Skip to main content

Watersipora subtorquata and the Possible Role of Its Associated Microbes: An Attempt to Explain the Extraordinary Invasion Success of This Marine Bryozoan Species

  • Chapter
  • First Online:
The Mechanistic Benefits of Microbial Symbionts

Part of the book series: Advances in Environmental Microbiology ((AEM,volume 2))

  • 1113 Accesses

Abstract

The Watersipora species complex comprises several sessile marine bryozoan clades which have successfully invaded human-influenced coastal areas worldwide over the last decades. These encrusting fouling bryozoa do not have physical means of defense against predation and overgrowth and are thriving in human-influenced and polluted environments in contrast to many native bryozoan species. A thin biofilm, which mainly consists of bacterial species and pennate diatoms of the genus Cocconeis, is generally associated with the frontal membranes and opercula of the Watersipora zooids. Ongoing research has indicated that epibiotic bacterial species of W. subtorquata sampled from locations in Japan and California predominantly belonged to different α-proteobacterial species within the family Rhodobacteraceae, but also Cyanobacteria and members of the Sphingobacteria have been identified. Some of these bacteria produce strong antifungal metabolites, or have genes involved in copper tolerance, which might increase their host’s ability to be more competitive in eutrophic and polluted environments. An endosymbiotic bacterial species associated with W. subtorquata larvae has been identified in the past as well, but specific function of this Endowatersipora sp. remained unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agius BP (2007) Spatial and temporal effects of pre-seeding plates with invasive ascidians: growth, recruitment and community composition. J Exp Mar Biol Ecol 342:30–39

    Article  Google Scholar 

  • Altieri AW, van Wesenbeeck BK, Bertness MD, Silliman BR (2007) Facilitation cascade drives positive relationship between native biodiversity and invasion success. ESA Ecol 91:1269–1275

    Article  Google Scholar 

  • Anderson CM, Haygood MG (2007) α-proteobacterial symbionts of marine bryozoans in the genus Watersipora. Appl Environ Microbiol 73:303–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anthoni U, Nielsen PH, Pereira M, Chrisophersen C (1990) Bryozoan secondary metabolites: a chemotaxonomical challenge. Comp Biochem Physiol 96B:431–437

    CAS  Google Scholar 

  • Armstrong E, Yan LM, Boyd KG, Wright PC, Burgess JG (2001) The symbiotic role of marine microbes on living surfaces. Hydrobiologia 46:37–40

    Article  Google Scholar 

  • Ayuso-Sacido A, Genilloud O (2004) New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microbiol Ecol 49:10–24

    Article  CAS  Google Scholar 

  • Banta WC (1969) The recent introduction of Watersipora arcuata Banta (Bryozoa, Cheilostomata) as a fouling pest in Southern California. Bull South Calif Acad Sci 68:248–251

    Google Scholar 

  • Barnes DKH, Dick MH (2000) Overgrowth competition in encrusting bryozoan assemblages of the intertidal and infralittoral zones of Alaska. Mar Biol 136:813–822

    Article  Google Scholar 

  • Baskett ML, Gaines SD, Nisbet RM (2009) Symbiont diversity may help coral reefs survive moderate climate change. Ecol Appl 19:3–17

    Article  PubMed  Google Scholar 

  • Becerro MA, Lopez NI, Turon X, Uriz MJ (1994) Antimicrobial activity and surface bacterial film in marine sponges. J Exp Mar Biol Ecol 179:195–205

    Article  Google Scholar 

  • Besaury L, Bodilis J, Delgas F, Andrade S, De la Iglesia R, Ouddane B, Quillet L (2013a) Abundance and diversity of copper resistance genes cusA and copA in microbial communities in relation to the impact of copper on Chilean marine sediments. Mar Pollut Bull 67:16–25

    Article  CAS  PubMed  Google Scholar 

  • Besaury L, Marty F, Buquet S, Mesnage V, Muyzer G, Quillet L (2013b) Culture-dependent and independent studies of microbial diversity in highly copper-contaminated Chilean marine sediments. Environ Microbiol 65:311–324

    CAS  Google Scholar 

  • Blackman AJ, Ralph CE, Skelton BW, White AH (1993) Two sulfur-containing isoquinoline alkaloids from the bryozoan Biflustra perfragilis. Aust J Chem 46:213–220

