Skip to main content

Cardiovascular Computed Tomography: Current and Future Scanning System Design

  • Chapter
  • First Online:
Cardiac CT Imaging

Abstract

Since the heart is continually in motion, cardiac computed tomography (CT) has capabilities required to scan the heart with high spatial resolution, high temporal resolution, larger detector coverage and fast scan speed. Recent technology enabled current versions of cardiac CT to display the heart with much fewer artifacts and less radiation dose. In this chapter, we will address the current and future scanning system design of cardiac CT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thibault JB, Sauer KD, Bouman CA, Hsieh J. A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys. 2007;34:4526–44.

    Article  PubMed  Google Scholar 

  2. Reproduced with permission from Chandra N. CT sampling technology [white paper]. Waukesha: GE Healthcare; 2008.

    Google Scholar 

  3. Hurlock GS, Higashino H, Mochizuki T. History of cardiac computed tomography: single to 320-detector row multislice computed tomography [Review]. Int J Cardiovasc Imaging. 2009;25:31–42.

    Article  PubMed  Google Scholar 

  4. Hell MM, Bittner D, Schuhbaeck A, et al. Prospectively ECG-triggered high-pitch coronary angiography with third-generation dual-source CT at 70 kVp tube voltage: feasibility, image quality, radiation dose, and effect of iterative reconstruction. J Cardiovasc Comput Tomogr. 2014;8:418–25.

    Article  PubMed  Google Scholar 

  5. Achenbach S, Ropers D, Kuettner A, et al. Contrast-enhanced coronary artery visualization by dual-source computed tomography – initial experience. Eur J Radiol. 2006;57:331–5.

    Article  PubMed  Google Scholar 

  6. Achenbach S, Ropers U, Kuettner A, et al. Randomized comparison of 64-slice single- and dual-source computed tomography coronary angiography for the detection of coronary artery disease. JACC Cardiovasc Imaging. 2008;1:177–86.

    Article  PubMed  Google Scholar 

  7. Leipsic J, Labounty TM, Hague CJ, et al. Effect of a novel vendor-specific motion-correction algorithm on image quality and diagnostic accuracy in persons undergoing coronary CT angiography without rate-control medications. J Cardiovasc Comput Tomogr. 2012;6:164–71.

    Article  PubMed  Google Scholar 

  8. Vembar M, Walker MJ, Johnson PC. Cardiac imaging using multislice computed tomography scanners: technical considerations. Coron Artery Dis. 2006;17:115–23.

    Article  PubMed  Google Scholar 

  9. Hsieh J, Londt J, Vass M, Li J, Tang X, Okerlund D. Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys. 2006;33:4236–48.

    Article  PubMed  Google Scholar 

  10. Earls JP, Berman EL, Urban BA, et al. Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology. 2008;246:742–53.

    Article  PubMed  Google Scholar 

  11. Hoe J, Toh KH. First experience with 320-row multidetector CT coronary angiography scanning with prospective electrocardiogram gating to reduce radiation dose. J Cardiovasc Comput Tomogr. 2009;3:257–61.

    Article  PubMed  Google Scholar 

  12. Steigner ML, Otero HJ, Cai T, et al. Narrowing the phase window width in prospectively ECG-gated single heart beat 320-detector row coronary CT angiography. Int J Cardiovasc Imaging. 2009;25:85–90.

    Article  PubMed  Google Scholar 

  13. Hausleiter J, Bischoff B, Hein F, et al. Feasibility of dual-source cardiac CT angiography with high-pitch scan protocols. J Cardiovasc Comput Tomogr. 2009;3:236–42.

    Article  PubMed  Google Scholar 

  14. Achenbach S, Marwan M, Schepis T, et al. High-pitch spiral acquisition: a new scan mode for coronary CT angiography. J Cardiovasc Comput Tomogr. 2009;3:117–21.

    Article  PubMed  Google Scholar 

  15. Gordic S, Desbiolles L, Sedlmair M, et al. Optimizing radiation dose by using advanced modelled iterative reconstruction in high-pitch coronary CT angiography. Eur Radiol. 2016;26(2):459–68.

    Google Scholar 

  16. Layritz C, Schmid J, Achenbach S, et al. Accuracy of prospectively ECG-triggered very low-dose coronary dual-source CT angiography using iterative reconstruction for the detection of coronary artery stenosis: comparison with invasive catheterization. Eur Heart J Cardiovasc Imaging. 2014;15:1238–45.

    Article  PubMed  Google Scholar 

  17. Schuhbaeck A, Achenbach S, Layritz C, et al. Image quality of ultra-low radiation exposure coronary CT angiography with an effective dose <0.1 mSv using high-pitch spiral acquisition and raw data-based iterative reconstruction. Eur Radiol. 2013;23:597–606.

    Article  PubMed  Google Scholar 

  18. Weigold W, Olszewski M, Walker MJ. Low-dose prospectively gated 256-slice coronary computed tomographic angiography. Int J Cardiovasc Imaging. 2009;25 Suppl 2:217–30.

    Article  Google Scholar 

  19. Gupta R, Cheung AC, Bartling SH, et al. Flat-panel volume CT: fundamental principles, technology, and applications. Radiographics. 2008;28:2009–22.

    Article  PubMed  Google Scholar 

  20. Andreini D, Pontone G, Mushtaq S, et al. Diagnostic accuracy of rapid kilovolt peak-switching dual-energy CT coronary angiography in patients with a high calcium score. JACC Cardiovasc Imaging. 2015;8:746–8.

    Article  PubMed  Google Scholar 

  21. Barreto M, Schoenhagen P, Nair A, et al. Potential of dual-energy computed tomography to characterize atherosclerotic plaque: ex vivo assessment of human coronary arteries in comparison to histology. J Cardiovasc Comput Tomogr. 2008;2:234–42.

    Article  PubMed  Google Scholar 

  22. Ruzsics B, Schwarz F, Schoepf UJ, et al. Comparison of dual-energy computed tomography of the heart with single photon emission computed tomography for assessment of coronary artery stenosis and of the myocardial blood supply. Am J Cardiol. 2009;104:318–26.

    Article  PubMed  Google Scholar 

  23. Boll DT, Hoffmann MH, Huber N, Bossert AS, Aschoff AJ, Fleiter TR. Spectral coronary multidetector computed tomography angiography: dual benefit by facilitating plaque characterization and enhancing lumen depiction. J Comput Assist Tomogr. 2006;30(5):804–11.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Budoff MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Nakanishi, R., Weigold, W.G., Budoff, M.J. (2016). Cardiovascular Computed Tomography: Current and Future Scanning System Design. In: Budoff, M., Shinbane, J. (eds) Cardiac CT Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-28219-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28219-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28217-6

  • Online ISBN: 978-3-319-28219-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics