV infection and related inflammation with TNF-α release. This causes SNHL in the function of time. Non-otosclerotic stapes fixations do not cause high-frequency SNHL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arnold W, Niedermeyer HP, Lehn N, Neubert W, Höfler H (1996) Measles virus in otosclerosis and the specific immune response of the inner ear. Acta Otolaryngol 116:705–709. doi:10.3109/00016489609137910

    Article  PubMed  CAS  Google Scholar 

  2. Vartiainen E, Karjalainen S (1992) Bone conduction thresholds in patients with otosclerosis. Am J Otolaryngol 13(4):234–236. doi:10.1016/0196-0709(92)90027-Q

    Article  PubMed  CAS  Google Scholar 

  3. Friedmann I (1974) Pathology of the ear. Blackwell, Oxford

    Google Scholar 

  4. Chole RA, McKenna M (2001) Pathophysiology of otosclerosis. Otol Neurotol 22(2):249–257. doi:10.1097/00129492-200103000-00023

    Article  PubMed  CAS  Google Scholar 

  5. Van Den Bogaert K, Govaerts PJ, De Leenheer EM, Schatteman I, Verstreken M, Chen W, Declau F, Cremers CW, Van De Heyning PH, Offeciers FE, Somers T, Smith RJ, Van Camp G (2002) Otosclerosis: a genetically heterogeneous disease involving at least three different genes. Bone 30(4):624–630. doi:10.1016/S8756-3282(02)00679-8

    Article  Google Scholar 

  6. Thys M, Van Den Bogaert K, Iliadou V, Vanderstraeten K, Dieltjens N, Schrauwen I, Chen W, Eleftheriades N, Grigoriadou M, Pauw RJ, Cremers CR, Smith RJ, Petersen MB, Van Camp G (2007) A seventh locus for otosclerosis, OTSC7, maps to chromosome 6q13–16.1. Eur J Hum Genet 15(3):362–368. doi:10.1038/sj.ejhg.5201761

    Article  PubMed  CAS  Google Scholar 

  7. Bel Hadj Ali I, Thys M, Beltaief N, Schrauwen I, Hilgert N, Vanderstraeten K, Dieltjens N, Mnif E, Hachicha S, Besbes G, Ben Arab S, Van Camp G (2008) A new locus for otosclerosis, OTSC8, maps to the pericentromeric region of chromosome 9. Hum Genet 123(3):267–272. doi:10.1007/s00439-008-0470-3

    Article  PubMed  Google Scholar 

  8. Moumoulidis I, Axon P, Baguley D, Reid E (2007) A review on the genetics of otosclerosis. Clin Otolaryngol 32(4):239–247. doi:10.1111/j.1365-2273.2007.01475.x

    Article  PubMed  CAS  Google Scholar 

  9. Iyer V, Gristwood RE (1984) Histopathology of the stapes in otosclerosis. Pathology 16:30–38. doi:10.3109/00313028409067908

    Article  PubMed  CAS  Google Scholar 

  10. Karosi T, Kónya J, Petkó M, Szabó LZ, Pytel J, Jóri J, Sziklai I (2005) Two subgroups of stapes fixation: otosclerosis and pseudo-otosclerosis. Laryngoscope 115(11):1968–1973. doi:10.1097/01.mlg.0000178325.48942.f1

    Article  PubMed  Google Scholar 

  11. Karosi T, Jókay I, Kónya J, Szabó LZ, Pytel J, Jóri J, Szalmás A, Sziklai I (2006) Detection of osteoprotegerin and TNF-alpha mRNA in ankylotic stapes footplates in connection with measles virus positivity. Laryngoscope 116(8):1427–1433. doi:10.1097/01.mlg.0000225928.35838.e5

    Article  PubMed  CAS  Google Scholar 

  12. Zou J, Pyykkö I, Sutinen P, Toppila E (2005) Vibration induced hearing loss in guinea pig cochlea: expression of TNF-alpha and VEGF. Hear Res 202(1–2):13–20. doi:10.1016/j.heares.2004.10.008

    Article  PubMed  CAS  Google Scholar 

  13. Zehnder AF, Kristiansen AG, Adams JC, Merchant SN, McKenna MJ (2005) Osteoprotegerin in the inner ear may inhibit bone remodelling in the otic capsule. Laryngoscope 115(1):172–177. doi:10.1097/01.mlg.0000150702.28451.35

    Article  PubMed  CAS  Google Scholar 

  14. Topsakal V, Fransen E, Schmerber S, Declau F, Yung M, Gordts F, Van Camp G, Van de Heyning P (2006) Audiometric analyses confirm a cochlear component, disproportional to age, in stapedial otosclerosis. Otol Neurotol 27(6):781–787. doi:10.1097/01.mao.0000231500.46534.79

    Article  PubMed  Google Scholar 

  15. Hayashi H, Onerci O, Paparella MM (2006) Cochlear otosclerosis. Otol Neurotol 27(6):905–906. doi:10.1097/01.mao.0000227901.65409.b1

    Article  PubMed  Google Scholar 

  16. Shin YJ, Fraysse B, Deguine O, Cognard C, Charlet JP, Sévely A (2001) Sensorineural hearing loss and otosclerosis: a clinical and radiologic survey of 437 cases. Acta Otolaryngol 121(2):200–204. doi:10.1080/000164801300043505

    Article  PubMed  CAS  Google Scholar 

  17. Sziklai I (1996) Human otosclerotic bone-derived peptide decreases the gain of the electromotility in isolated outer hair cells. Hear Res 95(1–2):100–107. doi:10.1016/0378-5955(96)00027-5

    Article  PubMed  CAS  Google Scholar 

  18. Fujioka M, Kanzaki S, Okano HJ, Masuda M, Ogawa K, Okano H (2006) Proinflammatory cytokines expression in noise-induced damaged cochlea. J Neurosci Res 83(4):575–583. doi:10.1002/jnr.20764

    Article  PubMed  CAS  Google Scholar 

  19. Papp Z, Rezes S, Jókay I, Sziklai I (2003) Sensorineural hearing loss in chronic otitis media. Otol Neurotol 24(2):141–144. doi:10.1097/00129492-200303000-00003

    Article  PubMed  Google Scholar 

  20. Karosi T, Kónya J, Petkó M, Szabó LZ, Pytel J, Jóri J, Sziklai I (2006) Antimeasles IgG for serologic diagnosis of otosclerotic hearing loss. Laryngoscope 116(3):488–493. doi:10.1097/01.mlg.0000204142.80263.2b

    Article  PubMed  CAS  Google Scholar 

  21. Karosi T, Kónya J, Szabó LZ, Sziklai I (2004) Measles virus prevalence in otosclerotic stapes footplate samples. Otol Neurotol 25(4):451–456. doi:10.1097/00129492-200407000-00009

    Article  PubMed  Google Scholar 

  22. Fricker M, Baumann A, Wermelinger F, Villiger PM, Helbling A (2007) A novel therapeutic option in Cogan diseases? TNF-alpha blockers. Rheumatol Int 27(5):493–495. doi:10.1007/s00296-006-0252-y

    Article  PubMed  CAS  Google Scholar 

  23. Satoh H, Firestein GS, Billings PB, Harris JP, Keithley EM (2002) Tumor necrosis factor-alpha, an initiator, and etanercept, an inhibitor of cochlear inflammation. Laryngoscope 112(9):1627–1634. doi:10.1097/00005537-200209000-00019

    Article  PubMed  CAS  Google Scholar 

  24. Wittrant Y, Theoleyre S, Chipoy C, Padrines M, Blanchard F, Heymann D, Redini F (2004) RANKL/RANK/OPG: new therapeutic targets in bone tumours and associated osteolysis. Biochim Biophys Acta 1704(2):49–57

    PubMed  CAS  Google Scholar 

  25. Sørensen MS, Frisch T, Bretlau P (2007) Dynamic bone studies of the labyrinthine capsule in relation to otosclerosis. Adv Otorhinolaryngol 65:53–58

    PubMed  Google Scholar 

  26. Theoleyre S, Wittrant Y, Tat SK, Fortun Y, Redini F, Heymann D (2004) The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodelling. Cytokine Growth Factor Rev 15(6):457–475. doi:10.1016/j.cytogfr.2004.06.004

    Article  PubMed  CAS  Google Scholar 

  27. Ramsay HA, Linthicum FH Jr (1994) Mixed hearing loss in otosclerosis: indication for long-term follow-up. Am J Otol 15(4):536–539

    PubMed  CAS  Google Scholar 

  28. Calmels MN, Viana C, Wanna G, Marx M, James C, Deguine O, Fraysse B (2007) Very far-advanced otosclerosis: stapedotomy or cochlear implantation. Acta Otolaryngol 127(6):574–578. doi:10.1080/00016480600987768

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Hungarian Scientific Research Fund (OTKA PD75371, OTKA K63743) and Mecenatúra Fund of Debrecen University (DE OEC Mec 17/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Karosi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sziklai, I., Batta, T.J. & Karosi, T. Otosclerosis: an organ-specific inflammatory disease with sensorineural hearing loss. Eur Arch Otorhinolaryngol 266, 1711–1718 (2009). https://doi.org/10.1007/s00405-009-0967-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-009-0967-y

Keywords

Navigation