    Article  CAS  Google Scholar 

  • Blum JC, Chang AL, Liljestroem M, Schenk ME, Steinbery MK, Ruiz GM (2007) The non-native solitary ascidian Ciona intestinalis (L) depresses species richness. J Exp Mar Biol Ecol 342:5–14

    Article  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munroa MHG, Prinsep MR (2012) Marine natural products. Nat Prod Rep 29:144–222

    Article  CAS  PubMed  Google Scholar 

  • Boyd KG, Mearns-Spragg A, Brindley G, Hatzidimitriou K, Rennie S, Bregu M, Hubble MO, Burgess JG (1998) Antifouling potential of epiphytic marine bacteria from the surfaces of marine algae. In: Le Gal Y, Muller-Feuga A (eds) Marine microorganisms for industry. Editions Ifremer, Plouzané, France, pp 128–136

    Google Scholar 

  • Boyd KG, Mearns-Spragg A, Burgess JG (1999) Screening of marine bacteria for the production of microbial repellents using a spectrophotometric chemotaxis assay. Mar Biotechnol 1:359–363

    Article  CAS  PubMed  Google Scholar 

  • Brading MG, Jass J, Lappin-Sott HM (1995) Dynamics of bacterial biofilm formation. In: Lappin-Scott HM, Costerton JW (eds) Microbial biofilms, vol 5, Plant and microbial biotechnology research series. Cambridge University Press, Cambridge, pp 46–63

    Chapter  Google Scholar 

  • Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck T, Bohlen A, Schulz-Schaeffer A, Giese A, Westaway D, Kretzschmar H (1997) The cellular prion protein binds copper in vivo. Nature 390:684–687

    Article  CAS  PubMed  Google Scholar 

  • Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 64:573–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke C, Thomas T, Egan S, Kjellberg S (2006) The use of functional genomics for the identification of a gene cluster encoding for the biosynthesis of an antifungal tambjamine in the marine bacterium Pseudoalteromonas tunicata. Environ Microbiol 9:814–818

    Article  CAS  Google Scholar 

  • Carlton JT (1996) Biological invasions and cryptogenic species. Ecology 77:1654–1655

    Article  Google Scholar 

  • Carman K, Dobbs FC (1997) Epibiotic microorganisms on copepods and other marine crustaceans. Microsc Res Tech 37:116–135

    Article  CAS  PubMed  Google Scholar 

  • Casas GN, Scrosati R, Piriz ML (2004) The invasive kelp Undaria pinnatifida (Phaeophyceae, Laminariales) reduces native seaweed diversity in Nuevo Gulf (Patagonia, Argentina). Biol Inv 6:411–416

    Article  Google Scholar 

  • Celesti-Grapow L, Pysek P, Jarosik V, Blasi C (2006) Determinants of native and alien species richness in the urban flora of Rome. Divers Distrib 12:490–501

    Google Scholar 

  • Christophersen C (1985) Secondary metabolites from marine bryozoan species: a review. Acta Scand Chem B 39:517–529

    Article  CAS  Google Scholar 

  • Cima F, Ballarin L (2012) Immunotoxicity in ascidians: antifouling compounds alternative to organotins III – the case of copper(I) and Irgarol 105. Chemosphere 89:19–29

    Article  CAS  PubMed  Google Scholar 

  • Clarr DC, Edwards KF, Stachowicz JJ (2011) Positive and negative effects of a dominant competitor on the settlement, growth, and survival of competing species in an epibenthic community. J Exp Mar Biol Ecol 399:130–134

    Article  Google Scholar 

  • Cohen AN, Carlton JT (1998) Accelerating invasion rate in a highly invaded estuary. Science 279:555–557

    Article  CAS  PubMed  Google Scholar 

  • Cohen AS, Palacios-Fest MR, Msaky ES, Alin SR, McKee B, O’Reilly CM et al (2005) Paleolimnological investigations of anthropogenic environmental change in Lake Tanganyika: IX. Summary of paleorecords of environmental change and catchment deforestation at Lake Tanganyika and impacts on the Lake Tanganyika ecosystem. J Paleolim 34:125–145

    Article  Google Scholar 

  • Cooksey KE, Wigglesworth-Cooksey B (1995) Adhesion of bacteria and diatoms to surfaces in the sea: a review. Aquat Microb Ecol 9:87–96

    Article  Google Scholar 

  • Crooks JA (2002) Characterizing ecosystem‐level consequences of biological invasions: the role of ecosystem engineers. Oikos 97:153–66

    Google Scholar 

  • Da Gama BAP, Perreira RC, Soares AR, Teixera VL, Yoneshigue-Vaelntin Y (2003) Is the Mussel test a good indicator of antifouling activity? A comparison between laboratory and field assays. Biofouling 1:161–169

    Article  CAS  Google Scholar 

  • Dafforn KA, Glasby TM, Johnston EL (2008) Differential effects of tributyltin and copper antifoulants on recruitment of non-indigenous species. Biofouling 24:23–33

    Article  CAS  PubMed  Google Scholar 

  • Dafforn KA, Glasby TM, Johnston EL (2009) Links between estuarine condition and spatial distributions of marine invaders. Divers Distrib 15:807–821

    Article  Google Scholar 

  • Dang H, Lovell CR (2002) Numerical dominance and phylotype diversity of marine Rhodobacter species during early colonization of submerged surfaces in coastal marine waters as determined by 16S Ribosomal DNA sequence analysis and fluorescence in situ hybridization. Appl Environ Microbiol 68:496–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson SK, Haygood MG (1999) Identification of sibling species of the bryozoan Bugula neritina that produce different anticancer bryostatins and harbor distinct strains of the bacterial symbiont “Candidatus Endobugula sertula.”. Biol Bull 196:273–280

    Article  CAS  PubMed  Google Scholar 

  • Davidson SK, Allen SW, Lim GE et al (2001) Evidence for the biosynthesis of bryostatins by the bacterial symbiont “Candidatus Endobugula sertula” of the bryozoan Bugula neritina. Appl Environ Microbiol 67:4531–4537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De la Iglesia R, Valenzuale-Heredia D, Pavissich J, Freyhoffer S, Andrade S, Correa J, González B (2010) Novel polymerase chain reaction primers foe the specific detection of bacterial copper P-type ATPases gene sequences in environmental isolates metagenomic DNA. Lett Appl Microbiol 50:552–562

    Article  PubMed  CAS  Google Scholar 

  • De la Iglesia R, Valenzuela-Heredia D, Andrade S, Correa J, González B (2012) Composition dynamics of epilithic intertidal bacterial communities exposed to high copper levels. FEMS Microbiol Ecol 79:720–7

    Google Scholar 

  • Dodson SI, Grishanin AK, Gross K, Wyngaard G (2003) Morphological analysis of some cryptic species in the Acanthocyclops vernalis species complex in North America. Hydrobiologia 500:131–143

    Article  Google Scholar 

  • Dubois S, Commito J, Olivier F, Retiere C (2006) Effects of epibionts on Sabellaria alveolata biogenic reefs and their associated fauna in the Bay of Mont Saint-Michel. Estua Coast Shelf Sci 68:635–646

    Article  Google Scholar 

  • Ducklow HW, Mitchell R (1979) Bacterial populations and adaptations in the mucus layers on living corals. Limnol Oceanogr 24:715–725

    Article  Google Scholar 

  • Egan S, Thomas T, Holmström C, Kjelleberg S (2000) Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine algae Ulva lactua. Environ Microbiol 2:343–347

    Article  CAS  PubMed  Google Scholar 

  • Erpenbeck B, Breeuwer JAJ, van der Felde HC, van Soest RWM (2002) Unraveling host and symbiont phylogenies of halichondrid sponges (Demospongiae, Porifera) using a mitochondrial marker. Mar Biol 141:377–386

    Article  Google Scholar 

  • Felbeck H, Distel DL (1991) Prokaryotic symbionts of marine invertebrates. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. Springer, New York, NY

    Google Scholar 

  • Fitridge I, Dempster T, Guenther J, De Nys R (2012) The impact and control of biofouling in marine aquaculture: a review. Biofouling 28:649–669

    Article  PubMed  Google Scholar 

  • Floerl O, Pool TK, Inglish GJ (2004) Positive interactions between nonindigenous species facilitate transport by human vectors. Ecol Appl 14:1724–1736

    Article  Google Scholar 

  • Fridly JD, Stachowicz JJ, Naehm F, Sax DF, Seablum EW, Smith MD et al (2007) The invasion paradox: reconciling pattern and process in species invasion. Ecology 88:3–17

    Article  Google Scholar 

  • Friedrich AB, Fisher I, Proksch P, Hacker J, Hentschel U (2001) Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol Ecol 38:105–113

    Article  CAS  Google Scholar 

  • Gipperth L (2009) The legal design of the international and European Union ban on tributyltin antifouling paint: direct and indirect effects. J Environ Manage 90:S86–S95

    Article  CAS  PubMed  Google Scholar 

  • González JM, Moran MA (1997) Numerical dominance of a group of marine bacteria in the α-subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol 63:4237–4242

    PubMed  PubMed Central  Google Scholar 

  • Gordon DP (1989) The marine fauna of New Zealand: Bryozoa: Gymnolaemata (Cheilostomida Ascophorina) from the western South Island continental shelf and slope. New Zealand Oceanographic Institute Memoir 97:40–41

    Google Scholar 

  • Grosholz ED (2002) Ecological and evolutionary consequences of coastal invasions. Trends Ecol Evol 17:22–27

    Article  Google Scholar 

  • Grosholz E, Ruiz G (1996) Predicting the impact of introduced marine species: lessons from the multiple invasions of the European green crab Carcinus maenas. Biol Conserv 78:59–66

    Article  Google Scholar 

  • Guardiola FA, Cuesta A, Meseguer J, Esteban MA (2012) Risks of using antifouling biocides in aquaculture. Int J Mol Sci 13:1541–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurevitch J, Padilla DK (2004) Are invasive species a major cause of extinctions? Trends Ecol Evol 19:470–474

    Article  PubMed  Google Scholar 

  • Hamann C, Hegemann J, Hildebrandt A (1999) Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization. FEMS Microbiol Lett 173:255–263

    Article  CAS  PubMed  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  PubMed  Google Scholar 

  • Harwell CD (1994) The ecology and evolution of inductible defenses. Q Rev Biol 65:323–340

    Article  Google Scholar 

  • Hayes KR, Sliwa C (2003) Identifying potential marine pests—a deductive approach applied to Australia. Mar Pollut Bull 46:91–98

    Article  CAS  PubMed  Google Scholar 

  • Haygood MG, Schmidt EW, Davidson SK, Faulkner DJ (1999) Microbial symbionts of marine invertebrates: opportunities for microbial biotechnology. J Mol Microbiol Biotechnol 1:33–43

    CAS  PubMed  Google Scholar 

  • Hebert PD, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci 270(Suppl 1):S96–S99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heindl H, Wiese J, Thiel V, Imhoff JF (2010) Phylogenetic diversity and antimicrobial activities of bryozoan-associated bacteria isolated from Mediterranean and Baltic Sea habitats. Syst Appl Microbiol 33:94–104

    Article  CAS  PubMed  Google Scholar 

  • Hentschel U, Hopke J, Horn M, Freidrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hentschel U, Piel J, Degnan SM, Taylor MW (2012) Genomic insights into the marine sponge microbiome. Nat Rev Microbiol 10:641–654

    Article  CAS  PubMed  Google Scholar 

  • Hewitt CL, Campbell ML, Thresher RE, Martin RB, Boyd S, Cohen BF et al (2004) Introduced and cryptogenic species in Port Phillip Bay, Victoria, Australia. Mar Biol 144:183–202

    Article  Google Scholar 

  • Hill S (2000) Biodiversity of bacterial symbionts associated with bryozoa of the Southwest Coast of the UK. University of Wales Swansea, School of Biological Sciences

    Google Scholar 

  • Holst PB, Anthoni U, Christophersen C, Nielsen PH (1994) Marine alkaloids, 15. Two alkaloids, flustramine E and debromoflustramine B, from the marine bryozoan Flustra foliacea. J Nat Prod 57:997–1000

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. Review. Gen Biol 3(2):reviews0003.1–0003

    Google Scholar 

  • Jeong S-J, Higuchi R, Miyamoto T, Ono M, Kuwano M, Mawatari SF (2002) Bryoanthrathiophene, a new antiangiogenic constituent from the bryozoan Watersipora subtorquata (d’Orbigny, 1852)

    Google Scholar 

  • Johannes RE (1967) Ecology of organic aggregates in the vicinity of a coral reef. Limnol Oceanogr 12:189–195

    Article  Google Scholar 

  • Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18:119–125

    Article  Google Scholar 

  • Kittelmann S, Harder T (2005) Species- and site-specific bacterial communities associated with four encrusting bryozoans from the North Sea, Germany. J Exp Mar Biol Ecol 327:201–209

    Article  Google Scholar 

  • Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiology 420:73–90

    Article  CAS  Google Scholar 

  • Koenig P (2002) Four new bromotryptamine derivatives from the marine bryozoan Flustra foliacea. J Nat Prod 65:1633–1637

    Article  CAS  Google Scholar 

  • Kon-Ya K, Shimidzu N, Adachi K, Miki W (1994) 2,5,6-tribromo-1-methylgramine, an antifouling substance from the marine bryozoan Zoobrotryon pellucidum. Fish Sci 60:773–775

    Article  CAS  Google Scholar 

  • Krug PJ (2006) Defense of benthic invertebrates against surface colonization by larvae: a chemical arms race. In: Progress in molecular and subcellular biology, subseries marine molecular biotechnology, Fusetani N, Clare AS (eds) Antifouling compounds. Springer, Berlin

    Google Scholar 

  • Kucera M, Darling KF (2002) Cryptic species of planktonic foraminifera: their effect on palaeoceanographic reconstructions. Philos Trans R Soc Lond 360:695–718

    Article  Google Scholar 

  • Lagaaij R (1963) Cupuladria canariensis (Busk). Palaenotology 6:172–217

    Google Scholar 

  • Landing E, English A, Keppie JD (2010) Cambrian origin of all skeletalized metazoan phyla--Discovery of Earth’s oldest bryozoans (Upper Cambrian, southern Mexico). Geology 38:547

    Article  Google Scholar 

  • Lebedev VS, Veselovskii AV, Deinega E, Fedorov I (2002) The role of reactive oxygen species in copper-induced permeability of plasma membranes in Escherichia coli. Biofizika 47:295–299

    CAS  PubMed  Google Scholar 

  • Lejon DPH, Nowak V, Bouko S, Pascault N, MOugel C, Martins JMF, Ranjard L (2007) Fingerprinting and diversity of bacterial copA genes in response to soil types, soil organic status and copper contamination. FEMS Micobiol Ecol 61:424–437

    Article  CAS  Google Scholar 

  • Lim GE, Haygood MG (2004) “Candidatus Endobugula glebosa”, a specific bacterial symbiont of the marine bryozoan Bugula simplex. Appl Environ Microbiol 70:4921–4929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindquist N (2002) Chemical defense of early life stages of benthic marine invertebrates. Mini Review. J Chem Ecol 28:1998–2000

    Article  Google Scholar 

  • Lopanik N (2013) Chemical defensive symbioses in the marine environment. Funct Ecol. doi:10.1111/1365-2435.12160

    Google Scholar 

  • Lopanik N, Lindquist N, Targett N (2004) Potent cytotoxins produced by a microbial symbiont protect host larvae from predation. Oecologia 139:131–139

    Article  PubMed  Google Scholar 

  • Mackie JA, Keough MJ, Christidis L (2006) Invasion patterns inferred from cytochrome oxidase I sequences in three bryozoans, Bugula neritina, Watersipora subtorquata, and Watersipora arcuata. Mar Biol 149:285–295

    Article  CAS  Google Scholar 

  • Mackie JA, Darling JA, Geller JB (2012) Ecology of cryptic invasions: latitudinal segregation among Watersipora (Bryozoa) species. Sci Rep 28:2

    Google Scholar 

  • Marcos MS, Lozada M, Dionisi HM (2009) Aromatic hydrocarbon degradation genes from chronically polluted subantarctic marine sediments. Lett Appl Microbiol 49:602–608

    Article  CAS  PubMed  Google Scholar 

  • Martí R, Ruiz M-J, Turon J (2005) Spatial and temporal variation of natural toxicity in cnidarians, bryozoans and tunicates in Mediterranean caves. Sci Mar 69:485–492

    Google Scholar 

  • McGovern T, Hellberg ME (2003) Cryptic species, cryptic endosymbionts, and geographic variation in chemical defenses in the bryozoan Bugula neritina. Mol Ecol 12:1207–1215

    Article  CAS  PubMed  Google Scholar 

  • McNamara CJ, Leff LG (2004) Bacterial community composition in biofilms on leaves in a northeastern Ohio stream. J Am Benthol Soc 23:677–685

    Article  Google Scholar 

  • Meyer JS, Boese CJ, Morris JM (2007) Use of the biotic ligand model to predict pulse-exposure toxicity of copper to fathead minnows (Pimephales promelas). Aquat Toxicol 84:268–278

    Article  CAS  PubMed  Google Scholar 

  • Needles L (2007) Big changes to a small bay: exotic species in the Morro Bay fouling community over thirty years. Thesis. Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California

    Google Scholar 

  • Occhipinti-Ambrogi A, Savini D (2003) Biological invasions as a component of global change in stressed marine ecosystems. Mar Pollut Bull 46:542–551

    Article  CAS  PubMed  Google Scholar 

  • Ojika M, Yoshino G, Sakagami Y (1997) Novel ceramide 1-sulfates, potent DNA topoisomerase I inhibitor isolated from the bryozoa Watersipora cucullata. Tetrahedron Lett 38:4235–4238

    Article  CAS  Google Scholar 

  • Olenin S, Elliott M, Bysveen I, Culverhouse PF, Daunys D, Dubelaar GBJ et al (2011) Recommendations on methods for the detection and control of biological pollution in marine coastal waters. Mar Pollut Bull 62:2598–2604

    Article  CAS  PubMed  Google Scholar 

  • Osman RW, Whitlatch RB (1995a) The influence of resident adults recruitment: comparison to settlement. Mar Ecol Progr Ser 190:169–198

    Google Scholar 

  • Osman RW, Whitlatch RB (1995b) The influence of resident adults on larval settlement experiments with four species of ascidians. J Exp Mar Biol Ecol 190:199–220

    Article  Google Scholar 

  • Osman R, Whitlatch R (2007) Variation in the ability of Didemnum sp. to invade established communities. J Exp Mar Biol Ecol 342:40–53

    Article  Google Scholar 

  • Ostrovsky AN (2013) Reproductive patterns of gymnolaemate Bryozoa: general overview and comparative analysis. In: Evolution and sexual reproduction in marine invertebrates, pp. 1–113. Springer Science and Business Media, Dordrecht, Netherlands

    Google Scholar 

  • Pavissich JP, Silva M (2010) Sulfate reduction, molecular diversity, and copper amendment effects in bacterial communities enriched from sediments exposed to copper mining residues. Environ Toxicol Chem 29:256–264

    Article  CAS  PubMed  Google Scholar 

  • Peng R-H, Xiong A-S, Xue Y, Fu X-Y, Gao F, Zhao W et al (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955

    Article  CAS  PubMed  Google Scholar 

  • Peters L, Koenig GM, Wright AD, Pukall R, Stackebrandt E, Eberl L, Riedel K (2003) Secondary metabolites of Flustra foliacea and their influence on bacteria. Appl Environ Microbiol 69:3469–3475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters L, Wright AD, Krick A, Konig GM (2004) Variation of brominated indoles and terpenoids within single and different colonies of the marine bryozoan Flustra foliacea. J Chem Ecol 30:1165–1181

    Article  CAS  PubMed  Google Scholar 

  • Pettit GR, Herald CL, Doubek DL, Herald DL (1982) Isolation and structure of bryostatin 1. J Am Chem Soc 104:6846–6848

    Article  CAS  Google Scholar 

  • Piola RF, Johnston EL (2008) Pollution reduces native diversity and increases invader dominance in marine hard-substrate communities. Divers Distrib 14:329–342

    Article  Google Scholar 

  • Prieur D, Gaill F, Corre S (1993) Complex epibiotic bacterial communities on marine organisms: fouling or interactions? In: Guerrero R, Pedrós-Alió C (eds) Trends in microbial ecology. Spanish Society for Microbiology, Barcelona, Spain, pp 207–212

    Google Scholar 

  • Pukall R, Kramer I, Rohde M, Stackebrandt E (2001) Microbial diversity of cultivatable bacteria associated with the North Sea bryozoan Flustra foliacea. Syst Appl Microbiol 24:623–633

    Article  CAS  PubMed  Google Scholar 

  • Pukall R, Laroche M, Kroppenstedt RM, Schumann P, Stackebrandt E, Ulber R (2003) Paracoccus seriniphilus sp. nov., an L-serinedehydratase-producing coccus isolated from the marine bryozoan Bugula plumosa. Int J Syst Evol Microbiol 53:443–447

    Article  CAS  PubMed  Google Scholar 

  • Rilov G, Crooks JA (2009) Biological invasions in marine ecosystems – ecological. Management and geographic perspectives. Springer, Berlin

    Book  Google Scholar 

  • Rohwer F, Breitbart M, Jara J, Azam F, Knowlton N (2001) Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral Reefs 20:85–91

    Article  Google Scholar 

  • Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10

    Article  Google Scholar 

  • Salomon CE, Magarwaey NA, Sherman DA (2004) Merging the potential of microbial genetics with biological and chemical diversity: an even brighter future for marine natural product drug discovery. Nat Prod Rep 21:105–121

    Article  CAS  PubMed  Google Scholar 

  • Sato A, Fenical W (1983) Gramine-derived bromo-alkaloids from the marine bryozoan Zoobotryon verticillatum. Tetrahedron Lett 24:481–484

    Article  CAS  Google Scholar 

  • Schmidt EW, Nelson JT, Rasko DA, Sudek S, Eisen JA, Haygood MG (2005) Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc Natl Acad Sci USA 102:7315–7320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholz J, Hillmer G (1995) Reef-bryozoans and bryozoan micro-reefs – control factor evidence from the Philippines and other regions. Facies 32:109–144

    Article  Google Scholar 

  • Scholz J, Krumbein WE (1996) Microbial mats and biofilms associated with bryozoans. In: Gordon DP, Smith AM, Grant-Mackie JA (eds) Bryozoans in space and time. National Institute of Water & Atmospheric Research, Wellington, New Zealand, pp 283–298

    Google Scholar 

  • Scholz J, Sterflinger K, Junge C, Hillmer G (2000) A preliminary report on bryostromatolites. In: Herrera-Cubilla A, Jackson JBC (eds) Proceedings of the 11th International Bryozoology Association Conference. Smithsonian Tropical Research Institute, Panama, pp 376–384

    Google Scholar 

  • Schwarzer D, Finking R, Marahiel MA (2003) Nonribosomal peptides: from genes to products. Nat Prod Rep 20:275–287

    Article  CAS  PubMed  Google Scholar 

  • Sellheim K, Stachowicz JJ, Coates RC (2010) Effects of a nonnative habitat-forming species on mobile and sessile epifaunal communities. Mar Ecol Progr Ser 398:69–80

    Article  Google Scholar 

  • Sharp HJ, Winson MK, Porter JS (2006) Bryozoan metabolites: an ecological perspective. Nat Prod Rep 24:659–673

    Article  CAS  Google Scholar 

  • Soniat T, Finelli C, Ruiz J (2004) Vertical structure and predator refuge mediate oyster reef development and community dynamics. J Exp Mar Biol Ecol 310:163–182

    Article  Google Scholar 

  • Soule DF, Soule JD (1976) Species groups in Watersiporidae. In: Pouyet S (ed) Proceedings of the third international bryozoology association conference (1973). Documents des Laboratoires de Gèologie de la Faculté des Sciences de Lyon, pp 299–309

    Google Scholar 

  • Soule JD, Soule DF (1977) Fouling and bioadhesion: life strategies of bryozoans. In: Woollacot ER, Zimmer M, Zimmer RL (eds) Biology of bryozoans. Academic, New York, pp 437–457

    Chapter  Google Scholar 

  • Stabili L, Gravili C, Tredici SM, Piraino S, Talà A, Boero F, Alifan P (2008) Epibiotic Vibrio luminous bacteria isolated from some hydrozoa and bryozoa species. Microb Ecol 56:625–636

    Article  CAS  PubMed  Google Scholar 

  • Stachowicz J, Byrnes JE (2006) Species diversity, invasion success, and ecosystem functioning: disentangling the influence of resource competition, facilitation, and extrinsic factors. Mar Ecol Progr Ser 311:251–262

    Article  Google Scholar 

  • Stachowicz JJ, Bruno JF, Duffy JE (2007) Consequences of biodiversity for marine communities and ecosystems. Annu Rev Ecol Evol Syst 38:739–766

    Article  Google Scholar 

  • Sudek S, Lopanik NB, Waggoner LE, Hildebrand M, Anderson C, Liu HB et al (2007) Identification of the putative bryostatin polyketide synthase gene cluster form “Candidatus Endobugula sertula”, the uncultivated microbial symbiont of the marine bryozoan Bugula neritina. J Nat Prod 70:67–74

    Article  CAS  PubMed  Google Scholar 

  • Sutherland JP (1978) Functional roles of Schizoporella and Styela in the fouling community at Beaufourt of North Carolina. Ecology 59:257–264

    Article  Google Scholar 

  • Thakur NL, Jain R, Natalio F, Hamer B, Thakur AN, Mueller WEG (2008) Marine molecular biology: an emerging field of biological sciences. Biotechnol Adv 26:233–245

    Article  CAS  PubMed  Google Scholar 

  • Thomsen M, McGlathery K (2005) Facilitation of macroalgae by the sedimentary tube forming polychaete Diopatra cuprea. Estuar Coast Shelf Sci 62:63–73

    Article  Google Scholar 

  • Thomsen M, McGlathery K (2006) Effects of accumulations of sediments and drift algae on recruitment of sessile organisms associated with oyster reefs. J Exp Mar Biol Ecol 328:22–34

    Article  Google Scholar 

  • Tian X-R, Tang H-F, Ki Y-S, Lin H-W, Chen X-L, Ma N, Yao M-N, Zhang P-H (2011) New cytotoxic oxygenated sterols from the marine bryozoan Cryptosula pallasiana. Mar Drugs 9:62–183

    Article  CAS  Google Scholar 

  • Volkman JK (1999) Australasian research on marine natural products: chemistry, bioactivity and ecology. Mar Freshw Res 50:761–779

    Article  CAS  Google Scholar 

  • Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Progr Ser 58:175–189

    Article  Google Scholar 

  • Walls JT, Ritz DA, Blackman AJ (1993) Fouling, surface bacteria and antibacterial agents of four bryozoan species found in Tasmania, Australia. Exp Mar Biol Ecol 169:1–13

    Article  CAS  Google Scholar 

  • Walls JT, Blackman AJ, Ritz DA (1995) Localization of the amathamide alkaloids in surface bacteria of Amathia wilsoni Kirkpatrick, 1888 (Bryozoa: Ctenostomata). Hydrobiologia 297:163–172

    Article  CAS  Google Scholar 

  • Webster NS, Negri AP (2006) Site-specific variation in Antarctic marine biofilms established on artificial surfaces. Environ Microbiol 8:1177–1190

    Article  CAS  PubMed  Google Scholar 

  • Webster NS, Taylor MW (2012) Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 14:335–346

    Article  CAS  PubMed  Google Scholar 

  • Wild C, Huettel M, Klueter A, Kremb SG, Rasheed MYM, Jørgensen BB (2004) Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Lett Nat 428:66–70

    Article  CAS  Google Scholar 

  • Wilson E (2011) The facilitative role of an introduced bryozoan (Watersipora spp.): structuring fouling community assemblages within Humboldt Bay. Master Thesis. Humboldt State University

    Google Scholar 

  • Winston JE (1984) Why bryozoans have avicularia—a review of the evidence. American Museum novitates. American Museum of Natural History, New York. 2789:1–26

    Google Scholar 

  • Wooldridge SA (2013) Breakdown of the coral-algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences 10:1067–1658

    Article  CAS  Google Scholar 

  • Wuchter C, Marquardt J, Krumbein WE (2003) The epizoic diatom community on four bryozoan species from Helgoland (German Bight, North Sea). Helgol Mar Res 57:13–19

    Google Scholar 

  • Yellowlees D, Rees TA, Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ 31:679–694

    Article  CAS  PubMed  Google Scholar 

  • Zaiko A, Lethiemini N, Narščius A, Olenin S (2011) Assessment of bioinvasion impacts on a regional scale: a comparative approach. Bioinvasion 13:1739–1765

    Google Scholar 

  • Zengh Z, Zeng W, Huang Y, Yang Z, Li J, Cai H, Su W (2000) Detection of antitumor and antimicrobial activities in marine organisms associated actinomycetes isolated from the Taiwan Strait, China. FEMS Microbiol Lett 188:87–91

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antje Lauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lauer, A. (2016). Watersipora subtorquata and the Possible Role of Its Associated Microbes: An Attempt to Explain the Extraordinary Invasion Success of This Marine Bryozoan Species. In: Hurst, C. (eds) The Mechanistic Benefits of Microbial Symbionts. Advances in Environmental Microbiology, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-28068-4_9

Download citation

Publish with us

Policies and ethics