Skip to main content

Mathematical Models of Hemostasis

  • Chapter
  • First Online:
Trauma Induced Coagulopathy

Abstract

Coagulation is a complex, nonlinear system that is regulated by an ever growing number of biochemical, cellular, and biophysical processes. Mathematical models have emerged as computational tools that can synthesize this information. Moreover they have shown their utility in revealing new mechanisms, answering questions that are experimentally intractable, and making novel predictions. Here, we provide a primer for the non-expert on the fundamental mathematics of many coagulation models, namely ordinary and partial differential equations. We then review the features of some of the seminal coagulation models and their contribution to the field. We focus on models of ex vivo coagulation such as thrombin generation assays that primarily focus on biochemical kinetics and models of in vivo thrombus formation that contain essential biophysical processes related to blood flow. Finally, we discuss the future research needs and challenges that are needed to pave the way for more widespread use of mathematical models in research, and their potential use in clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aledort LM. Comparative thrombotic event incidence after infusion of recombinant factor VIIa versus factor VIII inhibitor bypass activity. J Thromb Haemost: JTH 2004;2(10):1700–8.

    Article  CAS  PubMed  Google Scholar 

  2. Balandina AN, Shibeko AM, Kireev DA, Novikova AA, Shmirev II, Panteleev MA, Ataullakhanov FI. Positive feedback loops for factor V and factor VII activation supply sensitivity to local surface tissue factor density during blood coagulation. Biophys J. 2011;101(8):1816–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beltrami E, Jesty J. Mathematical analysis of activation thresholds in enzyme-catalyzed positive feedbacks: application to the feedbacks of blood coagulation. Proc Natl Acad Sci USA. 1995;92(19):8744–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Beltrami E, Jesty J. The role of membrane patch size and flow in regulating a proteolytic feedback threshold on a membrane: possible application in blood coagulation. Math Biosci. 2001;172(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  5. Brummel-Ziedins KE, Orfeo T, Callas PW, Gissel M, Mann KG, Bovill EG. The prothrombotic phenotypes in familial protein c deficiency are differentiated by computational modeling of thrombin generation. PLoS ONE 2012;7(9):e44,378.

    Article  CAS  Google Scholar 

  6. Bungay S, Gentry P, Gentry R. Modelling thrombin generation in human ovarian follicular fluid. Bull Math Biol. 2006;68(8):2283–2302. doi:10.1007/s11538-006-9115-7. http://dx.doi.org/10.1007/s11538-006-9115-7.

    Google Scholar 

  7. Bungay SD, Gentry PA, Gentry RD. A mathematical model of lipid-mediated thrombin generation. Math Med Biol: J IMA 2003;20(1):105–29.

    Article  Google Scholar 

  8. Butenas S, van’t Veer C, Mann KG. “Normal” thrombin generation. Blood 1999;94(7):2169–78.

    CAS  PubMed  Google Scholar 

  9. Butenas S, Orfeo T, Gissel MT, Brummel KE, Mann KG. The significance of circulating factor IXa in blood. J Biol Chem. 2004;279(22):22,875–82.

    Article  CAS  Google Scholar 

  10. Chatterjee MS, Denney WS, Jing H, Diamond SL. Systems biology of coagulation initiation: kinetics of thrombin generation in resting and activated human blood. PLoS Comput Biol. 2010;6(9):e1000950.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chatterjee MS, Purvis JE, Brass LF, Diamond SL. Pairwise agonist scanning predicts cellular signaling responses to combinatorial stimuli. Nat Biotechnol. 2010;28(7):727–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Danforth CM, Orfeo T, Mann KG, Brummel-Ziedins KE, Everse SJ. The impact of uncertainty in a blood coagulation model. Math Med Biol. 2009;26(4):323–36.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Danforth CM, Orfeo T, Everse SJ, Mann KG, Brummel-Ziedins KE. Defining the boundaries of normal thrombin generation: investigations into hemostasis. PLoS ONE 2012;7(2):e30,385.

    Article  CAS  Google Scholar 

  14. Dashkevich NM, Ovanesov MV, Balandina AN, Karamzin SS, Shestakov PI, Soshitova NP, Tokarev AA, Panteleev MA, Ataullakhanov FI. Thrombin activity propagates in space during blood coagulation as an excitation wave. Biophys J. 2012;103(10):2233–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Edelstein-Keshet L. Mathematical models in biology. New York: Random House; 1988.

    Google Scholar 

  16. Fedosov DA, Dao M, Karniadakis GE, Suresh S. Computational biorheology of human blood flow in health and disease. Ann Biomed Eng. 2013;42(2):368–87.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Flamm MH, Colace TV, Chatterjee MS, Jing H, Zhou S, Jaeger D, Brass LF, Sinno T, Diamond SL. Multiscale prediction of patient-specific platelet function under flow. Blood 2012;120(1):190–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Flamm MH, Diamond SL. Multiscale systems biology and physics of thrombosis under flow. Ann Biomed Eng. 2012;40(11):2355–64.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fogelson AL, Keener JP. Toward an understanding of fibrin branching structure. Phys Rev E 2010;81(5):051,922.

    Article  Google Scholar 

  20. Fogelson AL, Neeves KB. Fluid mechanics of blood clot formation. Annu Rev Fluid Mech. 2015;47(1):377–403.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fogelson AL, Tania N. Coagulation under flow: the influence of flow-mediated transport on the initiation and inhibition of coagulation. Pathophysiol Haemost Thromb. 2005;34(2–3):91–108.

    Article  CAS  PubMed  Google Scholar 

  22. Fogelson AL, Hussain YH, Leiderman K. Blood clot formation under flow: the importance of factor xi depends strongly on platelet count. Biophys J. 2012;102(1):10–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Foley JH, Orfeo T, Undas A, McLean KC, Bernstein IM, Rivard GE, Mann KG, Everse SJ, Brummel-Ziedins KE. From principle to practice: bridging the gap in patient profiling. PLoS ONE 2013;8(1):e54,728.

    Article  CAS  Google Scholar 

  24. Freund JB. Numerical simulation of flowing blood cells. Annu Rev Fluid Mech. 2013;46(1):130812142306,005.

    Google Scholar 

  25. Guria K, Guria GT. Spatial aspects of blood coagulation: two decades of research on the self-sustained traveling wave of thrombin. Thromb Res. 2015;135(3):423–33.

    Article  CAS  PubMed  Google Scholar 

  26. Guy RD, Fogelson AL, Keener JP. Fibrin gel formation in a shear flow. Math Med Biol. 2006;24(1):111–30.

    Article  PubMed  Google Scholar 

  27. Haberman R. Applied partial differential equations with Fourier series and boundary value problems, 5th ed. Upper Saddle River: Pearson Education; 2013.

    Google Scholar 

  28. Hathcock J, Nemerson Y. Platelet deposition inhibits tissue factor activity: in vitro clots are impermeable to factor Xa. Blood 2004;104(1):123–127.

    Google Scholar 

  29. Hockin M, Jones K, Everse S, Mann K. A model for the stoichiometric regulation of blood coagulation. J Biol Chem. 2002;277(21):18,322.

    Article  CAS  Google Scholar 

  30. Jesty J. Positive feedbacks of coagulation: their role in threshold regulation. Arterioscler Thromb Vasc Biol. 2005;25(12):2463–9.

    Article  CAS  PubMed  Google Scholar 

  31. Jones KC, Mann KG. A model for the tissue factor pathway to thrombin. II. A mathematical simulation. J Biol Chem. 1994;269(37):23,367–73.

    CAS  Google Scholar 

  32. Karsaj I, Humphrey JD. A mathematical model of evolving mechanical properties of intraluminal thrombus. Biorheology 2009;46(6):509–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kastrup C, Shen F, Runyon M, Ismagilov R. Characterization of the threshold response of initiation of blood clotting to stimulus patch size. Biophys J. 2007;93(8):2969–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krasotkina YV, Sinauridze EI, Ataullakhanov FI. Spatiotemporal dynamics of fibrin formation and spreading of active thrombin entering non-recalcified plasma by diffusion. Biochim Biophys Acta 2000;1474(3):337–45.

    Article  CAS  PubMed  Google Scholar 

  35. Ku D. Blood flow in arteries. Annu Rev Fluid Mech. 1997;29(1):399–434.

    Article  Google Scholar 

  36. Kuharsky A, Fogelson A. Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition. Biophys J. 2001;80(3):1050–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lam WA, Chaudhuri O, Crow A, Webster KD, Li TD, Kita A, Huang J, Fletcher DA. Mechanics and contraction dynamics of single platelets and implications for clot stiffening. Nat. Mater. 2011;10(1):61–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lawson JH, Kalafatis M, Stram S, Mann KG. A model for the tissue factor pathway to thrombin. I. An empirical study. J Biol Chem. 1994;269(37):23,357–66.

    CAS  Google Scholar 

  39. Leiderman K, Fogelson AL. Grow with the flow: a spatial-temporal model of platelet deposition and blood coagulation under flow. Math Med Biol. 2011;28(1):47–84.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Leiderman K, Fogelson AL. The influence of hindered transport on the development of platelet thrombi under flow. Bull Math Biol. 2013;75:1255–83.

    Article  PubMed  Google Scholar 

  41. Luan D, Zai M, Varner JD. Computationally derived points of fragility of a human cascade are consistent with current therapeutic strategies. PLoS Comput Biol. 2007;3(7):e142.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Marsden AL. Optimization in cardiovascular modeling. Annu Rev Fluid Mech. 2014;46(1):519–46.

    Article  Google Scholar 

  43. Monroe D, Hoffman M. What does it take to make the perfect clot? Arterioscler Thromb Vasc Biol. 2006;26(1):41.

    Article  CAS  PubMed  Google Scholar 

  44. Neeves KB, Illing DAR, Diamond SL. Thrombin flux and wall shear rate regulate fibrin fiber deposition state during polymerization under flow. Biophys J. 2010;98(7):1344–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nesheim ME, Tracy RP, Mann KG. “Clotspeed,” a mathematical simulation of the functional properties of prothrombinase. J Biol Chem. 1984;259(3):1447–53.

    CAS  PubMed  Google Scholar 

  46. Okorie UM, Denney WS, Chatterjee MS, Neeves KB, Diamond SL. Determination of surface tissue factor thresholds that trigger coagulation at venous and arterial shear rates: amplification of 100 fM circulating tissue factor requires flow. Blood 2008;111(7):3507–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Onasoga-Jarvis AA, Leiderman K, Fogelson AL, Wang M, Manco-Johnson MJ, Di Paola JA, Neeves KB. The effect of factor VIII deficiencies and replacement and bypass therapies on thrombus formation under venous flow conditions in microfluidic and computational models. PLoS ONE 2013;8(11):e78,732.

    Article  Google Scholar 

  48. Onasoga-Jarvis AA, Puls TJ, O’Brien SK, Kuang L, Liang HJ, Neeves KB. Thrombin generation and fibrin formation under flow on biomimetic tissue factor-rich surfaces. J Thromb Haemost: JTH 2014;12(3):373–82.

    Article  CAS  PubMed  Google Scholar 

  49. Ovanesov MV, Krasotkina JV, Ul’yanova LI, Abushinova KV, Plyushch OP, Domogatskii SP, Vorob’ev AI, Ataullakhanov FI. Hemophilia A and B are associated with abnormal spatial dynamics of clot growth. Biochim Biophys Acta 2002;1572(1):45–57.

    Article  CAS  PubMed  Google Scholar 

  50. Ovanesov MV, Lopatina EG, Saenko EL, Ananyeva NM, Ul’yanova LI, Plyushch OP, Butilin AA, Ataullakhanov FI. Effect of factor VIII on tissue factor-initiated spatial clot growth. Thromb Haemost. 2003;89(2):235–42.

    CAS  PubMed  Google Scholar 

  51. Ovanesov MV, Ananyeva NM, Panteleev MA, Ataullakhanov FI, Saenko EL. Initiation and propagation of coagulation from tissue factor-bearing cell monolayers to plasma: initiator cells do not regulate spatial growth rate*. J Thromb Haemost: JTH 2005;3(2):321–31.

    Article  CAS  PubMed  Google Scholar 

  52. Panteleev MA, Ovanesov MV, Kireev DA, Shibeko AM, Sinauridze EI, Ananyeva NM, Butylin AA, Saenko EL, Ataullakhanov FI. Spatial propagation and localization of blood coagulation are regulated by intrinsic and protein c pathways, respectively. Biophys J. 2006;90(5):1489–1500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Qiu Y, Brown AC, Myers DR, Sakurai Y, Mannino RG, Tran R, Ahn B, Hardy ET, Kee MF, Kumar S, Bao G, Barker TH, Lam WA. Platelet mechanosensing of substrate stiffness during clot formation mediates adhesion, spreading, and activation. Proc Natl Acad Sci. 2014;111(40):14,430–35.

    Article  CAS  Google Scholar 

  54. Reininger AJ, Bernlochner I, Penz SM, Ravanat C, Smethurst P, Farndale RW, Gachet C, Brandl R, Siess W. A 2-step mechanism of arterial thrombus formation induced by human atherosclerotic plaques. J Am Coll Cardiol. 2010;55(11):1147–58.

    Article  CAS  PubMed  Google Scholar 

  55. Segel LA, Edelstein-Keshet L. A primer on mathematical models in biology. Society for Industrial and Applied Mathematics. Philadelphia, PA (2013).

    Google Scholar 

  56. Shadden SC, Taylor CA. Characterization of coherent structures in the cardiovascular system. Ann Biomed Eng. 2008;36(7):1152–62.

    Article  PubMed  Google Scholar 

  57. Shen F, Kastrup CJ, Liu Y, Ismagilov RF. Threshold response of initiation of blood coagulation by tissue factor in patterned microfluidic capillaries is controlled by shear rate-supplement. Arterioscler Thromb Vasc Biol. 2008;28(11):2035–41.

    Article  CAS  PubMed  Google Scholar 

  58. Stalker TJ, Traxler EA, Wu J, Wannemacher KM, Cermignano SL, Voronov R, Diamond SL, Brass LF. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood 2013;121(10):1875–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Strauss WA. Partial differential equations: an introduction, 2nd ed. Wiley; 2008 Hoboken, NJ.

    Google Scholar 

  60. Taylor CA, Draney MT. Experimental and computational methods in cardiovascular fluid mechanics. Annu Rev Fluid Mech. 2004;36(1):197–231.

    Article  Google Scholar 

  61. Wang W, King MR. Multiscale modeling of platelet adhesion and thrombus growth. Ann Biomed Eng. 2012;40(11):2345–54.

    Article  PubMed  Google Scholar 

  62. Weisel J. Fibrinogen and fibrin. Adv Protein Chem. 2005;70:248–299.

    Google Scholar 

  63. Weisel JW, Nagaswami C. Computer modeling of fibrin polymerization kinetics correlated with electron microscope and …. Biophys J. 1992;63:111–28.

    Google Scholar 

  64. Weiss HJ, Turitto VT, Baumgartner HR. Role of shear rate and platelets in promoting fibrin formation on rabbit subendothelium. Studies utilizing patients with quantitative and qualitative platelet defects. J Clin Invest. 1986;78(4):1072–82.

    Google Scholar 

  65. Willems GM, Lindhout T, Hermens WT, Hemker HC. Simulation model for thrombin generation in plasma. Haemostasis 1991;21:197–207.

    CAS  PubMed  Google Scholar 

  66. Wufsus AR, Macera NE, Neeves KB. The hydraulic permeability of blood clots as a function of fibrin and platelet density. Biophys J. 2013;104(8):1812–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wufsus AR, Rana K, Brown A, Dorgan JR, Liberatore MW, Neeves KB. Elastic behavior and platelet retraction in low- and high-density fibrin gels. Biophys J. 2015;108(1):173–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Xu Z, Chen N, Kamocka MM, Rosen ED, Alber M. A multiscale model of thrombus development. J R Soc Interface 2008;5(24):705–22.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Xu Z, Chen N, Shadden SC, Marsden JE, Kamocka MM, Rosen ED, Alber M. Study of blood flow impact on growth of thrombi using a multiscale model. Soft Matter 2009;5(4):769–79.

    Article  CAS  Google Scholar 

  70. Xu Z, Lioi J, Mu J, Kamocka MM, Liu X, Chen DZ, Rosen ED, Alber M. A multiscale model of venous thrombus formation with surface-mediated control of blood coagulation cascade. Biophys J. 2010;98(9):1723–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF CAREER (CBET-1351672), American Heart Association (14GRNT20410094), and NIH (RO1HL120728, R21NS082933).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith B. Neeves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Neeves, K.B., Leiderman, K. (2016). Mathematical Models of Hemostasis. In: Gonzalez, E., Moore, H., Moore, E. (eds) Trauma Induced Coagulopathy. Springer, Cham. https://doi.org/10.1007/978-3-319-28308-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28308-1_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28306-7

  • Online ISBN: 978-3-319-28308-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics