Skip to main content

Myocardial Pharmacoregeneration

  • Chapter
  • First Online:
Regenerative Medicine - from Protocol to Patient

Abstract

Novel pharmacological approaches addressing the underlying cause of heart failure progression, namely cardiomyocyte loss, are emerging. The main therapeutic aims are to either protect cardiomyocytes from ischemia-associated stressors or to facilitate endogenous regeneration. The latter may be achieved by (1) induction of cardiomyocyte proliferation, (2) activation of resident cardiac progenitor cells, or (3) non-myocyte-to-cardiomyocyte conversion. The development of pharmacological approaches to enhance these under normal circumstances ineffective self-repair mechanisms may enable the regeneration of what we consider today the irreversibly damaged heart. This chapter provides an overview of the current state-of-the-art in myocardial pharmacoregeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Latif A, Bolli R, Tleyjeh IM et al (2007) Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 167(10):989–997

    Article  PubMed  Google Scholar 

  • Abdel-Latif A, Bolli R, Zuba-Surma EK et al (2008) Granulocyte colony-stimulating factor therapy for cardiac repair after acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Am Heart J 156(2):216–226, e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aiuti A, Webb IJ, Bleul C et al (1997) The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 185(1):111–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amado LC, Saliaris AP, Schuleri KH et al (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A 102(32):11474–11479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anversa P, Reiss K, Kajstura J et al (1995) Myocardial infarction and the myocyte IGF1 autocrine system. Eur Heart J 16(Suppl N):37–45

    Article  CAS  PubMed  Google Scholar 

  • Anversa P, Leri A, Rota M et al (2007) Concise review: stem cells, myocardial regeneration, and methodological artifacts. Stem Cells 25(3):589–601

    Article  CAS  PubMed  Google Scholar 

  • Arslan F, Lai RC, Smeets MB et al (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10(3):301–312

    Article  CAS  PubMed  Google Scholar 

  • Askari AT, Unzek S, Popovic ZB et al (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362(9385):697–703

    Article  CAS  PubMed  Google Scholar 

  • Ausma J, Thone F, Dispersyn GD et al (1998) Dedifferentiated cardiomyocytes from chronic hibernating myocardium are ischemia-tolerant. Mol Cell Biochem 186(1–2):159–168

    Article  CAS  PubMed  Google Scholar 

  • Babar IA, Cheng CJ, Booth CJ et al (2012) Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci U S A 109(26):E1695–E1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balsam LB, Wagers AJ, Christensen JL et al (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428(6983):668–673

    Article  CAS  PubMed  Google Scholar 

  • Bang C, Batkai S, Dangwal S et al (2014) Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest 124(5):2136–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barile L, Chimenti I, Gaetani R et al (2007) Cardiac stem cells: isolation, expansion and experimental use for myocardial regeneration. Nat Clin Pract Cardiovasc Med 4(Suppl 1):S9–S14

    Article  CAS  PubMed  Google Scholar 

  • Bearzi C, Rota M, Hosoda T et al (2007) Human cardiac stem cells. Proc Natl Acad Sci U S A 104(35):14068–14073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6):763–776

    Article  CAS  PubMed  Google Scholar 

  • Bergmann O, Bhardwaj RD, Bernard S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergmann MW, Haufe S, von Knobelsdorff-Brenkenhoff F et al (2011) A pilot study of chronic, low-dose epoetin-{beta} following percutaneous coronary intervention suggests safety, feasibility, and efficacy in patients with symptomatic ischaemic heart failure. Eur J Heart Fail 13(5):560–568

    Article  CAS  PubMed  Google Scholar 

  • Bergmann O, Zdunek S, Felker A et al (2015) Dynamics of cell generation and turnover in the human heart. Cell 161(7):1566–1575

    Article  CAS  PubMed  Google Scholar 

  • Bersell K, Arab S, Haring B et al (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138(2):257–270

    Article  CAS  PubMed  Google Scholar 

  • Bock-Marquette I, Saxena A, White MD et al (2004) Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 432(7016):466–472

    Article  CAS  PubMed  Google Scholar 

  • Bogazzi F, Lombardi M, Strata E et al (2008) High prevalence of cardiac hypertophy without detectable signs of fibrosis in patients with untreated active acromegaly: an in vivo study using magnetic resonance imaging. Clin Endocrinol (Oxf) 68(3):361–368

    Article  Google Scholar 

  • Bolli R, Chugh AR, D’Amario D et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378(9806):1847–1857

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonauer A, Carmona G, Iwasaki M et al (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324(5935):1710–1713

    Article  CAS  PubMed  Google Scholar 

  • Brown BD, Naldini L (2009) Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 10(8):578–585

    Article  CAS  PubMed  Google Scholar 

  • Bunting KD (2002) ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells 20(1):11–20

    Article  CAS  PubMed  Google Scholar 

  • Butcher JT, Norris RA, Hoffman S et al (2007) Periostin promotes atrioventricular mesenchyme matrix invasion and remodeling mediated by integrin signaling through Rho/PI 3-kinase. Dev Biol 302(1):256–266

    Article  CAS  PubMed  Google Scholar 

  • Calvillo L, Latini R, Kajstura J et al (2003) Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci U S A 100(8):4802–4806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceradini DJ, Kulkarni AR, Callaghan MJ et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10(8):858–864

    Article  CAS  PubMed  Google Scholar 

  • Chen O, Qian L (2015) Direct cardiac reprogramming: advances in cardiac regeneration. Biomed Res Int 2015:580406

    PubMed  PubMed Central  Google Scholar 

  • Cheng CJ, Bahal R, Babar IA et al (2015) MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 518(7537):107–110

    Article  CAS  PubMed  Google Scholar 

  • Chiriac A, Terzic A, Park S et al (2010) SDF-1-enhanced cardiogenesis requires CXCR4 induction in pluripotent stem cells. J Cardiovasc Transl Res 3(6):674–682

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiu LL, Radisic M (2011) Controlled release of thymosin beta4 using collagen-chitosan composite hydrogels promotes epicardial cell migration and angiogenesis. J Control Release 155(3):376–385

    Article  CAS  PubMed  Google Scholar 

  • Crockford D (2007) Development of thymosin beta4 for treatment of patients with ischemic heart disease. Ann N Y Acad Sci 1112:385–395

    Article  CAS  PubMed  Google Scholar 

  • D’Amario D, Cabral-Da-Silva MC, Zheng H et al (2011) Insulin-like growth factor-1 receptor identifies a pool of human cardiac stem cells with superior therapeutic potential for myocardial regeneration. Circ Res 108(12):1467–1481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davis RP, van den Berg CW, Casini S et al (2011) Pluripotent stem cell models of cardiac disease and their implication for drug discovery and development. Trends Mol Med 17(9):475–484

    Article  CAS  PubMed  Google Scholar 

  • Dawn B, Abdel-Latif A, Sanganalmath SK et al (2009) Cardiac repair with adult bone marrow-derived cells: the clinical evidence. Antioxid Redox Signal 11(8):1865–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De La Luz Sierra M, Yang F, Narazaki M et al (2004) Differential processing of stromal-derived factor-1alpha and stromal-derived factor-1beta explains functional diversity. Blood 103(7):2452–2459

    Article  CAS  Google Scholar 

  • Derman MP, Cunha MJ, Barros EJ et al (1995) HGF-mediated chemotaxis and tubulogenesis require activation of the phosphatidylinositol 3-kinase. Am J Physiol 268(6 Pt 2):F1211–F1217

    CAS  PubMed  Google Scholar 

  • Doppler SA, Deutsch MA, Lange R et al (2015) Direct reprogramming-the future of cardiac regeneration? Int J Mol Sci 16(8):17368–17393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelmann MG, Theiss HD, Hennig-Theiss C et al (2006) Autologous bone marrow stem cell mobilization induced by granulocyte colony-stimulating factor after subacute ST-segment elevation myocardial infarction undergoing late revascularization: final results from the G-CSF-STEMI (Granulocyte Colony-Stimulating Factor ST-Segment Elevation Myocardial Infarction) trial. J Am Coll Cardiol 48(8):1712–1721

    Article  CAS  PubMed  Google Scholar 

  • Eulalio A, Mano M, Dal Ferro M et al (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492(7429):376–381

    Article  CAS  PubMed  Google Scholar 

  • Fazio S, Sabatini D, Capaldo B et al (1996) A preliminary study of growth hormone in the treatment of dilated cardiomyopathy. N Engl J Med 334(13):809–814

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Huang W, Wani M et al (2014) Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One 9(2):e88685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernandez-Aviles F, San Roman JA, Garcia-Frade J et al (2004) Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res 95(7):742–748

    Article  CAS  PubMed  Google Scholar 

  • Fiedler J, Jazbutyte V, Kirchmaier BC et al (2011) MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 124(6):720–730

    Article  CAS  PubMed  Google Scholar 

  • Field LJ (1988) Atrial natriuretic factor-SV40 T antigen transgenes produce tumors and cardiac arrhythmias in mice. Science 239(4843):1029–1033

    Article  CAS  PubMed  Google Scholar 

  • Fisher SA, Doree C, Mathur A et al (2015) Meta-analysis of cell therapy trials for patients with heart failure. Circ Res 116(8):1361–1377

    Article  CAS  PubMed  Google Scholar 

  • Forte G, Minieri M, Cossa P et al (2006) Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells 24(1):23–33

    Article  CAS  PubMed  Google Scholar 

  • Francescatto M, Vitezic M, Heutink P et al (2014) Brain-specific noncoding RNAs are likely to originate in repeats and may play a role in up-regulating genes in cis. Int J Biochem Cell Biol 54:331–337

    Article  CAS  PubMed  Google Scholar 

  • Fu JD, Stone NR, Liu L et al (2013) Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Rep 1(3):235–247

    Article  CAS  Google Scholar 

  • Fuller SJ, Sivarajah K, Sugden PH (2008) ErbB receptors, their ligands, and the consequences of their activation and inhibition in the myocardium. J Mol Cell Cardiol 44(5):831–854

    Article  CAS  PubMed  Google Scholar 

  • Gallina C, Turinetto V, Giachino C (2015) A new paradigm in cardiac regeneration: the mesenchymal stem cell secretome. Stem Cells Int 2015:765846

    Article  PubMed  PubMed Central  Google Scholar 

  • Gassmann M, Casagranda F, Orioli D et al (1995) Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378(6555):390–394

    Article  CAS  PubMed  Google Scholar 

  • Geisler A, Jungmann A, Kurreck J et al (2011) microRNA122-regulated transgene expression increases specificity of cardiac gene transfer upon intravenous delivery of AAV9 vectors. Gene Ther 18(2):199–209

    Article  CAS  PubMed  Google Scholar 

  • Gessert S, Kuhl M (2010) The multiple phases and faces of wnt signaling during cardiac differentiation and development. Circ Res 107(2):186–199

    Article  CAS  PubMed  Google Scholar 

  • Gnecchi M, He H, Noiseux N et al (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20(6):661–669

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Marquez J, Franco del Amo F, Carpintero P et al (1996) High levels of mouse thymosin beta4 mRNA in differentiating P19 embryonic cells and during development of cardiovascular tissues. Biochim Biophys Acta 1306(2–3):187–193

    Article  PubMed  Google Scholar 

  • Goumans MJ, de Boer TP, Smits AM et al (2007) TGF-beta1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res 1(2):138–149

    Article  CAS  PubMed  Google Scholar 

  • Grego-Bessa J, Luna-Zurita L, del Monte G et al (2007) Notch signaling is essential for ventricular chamber development. Dev Cell 12(3):415–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory CJ, Eaves AC (1978) Three stages of erythropoietic progenitor cell differentiation distinguished by a number of physical and biologic properties. Blood 51(3):527–537

    CAS  PubMed  Google Scholar 

  • Grote P, Wittler L, Hendrix D et al (2013) The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24(2):206–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482(7385):339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gwechenberger M, Moertl D, Pacher R et al (2004) Oncostatin-M in myocardial ischemia/reperfusion injury may regulate tissue repair. Croat Med J 45(2):149–157

    PubMed  Google Scholar 

  • Gyorgy B, Modos K, Pallinger E et al (2011) Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood 117(4):e39–e48

    Article  CAS  PubMed  Google Scholar 

  • Haider H, Jiang S, Idris NM et al (2008) IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circ Res 103(11):1300–1308

    Article  CAS  PubMed  Google Scholar 

  • Han P, Li W, Lin CH et al (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514(7520):102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hang CT, Yang J, Han P et al (2010) Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466(7302):62–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao J, Daleo MA, Murphy CK et al (2008) Dorsomorphin, a selective small molecule inhibitor of BMP signaling, promotes cardiomyogenesis in embryonic stem cells. PLoS One 3(8):e2904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harada M, Qin Y, Takano H et al (2005) G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med 11(3):305–311

    Article  CAS  PubMed  Google Scholar 

  • Hare JM, Traverse JH, Henry TD et al (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 54(24):2277–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa H, Takano H, Iwanaga K et al (2006) Cardioprotective effects of granulocyte colony-stimulating factor in swine with chronic myocardial ischemia. J Am Coll Cardiol 47(4):842–849

    Article  CAS  PubMed  Google Scholar 

  • Hein S, Arnon E, Kostin S et al (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107(7):984–991

    Article  PubMed  Google Scholar 

  • Herdrich BJ, Danzer E, Davey MG et al (2010) Regenerative healing following foetal myocardial infarction. Eur J Cardiothorac Surg 38(6):691–698

    Article  PubMed  PubMed Central  Google Scholar 

  • Hinkel R, Bock-Marquette I, Hatzopoulos AK et al (2010) Thymosin beta4: a key factor for protective effects of eEPCs in acute and chronic ischemia. Ann N Y Acad Sci 1194:105–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinkel R, Penzkofer D, Zuhlke S et al (2013) Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation 128(10):1066–1075

    Article  CAS  PubMed  Google Scholar 

  • Hirata A, Minamino T, Asanuma H et al (2005) Erythropoietin just before reperfusion reduces both lethal arrhythmias and infarct size via the phosphatidylinositol-3 kinase-dependent pathway in canine hearts. Cardiovasc Drugs Ther 19(1):33–40

    Article  CAS  PubMed  Google Scholar 

  • Hsieh PC, Segers VF, Davis ME et al (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13(8):970–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang SM, Mishina YM, Liu S et al (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461(7264):614–620

    Article  CAS  PubMed  Google Scholar 

  • Hynes B, Kumar AH, O’Sullivan J et al (2011) Potent endothelial progenitor cell-conditioned media-related anti-apoptotic, cardiotrophic, and proangiogenic effects post-myocardial infarction are mediated by insulin-like growth factor-1. Eur Heart J 34(10):782–789

    Google Scholar 

  • Ieda M, Fu JD, Delgado-Olguin P et al (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142(3):375–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iekushi K, Seeger F, Assmus B et al (2012) Regulation of cardiac microRNAs by bone marrow mononuclear cell therapy in myocardial infarction. Circulation 125(14):1765–1773

    Article  CAS  PubMed  Google Scholar 

  • Ince H, Petzsch M, Kleine HD et al (2005) Prevention of left ventricular remodeling with granulocyte colony-stimulating factor after acute myocardial infarction: final 1-year results of the Front-Integrated Revascularization and Stem Cell Liberation in Evolving Acute Myocardial Infarction by Granulocyte Colony-Stimulating Factor (FIRSTLINE-AMI) Trial. Circulation 112(9 Suppl):I73–I80

    PubMed  Google Scholar 

  • Iwasaki M, Adachi Y, Nishiue T et al (2005) Hepatocyte growth factor delivered by ultrasound-mediated destruction of microbubbles induces proliferation of cardiomyocytes and amelioration of left ventricular contractile function in Doxorubicin-induced cardiomyopathy. Stem Cells 23(10):1589–1597

    Article  PubMed  Google Scholar 

  • Janssen HL, Reesink HW, Lawitz EJ et al (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368(18):1685–1694

    Article  CAS  PubMed  Google Scholar 

  • Jayawardena TM, Egemnazarov B, Finch EA et al (2012) MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res 110(11):1465–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayawardena TM, Finch EA, Zhang L et al (2015) MicroRNA induced cardiac reprogramming in vivo: evidence for mature cardiac myocytes and improved cardiac function. Circ Res 116(3):418–424

    Article  CAS  PubMed  Google Scholar 

  • Jiang ZS, Srisakuldee W, Soulet F et al (2004) Non-angiogenic FGF-2 protects the ischemic heart from injury, in the presence or absence of reperfusion. Cardiovasc Res 62(1):154–166

    Article  CAS  PubMed  Google Scholar 

  • Jo JO, Kang YJ, Ock MS et al (2011) Thymosin beta4 expression in human tissues and in tumors using tissue microarrays. Appl Immunohistochem Mol Morphol 19(2):160–167

    Article  CAS  PubMed  Google Scholar 

  • Johnston PV, Sasano T, Mills K et al (2009) Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation 120(12):1075–1083, 7 p following 1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jopling C, Sleep E, Raya M et al (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464(7288):606–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kajstura J, Leri A, Finato N et al (1998) Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci U S A 95(15):8801–8805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kajstura J, Urbanek K, Perl S et al (2010) Cardiomyogenesis in the adult human heart. Circ Res 107(2):305–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang HJ, Kim HS, Zhang SY et al (2004) Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 363(9411):751–756

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi K, Holdway JE, Werdich AA et al (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464(7288):601–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraehenbuehl TP, Ferreira LS, Hayward AM et al (2011) Human embryonic stem cell-derived microvascular grafts for cardiac tissue preservation after myocardial infarction. Biomaterials 32(4):1102–1109

    Article  CAS  PubMed  Google Scholar 

  • Kubin T, Poling J, Kostin S et al (2011) Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell 9(5):420–432

    Article  CAS  PubMed  Google Scholar 

  • Kuhn B, del Monte F, Hajjar RJ et al (2007) Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med 13(8):962–969

    Article  PubMed  CAS  Google Scholar 

  • Kukula K, Chojnowska L, Dabrowski M et al (2011) Intramyocardial plasmid-encoding human vascular endothelial growth factor A165/basic fibroblast growth factor therapy using percutaneous transcatheter approach in patients with refractory coronary artery disease (VIF-CAD). Am Heart J 161(3):581–589

    Article  CAS  PubMed  Google Scholar 

  • Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473(7347):326–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KF, Simon H, Chen H et al (1995) Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378(6555):394–398

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Mitsialis SA, Aslam M et al (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126(22):2601–2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepilina A, Coon AN, Kikuchi K et al (2006) A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127(3):607–619

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Li B, Wang X et al (1997) Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J Clin Invest 100(8):1991–1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limana F, Capogrossi MC, Germani A (2011) The epicardium in cardiac repair: from the stem cell view. Pharmacol Ther 129(1):82–96

    Article  CAS  PubMed  Google Scholar 

  • Lin FJ, Tsai MJ, Tsai SY (2007) Artery and vein formation: a tug of war between different forces. EMBO Rep 8(10):920–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipsic E, van der Meer P, Voors AA et al (2006) A single bolus of a long-acting erythropoietin analogue darbepoetin alfa in patients with acute myocardial infarction: a randomized feasibility and safety study. Cardiovasc Drugs Ther 20(2):135–141

    Article  CAS  PubMed  Google Scholar 

  • Loffredo FS, Steinhauser ML, Gannon J et al (2011) Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell 8(4):389–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopatina T, Bruno S, Tetta C et al (2014) Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. Cell Commun Signal 12:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lorts A, Schwanekamp JA, Elrod JW et al (2009) Genetic manipulation of periostin expression in the heart does not affect myocyte content, cell cycle activity, or cardiac repair. Circ Res 104(1):e1–e7

    Article  CAS  PubMed  Google Scholar 

  • Low TL, Hu SK, Goldstein AL (1981) Complete amino acid sequence of bovine thymosin beta 4: a thymic hormone that induces terminal deoxynucleotidyl transferase activity in thymocyte populations. Proc Natl Acad Sci U S A 78(2):1162–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makita T, Duncan SA, Sucov HM (2005) Retinoic acid, hypoxia, and GATA factors cooperatively control the onset of fetal liver erythropoietin expression and erythropoietic differentiation. Dev Biol 280(1):59–72

    Article  CAS  PubMed  Google Scholar 

  • Makkar RR, Smith RR, Cheng K et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379(9819):895–904

    Article  PubMed  PubMed Central  Google Scholar 

  • Malliaras K, Makkar RR, Smith RR et al (2014) Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol 63(2):110–122

    Article  PubMed  Google Scholar 

  • Martin CM, Meeson AP, Robertson SM et al (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265(1):262–275

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS (2011) The central role of RNA in human development and cognition. FEBS Lett 585(11):1600–1616

    Article  CAS  PubMed  Google Scholar 

  • McQuibban GA, Butler GS, Gong JH et al (2001) Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 276(47):43503–43508

    Article  CAS  PubMed  Google Scholar 

  • Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20(3):300–307

    Article  CAS  PubMed  Google Scholar 

  • Mercola M, Ruiz-Lozano P, Schneider MD (2011) Cardiac muscle regeneration: lessons from development. Genes Dev 25(4):299–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messina E, De Angelis L, Frati G et al (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95(9):911–921

    Article  CAS  PubMed  Google Scholar 

  • Meyer D, Birchmeier C (1995) Multiple essential functions of neuregulin in development. Nature 378(6555):386–390

    Article  CAS  PubMed  Google Scholar 

  • Mirotsou M, Zhang Z, Deb A et al (2007) Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci U S A 104(5):1643–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirotsou M, Jayawardena TM, Schmeckpeper J et al (2011) Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 50(2):280–289

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki M, Masaka T, Akiyama I et al (2004) Propagation of adult rat bone marrow-derived hepatocyte-like cells by serial passages in vitro. Cell Transplant 13(4):385–391

    Article  PubMed  Google Scholar 

  • Moon C, Krawczyk M, Ahn D et al (2003) Erythropoietin reduces myocardial infarction and left ventricular functional decline after coronary artery ligation in rats. Proc Natl Acad Sci U S A 100(20):11612–11617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murry CE, Soonpaa MH, Reinecke H et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428(6983):664–668

    Article  CAS  PubMed  Google Scholar 

  • Nagasawa T, Hirota S, Tachibana K et al (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382(6592):635–638

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Nishizawa T, Hagiya M et al (1989) Molecular cloning and expression of human hepatocyte growth factor. Nature 342(6248):440–443

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Mizuno S, Matsumoto K et al (2000) Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J Clin Invest 106(12):1511–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam YJ, Song K, Luo X et al (2013) Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci U S A 110(14):5588–5593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noseda M, Harada M, McSweeney S et al (2015) PDGFRalpha demarcates the cardiogenic clonogenic Sca1+ stem/progenitor cell in adult murine myocardium. Nat Commun 6:6930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberpriller JO, Oberpriller JC (1974) Response of the adult newt ventricle to injury. J Exp Zool 187(2):249–253

    Article  CAS  PubMed  Google Scholar 

  • Oerlemans MI, Goumans MJ, van Middelaar B et al (2010) Active Wnt signaling in response to cardiac injury. Basic Res Cardiol 105(5):631–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh H, Bradfute SB, Gallardo TD et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 100(21):12313–12318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oikonomopoulos A, Sereti KI, Conyers F et al (2011) Wnt signaling exerts an antiproliferative effect on adult cardiac progenitor cells through IGFBP3. Circ Res 109(12):1363–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oka T, Xu J, Molkentin JD (2007) Re-employment of developmental transcription factors in adult heart disease. Semin Cell Dev Biol 18(1):117–131

    Article  CAS  PubMed  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S et al (2001a) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 98(18):10344–10349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S et al (2001b) Bone marrow cells regenerate infarcted myocardium. Nature 410(6829):701–705

    Article  CAS  PubMed  Google Scholar 

  • Ott I, Schulz S, Mehilli J et al (2010) Erythropoietin in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: a randomized, double-blind trial. Circ Cardiovasc Interv 3(5):408–413

    Article  CAS  PubMed  Google Scholar 

  • Ounzain S, Micheletti R, Beckmann T et al (2015) Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur Heart J 36(6):353–68a

    Article  PubMed  Google Scholar 

  • Padin-Iruegas ME, Misao Y, Davis ME et al (2009) Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation 120(10):876–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13(4):271–282

    CAS  PubMed  Google Scholar 

  • Pasumarthi KB, Nakajima H, Nakajima HO et al (2005) Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res 96(1):110–118

    Article  CAS  PubMed  Google Scholar 

  • Pearlman JD, Hibberd MG, Chuang ML et al (1995) Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nat Med 1(10):1085–1089

    Article  CAS  PubMed  Google Scholar 

  • Peles E, Bacus SS, Koski RA et al (1992) Isolation of the neu/HER-2 stimulatory ligand: a 44 kd glycoprotein that induces differentiation of mammary tumor cells. Cell 69(1):205–216

    Article  CAS  PubMed  Google Scholar 

  • Penn MS, Mendelsohn FO, Schaer GL et al (2013) An open-label dose escalation study to evaluate the safety of administration of nonviral stromal cell-derived factor-1 plasmid to treat symptomatic ischemic heart failure. Circ Res 112(5):816–825

    Article  CAS  PubMed  Google Scholar 

  • Perez-Pomares JM, Phelps A, Sedmerova M et al (2002) Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). Dev Biol 247(2):307–326

    Article  CAS  PubMed  Google Scholar 

  • Pfister O, Mouquet F, Jain M et al (2005) CD31- but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 97(1):52–61

    Article  CAS  PubMed  Google Scholar 

  • Pfister O, Oikonomopoulos A, Sereti KI et al (2010) Isolation of resident cardiac progenitor cells by Hoechst 33342 staining. Methods Mol Biol 660:53–63

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  • Poling J, Gajawada P, Richter M et al (2014) Therapeutic targeting of the oncostatin M receptor-beta prevents inflammatory heart failure. Basic Res Cardiol 109(1):396

    Article  PubMed  CAS  Google Scholar 

  • Porrello ER, Mahmoud AI, Simpson E et al (2011) Transient regenerative potential of the neonatal mouse heart. Science 331(6020):1078–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298(5601):2188–2190

    Article  CAS  PubMed  Google Scholar 

  • Psaltis PJ, Paton S, See F et al (2010) Enrichment for STRO-1 expression enhances the cardiovascular paracrine activity of human bone marrow-derived mesenchymal cell populations. J Cell Physiol 223(2):530–540

    CAS  PubMed  Google Scholar 

  • Qian L, Srivastava D (2013) Direct cardiac reprogramming: from developmental biology to cardiac regeneration. Circ Res 113(7):915–921

    Article  CAS  PubMed  Google Scholar 

  • Qian L, Huang Y, Spencer CI et al (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485(7400):593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen TL, Raveendran G, Zhang J et al (2011) Getting to the heart of myocardial stem cells and cell therapy. Circulation 123(16):1771–1779

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratajska A, Czarnowska E, Ciszek B (2008) Embryonic development of the proepicardium and coronary vessels. Int J Dev Biol 52(2–3):229–236

    Article  PubMed  Google Scholar 

  • Reber L, Da Silva CA, Frossard N (2006) Stem cell factor and its receptor c-Kit as targets for inflammatory diseases. Eur J Pharmacol 533(1–3):327–340

    Article  CAS  PubMed  Google Scholar 

  • Reeves I, Abribat T, Laramee P et al (2000) Age-related serum levels of insulin-like growth factor-I, -II and IGF-binding protein-3 following myocardial infarction. Growth Horm IGF Res 10(2):78–84

    Article  CAS  PubMed  Google Scholar 

  • Ripa RS, Jorgensen E, Wang Y et al (2006) Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial. Circulation 113(16):1983–1992

    Article  CAS  PubMed  Google Scholar 

  • Rota M, Padin-Iruegas ME, Misao Y et al (2008) Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circ Res 103(1):107–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Villalba A, Simon AM, Pogontke C et al (2015) Interacting resident epicardium-derived fibroblasts and recruited bone marrow cells form myocardial infarction scar. J Am Coll Cardiol 65(19):2057–2066

    Article  PubMed  Google Scholar 

  • Russell JL, Goetsch SC, Gaiano NR et al (2011) A dynamic notch injury response activates epicardium and contributes to fibrosis repair. Circ Res 108(1):51–59

    Article  CAS  PubMed  Google Scholar 

  • Russell JL, Goetsch SC, Aguilar HR et al (2012) Targeting native adult heart progenitors with cardiogenic small molecules. ACS Chem Biol 7(6):1067–1076

    Google Scholar 

  • Sadek H, Hannack B, Choe E et al (2008) Cardiogenic small molecules that enhance myocardial repair by stem cells. Proc Natl Acad Sci U S A 105(16):6063–6068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safer D, Elzinga M, Nachmias VT (1991) Thymosin beta 4 and Fx, an actin-sequestering peptide, are indistinguishable. J Biol Chem 266(7):4029–4032

    CAS  PubMed  Google Scholar 

  • Salmonson T, Danielson BG, Wikstrom B (1990) The pharmacokinetics of recombinant human erythropoietin after intravenous and subcutaneous administration to healthy subjects. Br J Clin Pharmacol 29(6):709–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saraswati S, Alfaro MP, Thorne CA et al (2010) Pyrvinium, a potent small molecule Wnt inhibitor, promotes wound repair and post-MI cardiac remodeling. PLoS One 5(11):e15521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaaf S, Shibamiya A, Mewe M et al (2011) Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS One 6(10):e26397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultheiss TM, Burch JB, Lassar AB (1997) A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev 11(4):451–462

    Article  CAS  PubMed  Google Scholar 

  • Scott RC, Rosano JM, Ivanov Z et al (2009) Targeting VEGF-encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. FASEB J 23(10):3361–3367

    Article  CAS  PubMed  Google Scholar 

  • Segers VF, Tokunou T, Higgins LJ et al (2007) Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation 116(15):1683–1692

    Article  CAS  PubMed  Google Scholar 

  • Senyo SE, Steinhauser ML, Pizzimenti CL et al (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493(7432):433–436

    Article  CAS  PubMed  Google Scholar 

  • Smart N, Risebro CA, Melville AA et al (2007) Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445(7124):177–182

    Article  CAS  PubMed  Google Scholar 

  • Smart N, Dube KN, Riley PR (2010) Identification of Thymosin beta4 as an effector of Hand1-mediated vascular development. Nat Commun 1:46

    Article  PubMed  CAS  Google Scholar 

  • Smart N, Bollini S, Dube KN et al (2011) De novo cardiomyocytes from within the activated adult heart after injury. Nature 474(7353):640–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith RR, Barile L, Cho HC et al (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115(7):896–908

    Article  PubMed  CAS  Google Scholar 

  • Smits AM, van Vliet P, Hassink RJ et al (2005) The role of stem cells in cardiac regeneration. J Cell Mol Med 9(1):25–36

    Article  CAS  PubMed  Google Scholar 

  • Song K, Nam YJ, Luo X et al (2012) Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485(7400):599–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soonpaa MH, Field LJ (1998) Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res 83(1):15–26

    Article  CAS  PubMed  Google Scholar 

  • Soonpaa MH, Kim KK, Pajak L et al (1996) Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol Heart Circ Physiol 271(5):H2183–H2189

    CAS  Google Scholar 

  • Stanton LW, Garrard LJ, Damm D et al (2000) Altered patterns of gene expression in response to myocardial infarction. Circ Res 86(9):939–945

    Article  CAS  PubMed  Google Scholar 

  • Steinhauser ML, Lee RT (2011) Regeneration of the heart. EMBO Mol Med 3(12):701–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugano Y, Anzai T, Yoshikawa T et al (2005) Granulocyte colony-stimulating factor attenuates early ventricular expansion after experimental myocardial infarction. Cardiovasc Res 65(2):446–456

    Article  CAS  PubMed  Google Scholar 

  • Sundararaman S, Miller TJ, Pastore JM et al (2011) Plasmid-based transient human stromal cell-derived factor-1 gene transfer improves cardiac function in chronic heart failure. Gene Ther 18(9):867–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sussman MA, Murry CE (2008) Bones of contention: marrow-derived cells in myocardial regeneration. J Mol Cell Cardiol 44(6):950–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Ohneda O, Takahashi S et al (2002) Erythroid-specific expression of the erythropoietin receptor rescued its null mutant mice from lethality. Blood 100(7):2279–2288

    Article  CAS  PubMed  Google Scholar 

  • Syed RS, Reid SW, Li C et al (1998) Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature 395(6701):511–516

    Article  CAS  PubMed  Google Scholar 

  • Tada H, Kagaya Y, Takeda M et al (2006) Endogenous erythropoietin system in non-hematopoietic lineage cells plays a protective role in myocardial ischemia/reperfusion. Cardiovasc Res 71(3):466–477

    Article  CAS  PubMed  Google Scholar 

  • Tallini YN, Greene KS, Craven M et al (2009) c-kit expression identifies cardiovascular precursors in the neonatal heart. Proc Natl Acad Sci U S A 106(6):1808–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang J, Wang J, Guo L et al (2010) Mesenchymal stem cells modified with stromal cell-derived factor 1 alpha improve cardiac remodeling via paracrine activation of hepatocyte growth factor in a rat model of myocardial infarction. Mol Cells 29(1):9–19

    Article  PubMed  CAS  Google Scholar 

  • Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505(7483):344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thum T, Chau N, Bhat B et al (2011) Comparison of different miR-21 inhibitor chemistries in a cardiac disease model. J Clin Invest 121(2):461–462; author reply 462-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tillmanns J, Rota M, Hosoda T et al (2008) Formation of large coronary arteries by cardiac progenitor cells. Proc Natl Acad Sci U S A 105(5):1668–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torella D, Rota M, Nurzynska D et al (2004) Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res 94(4):514–524

    Article  CAS  PubMed  Google Scholar 

  • Traverse JH, Henry TD, Vaughan DE et al (2009) Rationale and design for TIME: a phase II, randomized, double-blind, placebo-controlled pilot trial evaluating the safety and effect of timing of administration of bone marrow mononuclear cells after acute myocardial infarction. Am Heart J 158(3):356–363

    Article  PubMed  PubMed Central  Google Scholar 

  • Traverse JH, Henry TD, Ellis SG et al (2011) Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA 306(19):2110–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbanek K, Rota M, Cascapera S et al (2005) Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res 97(7):663–673

    Google Scholar 

  • Urbich C, Aicher A, Heeschen C et al (2005) Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol 39(5):733–742

    Article  CAS  PubMed  Google Scholar 

  • van Rooij E, Olson EN (2012) MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov 11(11):860–872

    Article  PubMed  CAS  Google Scholar 

  • van Vliet P, Roccio M, Smits AM et al (2008) Progenitor cells isolated from the human heart: a potential cell source for regenerative therapy. Neth Heart J 16(5):163–169

    Article  PubMed  PubMed Central  Google Scholar 

  • Vantler M, Karikkineth BC, Naito H et al (2010) PDGF-BB protects cardiomyocytes from apoptosis and improves contractile function of engineered heart tissue. J Mol Cell Cardiol 48(6):1316–1323

    Article  CAS  PubMed  Google Scholar 

  • Wada R, Muraoka N, Inagawa K et al (2013) Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proc Natl Acad Sci U S A 110(31):12667–12672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Ahmad N, Wani MA et al (2004) Hepatocyte growth factor prevents ventricular remodeling and dysfunction in mice via Akt pathway and angiogenesis. J Mol Cell Cardiol 37(5):1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Hao J, Hong CC (2011) Cardiac induction of embryonic stem cells by a small molecule inhibitor of Wnt/beta-catenin signaling. ACS Chem Biol 6(2):192–197

    Article  CAS  PubMed  Google Scholar 

  • Watanabe E, Smith DM, Sun J et al (1998) Effect of basic fibroblast growth factor on angiogenesis in the infarcted porcine heart. Basic Res Cardiol 93(1):30–37

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Kokubo H, Miyagawa-Tomita S et al (2006) Activation of Notch1 signaling in cardiogenic mesoderm induces abnormal heart morphogenesis in mouse. Development 133(9):1625–1634

    Article  CAS  PubMed  Google Scholar 

  • Wei HM, Wong P, Hsu LF et al (2009) Human bone marrow-derived adult stem cells for post-myocardial infarction cardiac repair: current status and future directions. Singapore Med J 50(10):935–942

    CAS  PubMed  Google Scholar 

  • Wheeler TM, Leger AJ, Pandey SK et al (2012) Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature 488(7409):111–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter EM, Gittenberger-de Groot AC (2007) Epicardium-derived cells in cardiogenesis and cardiac regeneration. Cell Mol Life Sci 64(6):692–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13(3):269–288

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Dong G-h, Liu H et al (2005) Recombinant human erythropoietin pretreatment attenuates myocardial infarct size: a possible mechanism involves heat shock protein 70 and attenuation of nuclear factor-kappaB. Ann Clin Lab Sci 35(2):161–168

    CAS  PubMed  Google Scholar 

  • Xu Y, Li X, Liu X et al (2010) Neuregulin-1/ErbB signaling and chronic heart failure. Adv Pharmacol 59:31–51

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa-Miwa A, Uchida Y, Nakamura F et al (1992) Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 257(5075):1401–1403

    Article  CAS  PubMed  Google Scholar 

  • Yasuda H, Galli SJ, Geissler EN (1993) Cloning and functional analysis of the mouse c-kit promoter. Biochem Biophys Res Commun 191(3):893–901

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Du X, Xia J et al (2005) Effects of rHu-EPO on myocyte apoptosis and cardiac function following acute myocardial infarction in rats. J Huazhong Univ Sci Technolog Med Sci 25(1):55–58

    Article  CAS  PubMed  Google Scholar 

  • Yoon YS, Wecker A, Heyd L et al (2005) Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest 115(2):326–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu PB, Hong CC, Sachidanandan C et al (2008) Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol 4(1):33–41

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Kim HW, Gong M et al (2015) Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int J Cardiol 182:349–360

    Article  PubMed  Google Scholar 

  • Yuasa S, Itabashi Y, Koshimizu U et al (2005) Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat Biotechnol 23(5):607–611

    Article  CAS  PubMed  Google Scholar 

  • Zafiriou MP, Noack C, Unsold B et al (2014) Erythropoietin responsive cardiomyogenic cells contribute to heart repair post myocardial infarction. Stem Cells 32(9):2480–2491

    Article  CAS  PubMed  Google Scholar 

  • Zaruba MM, Theiss HD, Vallaster M et al (2009) Synergy between CD26/DPP-IV inhibition and G-CSF improves cardiac function after acute myocardial infarction. Cell Stem Cell 4(4):313–323

    Article  CAS  PubMed  Google Scholar 

  • Zaruba MM, Soonpaa M, Reuter S et al (2010) Cardiomyogenic potential of C-kit(+)-expressing cells derived from neonatal and adult mouse hearts. Circulation 121(18):1992–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zelarayan LC, Noack C, Sekkali B et al (2008) Beta-Catenin downregulation attenuates ischemic cardiac remodeling through enhanced resident precursor cell differentiation. Proc Natl Acad Sci U S A 105(50):19762–19767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao YY, Sawyer DR, Baliga RR et al (1998) Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem 273(17):10261–10269

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Schuetz JD, Bunting KD et al (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7(9):1028–1034

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Ma Q, Rajagopal S et al (2008) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454(7200):109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou B, Honor LB, Ma Q et al (2012) Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes. J Mol Cell Cardiol 52(1):43–47

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Huang L, Li Y et al (2012) Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett 315(1):28–37

    Article  CAS  PubMed  Google Scholar 

  • Zohlnhofer D, Ott I, Mehilli J et al (2006) Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA 295(9):1003–1010

    Article  PubMed  Google Scholar 

  • Zou YR, Kottmann AH, Kuroda M et al (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393(6685):595–599

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram-Hubertus Zimmermann M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zelarayán, L.C., Zafiriou, M.P., Zimmermann, WH. (2016). Myocardial Pharmacoregeneration. In: Steinhoff, G. (eds) Regenerative Medicine - from Protocol to Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-28386-9_4

Download citation

Publish with us

Policies and ethics