Skip to main content

Stem Cells for Cardiovascular Regeneration

  • Chapter
  • First Online:
Regenerative Medicine - from Protocol to Patient

Abstract

Ischemic disorders are the main cause of death in the Western world. With more patients surviving their acute myocardial infarction and an aging population, congestive heart failure is the rising health problem. At present, heart transplantation remains the only curative treatment for end stage heart failure. The discrepancy between demand and supply of donor organs does not fill the clinical need. This explains the huge efforts made in the field of stem cell research trying to establish alternative methods for endogenous tissue regeneration and to find sources for tissue replacement. In contrast to adult stem cells mainly acting in a paracrine fashion pluripotent stem cells have the potential to generate transplantable myocardial and vascular tissue.

Due to the low percentage of cardiovascular progenitor cells in pluripotent stem cell cultures, various approaches using exogenous factors aim for their amplification and purification in vitro. However, one future key technology may be genetic forward programming based on profound understanding of differentiation pathways in order to direct stem cell differentiation towards cardiovascular fates. In this regard, subtype specific programming has already been achieved by overexpression of distinct early cardiovascular transcription factors leading to populations of either predominantly early/intermediate type cardiomyocytes or differentiated ventricular myocardial cells, respectively. In addition, techniques for gentle purification of myocardial and vascular progenitor cells will have to be further refined in order to enable the generation of highly specific, pure and safe cell populations for transplantations and for tissue engineering.

In contrast, circulating bone marrow-derived progenitor cells have the potential not to replace diseased cardiovascular tissue but to stimulate its endogenous regeneration. Various approaches have recently been introduced to mobilise these cells from their physiological niche and to facilitate a sufficient recruitment into the diseased tissue. While the therapeutic impact of these cells is already being investigated in clinical trials at present, further methodological refinements may once allow their use in clinical routine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbasi M, Javan H, Alizadeh B, Afzalnia S (2011) Can intracoronary stem cell injection permanently improve cardiac function after myocardial infarction? Interact Cardiovasc Thorac Surg 12(2):229–231. doi:10.1510/icvts.2010.252106

    Article  PubMed  Google Scholar 

  • Akins RE, Boyce RA, Madonna ML, Schroedl NA, Gonda SR, McLaughlin TA, Hartzell CR (1999) Cardiac organogenesis in vitro: reestablishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Eng 5(2):103–118

    Article  CAS  PubMed  Google Scholar 

  • Assmus B, Leistner DM, Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Sedding D, Yu J, Corti R, Mathey DG, Barth C, Mayer-Wehrstein C, Burck I, Sueselbeck T, Dill T, Hamm CW, Tonn T, Dimmeler S, Zeiher AM, Group R-AS (2014) Long-term clinical outcome after intracoronary application of bone marrow-derived mononuclear cells for acute myocardial infarction: migratory capacity of administered cells determines event-free survival. Eur Heart J 35(19):1275–1283. doi:10.1093/eurheartj/ehu062

    Article  CAS  PubMed  Google Scholar 

  • Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428(6983):668–673. doi:10.1038/nature02460, nature02460 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ban K, Wile B, Kim S, Park HJ, Byun J, Cho KW, Saafir T, Song MK, Yu SP, Wagner M, Bao G, Yoon YS (2013) Purification of cardiomyocytes from differentiating pluripotent stem cells using molecular beacons that target cardiomyocyte-specific mRNA. Circulation 128(17):1897–1909. doi:10.1161/CIRCULATIONAHA.113.004228

    Article  CAS  PubMed  Google Scholar 

  • Bel A, Planat-Bernard V, Saito A, Bonnevie L, Bellamy V, Sabbah L, Bellabas L, Brinon B, Vanneaux V, Pradeau P, Peyrard S, Larghero J, Pouly J, Binder P, Garcia S, Shimizu T, Sawa Y, Okano T, Bruneval P, Desnos M, Hagege AA, Casteilla L, Puceat M, Menasche P (2010) Composite cell sheets: a further step toward safe and effective myocardial regeneration by cardiac progenitors derived from embryonic stem cells. Circulation 122(11):S118–S123. doi:122/11_suppl_1/S118 [pii], 10.1161/CIRCULATIONAHA.109.927293

    Article  PubMed  Google Scholar 

  • Bondue A, Lapouge G, Paulissen C, Semeraro C, Iacovino M, Kyba M, Blanpain C (2008) Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell 3(1):69–84

    Article  CAS  PubMed  Google Scholar 

  • Boyle A, Colvin-Adams M (2004) Recipient selection and management. Semin Thorac Cardiovasc Surg 16(4):358–363

    Article  PubMed  Google Scholar 

  • Brenner C, Franz WM (2014) Pluripotent-stem-cell-derived epicardial cells: a step toward artificial cardiac tissue. Cell Stem Cell 15(5):533–534. doi:10.1016/j.stem.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  • Brenner C, Krankel N, Kuhlenthal S, Israel L, Remm F, Fischer C, Herbach N, Speer T, Grabmaier U, Laskowski A, Gross L, Theiss H, Wanke R, Landmesser U, Franz WM (2014) Short-term inhibition of DPP-4 enhances endothelial regeneration after acute arterial injury via enhanced recruitment of circulating progenitor cells. Int J Cardiol 177(1):266–275. doi:10.1016/j.ijcard.2014.09.016

    Article  PubMed  Google Scholar 

  • Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6(11):826–835

    Article  CAS  PubMed  Google Scholar 

  • Christopherson KW 2nd, Hangoc G, Mantel CR, Broxmeyer HE (2004) Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 305(5686):1000–1003. doi:10.1126/science.1097071

    Article  CAS  PubMed  Google Scholar 

  • David R, Groebner M, Franz WM (2005) Magnetic cell sorting purification of differentiated embryonic stem cells stably expressing truncated human CD4 as surface marker. Stem Cells 23(4):477–482

    Article  CAS  PubMed  Google Scholar 

  • David R, Brenner C, Stieber J, Schwarz F, Brunner S, Vollmer M, Mentele E, Muller-Hocker J, Kitajima S, Lickert H, Rupp R, Franz WM (2008a) MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling. Nat Cell Biol 10(3):338–345

    Article  CAS  PubMed  Google Scholar 

  • David R, Theiss H, Franz WM (2008b) Connexin 40 promoter-based enrichment of embryonic stem cell-derived cardiovascular progenitor cells. Cells Tissues Organs 188(1–2):62–69

    Article  CAS  PubMed  Google Scholar 

  • David R, Stieber J, Fischer E, Brunner S, Brenner C, Pfeiler S, Schwarz F, Franz WM (2009) Forward programming of pluripotent stem cells towards distinct cardiovascular cell types. Cardiovasc Res 84(2):263–272

    Article  CAS  PubMed  Google Scholar 

  • David R, Jarsch V, Schwarz F, Nathan P, Gegg M, Lickert H, Franz WM (2011) Induction of MesP1 by Brachyury(T) generates the common multipotent cardiovascular stem cell. Cardiovasc Res 92(1):115–122. doi:cvr158 [pii], 10.1093/cvr/cvr158

    Article  CAS  PubMed  Google Scholar 

  • Deindl E, Zaruba MM, Brunner S, Huber B, Mehl U, Assmann G, Hoefer IE, Mueller-Hoecker J, Franz WM (2006) G-CSF administration after myocardial infarction in mice attenuates late ischemic cardiomyopathy by enhanced arteriogenesis. FASEB J 20(7):956–958

    Article  CAS  PubMed  Google Scholar 

  • DESTATIS (2013) Number of deaths up 2 % on a year earlier. Press release from 12 December 2013, German federal statistical office (422)

    Google Scholar 

  • Eisenberg LM, Eisenberg CA (2006) Wnt signal transduction and the formation of the myocardium. Dev Biol 293(2):305–315

    Article  CAS  PubMed  Google Scholar 

  • Engelmann MG, Theiss HD, Theiss C, Henschel V, Huber A, Wintersperger BJ, Schoenberg SO, Steinbeck G, Franz WM (2009) G-CSF in patients suffering from late revascularised ST elevation myocardial infarction: final 1-year-results of the G-CSF-STEMI trial. Int J Cardiol 144(3):399–404

    Article  PubMed  Google Scholar 

  • Gassanov N, Er F, Zagidullin N, Hoppe UC (2004) Endothelin induces differentiation of ANP-EGFP expressing embryonic stem cells towards a pacemaker phenotype. FASEB J 18(14):1710–1712

    CAS  PubMed  Google Scholar 

  • Gerecht-Nir S, David R, Zaruba M, Franz WM, Itskovitz-Eldor J (2003) Human embryonic stem cells for cardiovascular repair. Cardiovasc Res 58(2):313–323

    Article  Google Scholar 

  • Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103(11):1204–1219. doi:10.1161/CIRCRESAHA.108.176826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graichen R, Xu X, Braam SR, Balakrishnan T, Norfiza S, Sieh S, Soo SY, Tham SC, Mummery C, Colman A, Zweigerdt R, Davidson BP (2008) Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation 76(4):357–370

    Article  CAS  PubMed  Google Scholar 

  • Grepin C, Nemer G, Nemer M (1997) Enhanced cardiogenesis in embryonic stem cells overexpressing the GATA-4 transcription factor. Development 124(12):2387–2395

    CAS  PubMed  Google Scholar 

  • Gyongyosi M, Wojakowski W, Lemarchand P, Lunde K, Tendera M, Bartunek J, Marban E, Assmus B, Henry TD, Traverse JH, Moye LA, Surder D, Corti R, Huikuri H, Miettinen J, Wohrle J, Obradovic S, Roncalli J, Malliaras K, Pokushalov E, Romanov A, Kastrup J, Bergmann MW, Atsma DE, Diederichsen A, Edes I, Benedek I, Benedek T, Pejkov H, Nyolczas N, Pavo N, Bergler-Klein J, Pavo IJ, Sylven C, Berti S, Navarese EP, Maurer G, Investigators* A (2015) Meta-Analysis of Cell-based CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circ Res 116(8):1346–1360. doi:10.1161/CIRCRESAHA.116.304346

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunt SA (1998) Current status of cardiac transplantation. JAMA 280(19):1692–1698

    Article  CAS  PubMed  Google Scholar 

  • Izarra A, Moscoso I, Canon S, Carreiro C, Fondevila D, Martin-Caballero J, Blanca V, Valiente I, Diez-Juan A, Bernad A (2014) miRNA-1 and miRNA-133a are involved in early commitment of pluripotent stem cells and demonstrate antagonistic roles in the regulation of cardiac differentiation. J Tissue Eng Regen Med. doi:10.1002/term.1977

    PubMed  Google Scholar 

  • Jung JJ, Husse B, Rimmbach C, Krebs S, Stieber J, Steinhoff G, Dendorfer A, Franz WM, David R (2014) Programming and isolation of highly pure physiologically and pharmacologically functional sinus-nodal bodies from pluripotent stem cells. Stem Cell Rep 2(5):592–605. doi:10.1016/j.stemcr.2014.03.006

    Article  Google Scholar 

  • Kanno S, Kim PK, Sallam K, Lei J, Billiar TR, Shears LL 2nd (2004) Nitric oxide facilitates cardiomyogenesis in mouse embryonic stem cells. Proc Natl Acad Sci U S A 101(33):12277–12281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kattman SJ, Huber TL, Keller GM (2006) Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 11(5):723–732

    Article  CAS  PubMed  Google Scholar 

  • Kelly RG, Brown NA, Buckingham ME (2001) The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 1(3):435–440

    Article  CAS  PubMed  Google Scholar 

  • Kessler PD, Byrne BJ (1999) Myoblast cell grafting into heart muscle: cellular biology and potential applications. Annu Rev Physiol 61:219–242

    Article  CAS  PubMed  Google Scholar 

  • Kitajima S, Takagi A, Inoue T, Saga Y (2000) MesP1 and MesP2 are essential for the development of cardiac mesoderm. Development 127(15):3215–3226

    CAS  PubMed  Google Scholar 

  • Klug MG, Soonpaa MH, Koh GY, Field LJ (1996) Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J Clin Invest 98(1):216–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolossov E, Lu Z, Drobinskaya I, Gassanov N, Duan Y, Sauer H, Manzke O, Bloch W, Bohlen H, Hescheler J, Fleischmann BK (2005) Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes. FASEB J 19(6):577–579

    CAS  PubMed  Google Scholar 

  • Kraehenbuehl TP, Ferreira LS, Hayward AM, Nahrendorf M, van der Vlies AJ, Vasile E, Weissleder R, Langer R, Hubbell JA (2011) Human embryonic stem cell-derived microvascular grafts for cardiac tissue preservation after myocardial infarction. Biomaterials 32(4):1102–1109. doi:S0142-9612(10)01290-1 [pii], 10.1016/j.biomaterials.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  • Lam JT, Moretti A, Laugwitz KL (2009) Multipotent progenitor cells in regenerative cardiovascular medicine. Pediatr Cardiol 30(5):690–698

    Article  PubMed  Google Scholar 

  • Larsen W (1998) Essentials of human embryology. Library of congress cataloging-in-publication data, vol 2. Churchill Livingstone, New York

    Google Scholar 

  • Laugwitz KL, Moretti A, Caron L, Nakano A, Chien KR (2008) Islet1 cardiovascular progenitors: a single source for heart lineages? Development 135(2):193–205

    Article  CAS  PubMed  Google Scholar 

  • Leal J, Luengo-Fernandez R, Gray A, Petersen S, Rayner M (2006) Economic burden of cardiovascular diseases in the enlarged European Union. Eur Heart J 27(13):1610–1619. doi:ehi733 [pii], 10.1093/eurheartj/ehi733

    Article  PubMed  Google Scholar 

  • Lee MS, Makkar RR (2004) Stem-cell transplantation in myocardial infarction: a status report. Ann Intern Med 140(9):729–737

    Article  PubMed  Google Scholar 

  • Liao SY, Liu Y, Siu CW, Zhang Y, Lai WH, Au KW, Lee YK, Chan YC, Yip PM, Wu EX, Wu Y, Lau CP, Li RA, Tse HF (2010) Proarrhythmic risk of embryonic stem cell-derived cardiomyocyte transplantation in infarcted myocardium. Heart Rhythm 7(12):1852–1859. doi:S1547-5271(10)00904-5 [pii], 10.1016/j.hrthm.2010.09.006

    Article  PubMed  Google Scholar 

  • Lin Q, Fu Q, Zhang Y, Wang H, Liu Z, Zhou J, Duan C, Wang Y, Wu K, Wang C (2010) Tumourigenesis in the infarcted rat heart is eliminated through differentiation and enrichment of the transplanted embryonic stem cells. Eur J Heart Fail 12(11):1179–1185. doi:hfq144 [pii], 10.1093/eurjhf/hfq144

    Article  CAS  PubMed  Google Scholar 

  • Lindsley RC, Gill JG, Murphy TL, Langer EM, Cai M, Mashayekhi M, Wang W, Niwa N, Nerbonne JM, Kyba M, Murphy KM (2008) Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell Stem Cell 3(1):55–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HS, Jan MS, Chou CK, Chen PH, Ke NJ (1999) Is green fluorescent protein toxic to the living cells? Biochem Biophys Res Commun 260(3):712–717

    Article  CAS  PubMed  Google Scholar 

  • Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, Harvey RP (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 9(13):1654–1666

    Article  CAS  PubMed  Google Scholar 

  • Maltsev VA, Rohwedel J, Hescheler J, Wobus AM (1993) Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech Dev 44(1):41–50

    Article  CAS  PubMed  Google Scholar 

  • Masumoto H, Ikuno T, Takeda M, Fukushima H, Marui A, Katayama S, Shimizu T, Ikeda T, Okano T, Sakata R, Yamashita JK (2014) Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration. Sci Rep 4:6716. doi:10.1038/srep06716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meilhac SM, Esner M, Kelly RG, Nicolas JF, Buckingham ME (2004) The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 6(5):685–698

    Article  CAS  PubMed  Google Scholar 

  • Menasche P (2005) Skeletal myoblast for cell therapy. Coron Artery Dis 16(2):105–110

    Article  PubMed  Google Scholar 

  • Menasche P, Hagege AA, Vilquin JT, Desnos M, Abergel E, Pouzet B, Bel A, Sarateanu S, Scorsin M, Schwartz K, Bruneval P, Benbunan M, Marolleau JP, Duboc D (2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 41(7):1078–1083

    Article  PubMed  Google Scholar 

  • Müller M, Fleischmann BK, Selbert S, Ji GJ, Endl E, Middeler G, Muller OJ, Schlenke P, Frese S, Wobus AM, Hescheler J, Katus HA, Franz WM (2000) Selection of ventricular-like cardiomyocytes from ES cells in vitro. FASEB J 14(15):2540–2548

    Article  PubMed  Google Scholar 

  • Mummery CL, Ward D, Passier R (2007) Differentiation of human embryonic stem cells to cardiomyocytes by coculture with endoderm in serum-free medium. Curr Protoc Stem Cell Biol Chapter 1:Unit 1F 2

    Google Scholar 

  • Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428(6983):664–668

    Article  CAS  PubMed  Google Scholar 

  • Nelson TJ, Faustino RS, Chiriac A, Crespo-Diaz R, Behfar A, Terzic A (2008) CXCR4+/FLK-1+ biomarkers select a cardiopoietic lineage from embryonic stem cells. Stem Cells 26(6):1464–1473

    Article  CAS  PubMed  Google Scholar 

  • Neumayer HH (2005) Introducing everolimus (Certican) in organ transplantation: an overview of preclinical and early clinical developments. Transplantation 79(9 Suppl):S72–S75

    Article  CAS  PubMed  Google Scholar 

  • Okano T, Yamada N, Okuhara M, Sakai H, Sakurai Y (1995) Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials 16(4):297–303

    Article  CAS  PubMed  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P (2001) Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann N Y Acad Sci 938:221–229; discussion 229–230

    Article  CAS  PubMed  Google Scholar 

  • Paquin J, Danalache BA, Jankowski M, McCann SM, Gutkowska J (2002) Oxytocin induces differentiation of P19 embryonic stem cells to cardiomyocytes. Proc Natl Acad Sci U S A 99(14):9550–9555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potta SP, Liang H, Winkler J, Doss MX, Chen S, Wagh V, Pfannkuche K, Hescheler J, Sachinidis A (2010) Isolation and functional characterization of alpha-smooth muscle actin expressing cardiomyocytes from embryonic stem cells. Cell Physiol Biochem 25(6):595–604. doi:000315078 [pii], 10.1159/000315078

    Article  CAS  PubMed  Google Scholar 

  • Roggia C, Ukena C, Bohm M, Kilter H (2006) Hepatocyte growth factor (HGF) enhances cardiac commitment of differentiating embryonic stem cells by activating PI3 kinase. Exp Cell Res 313(5):921–930

    Article  PubMed  Google Scholar 

  • Sadler T (1998) Medizinische Embryologie – Die normale menschliche Entwicklung und ihre Fehlbildungen (trans: Drews U), 9th edn

    Google Scholar 

  • Saga Y, Miyagawa-Tomita S, Takagi A, Kitajima S, Miyazaki J, Inoue T (1999) MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126(15):3437–3447

    CAS  PubMed  Google Scholar 

  • Saga Y, Kitajima S, Miyagawa-Tomita S (2000) Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc Med 10(8):345–352

    Article  CAS  PubMed  Google Scholar 

  • Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, Yu J, Corti R, Mathey DG, Hamm CW, Suselbeck T, Assmus B, Tonn T, Dimmeler S, Zeiher AM (2006a) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355(12):1210–1221

    Article  CAS  PubMed  Google Scholar 

  • Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, Yu J, Corti R, Mathey DG, Hamm CW, Suselbeck T, Assmus B, Tonn T, Dimmeler S, Zeiher AM, Investigators R-A (2006b) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355(12):1210–1221. doi:10.1056/NEJMoa060186

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Li G, Rajarajan K, Hamaguchi R, Burridge PW, Wu SM (2015) Derivation of highly purified cardiomyocytes from human induced pluripotent stem cells using small molecule-modulated differentiation and subsequent glucose starvation. J Vis Exp 97: e52628. doi:10.3791/52628

  • Shiba Y, Hauch KD, Laflamme MA (2009) Cardiac applications for human pluripotent stem cells. Curr Pharm Des 15(24):2791–2806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AM, Li FQ, Hamazaki T, Kasahara H, Takemaru KI, Terada N (2007) Chibby, an antagonist of the Wnt/{beta}-catenin pathway, facilitates cardiomyocyte differentiation of murine embryonic stem cells. Circulation 115(5):617–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singla DK, Long X, Glass C, Singla RD, Yan B (2011) iPS cells repair and regenerate infarcted myocardium. Mol Pharm. doi:10.1021/mp2001704

    Google Scholar 

  • Soonpaa MH, Koh GY, Klug MG, Field LJ (1994) Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264(5155):98–101

    Article  CAS  PubMed  Google Scholar 

  • Srivastava D, Ivey KN (2006) Potential of stem-cell-based therapies for heart disease. Nature 441(7097):1097–1099

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Lord B, Schulze PC, Fryer RM, Sarang SS, Gullans SR, Lee RT (2003) Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107(14):1912–1916

    Article  CAS  PubMed  Google Scholar 

  • Theiss HD, Brenner C, Engelmann MG, Zaruba MM, Huber B, Henschel V, Mansmann U, Wintersperger B, Reiser M, Steinbeck G, Franz WM (2010) Safety and efficacy of SITAgliptin plus GRanulocyte-colony-stimulating factor in patients suffering from Acute Myocardial Infarction (SITAGRAMI-Trial)-rationale, design and first interim analysis. Int J Cardiol 145(2):282–284. doi:S0167-5273(09)01501-0 [pii], 10.1016/j.ijcard.2009.09.555

    Article  PubMed  Google Scholar 

  • Theiss HD, Vallaster M, Rischpler C, Krieg L, Zaruba MM, Brunner S, Vanchev Y, Fischer R, Grobner M, Huber B, Wollenweber T, Assmann G, Mueller-Hoecker J, Hacker M, Franz WM (2011) Dual stem cell therapy after myocardial infarction acts specifically by enhanced homing via the SDF-1/CXCR4 axis. Stem Cell Res 7(3):244–255. doi:10.1016/j.scr.2011.05.003

    Article  CAS  PubMed  Google Scholar 

  • Theiss HD, Gross L, Vallaster M, David R, Brunner S, Brenner C, Nathan P, Assmann G, Mueller-Hoecker J, Vogeser M, Steinbeck G, Franz WM (2013) Antidiabetic gliptins in combination with G-CSF enhances myocardial function and survival after acute myocardial infarction. Int J Cardiol 168(4):3359–3369. doi:10.1016/j.ijcard.2013.04.121

    Article  PubMed  Google Scholar 

  • Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, Pabon L, Reinecke H, Murry CE (2011) Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109(1):47–59. doi:CIRCRESAHA.110.237206 [pii], 10.1161/CIRCRESAHA.110.237206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ventura C, Maioli M, Asara Y, Santoni D, Scarlata I, Cantoni S, Perbellini A (2004) Butyric and retinoic mixed ester of hyaluronan. A novel differentiating glycoconjugate affording a high throughput of cardiogenesis in embryonic stem cells. J Biol Chem 279(22):23574–23579

    Article  CAS  PubMed  Google Scholar 

  • Ventura C, Maioli M, Asara Y, Santoni D, Mesirca P, Remondini D, Bersani F (2005) Turning on stem cell cardiogenesis with extremely low frequency magnetic fields. FASEB J 19(1):155–157

    CAS  PubMed  Google Scholar 

  • Wiese C, Nikolova T, Zahanich I, Sulzbacher S, Fuchs J, Yamanaka S, Graf E, Ravens U, Boheler KR, Wobus AM (2011) Differentiation induction of mouse embryonic stem cells into sinus node-like cells by suramin. Int J Cardiol 147(1):95–111. doi:S0167-5273(09)00871-7 [pii], 10.1016/j.ijcard.2009.08.021

    Article  PubMed  PubMed Central  Google Scholar 

  • Witty AD, Mihic A, Tam RY, Fisher SA, Mikryukov A, Shoichet MS, Li RK, Kattman SJ, Keller G (2014) Generation of the epicardial lineage from human pluripotent stem cells. Nat Biotechnol 32(10):1026–1035. doi:10.1038/nbt.3002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wobus AM, Kaomei G, Shan J, Wellner MC, Rohwedel J, Ji G, Fleischmann B, Katus HA, Hescheler J, Franz WM (1997) Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J Mol Cell Cardiol 29(6):1525–1539

    Article  CAS  PubMed  Google Scholar 

  • Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, Drexler H (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364(9429):141–148

    Article  PubMed  Google Scholar 

  • Wu SM (2008) Mesp1 at the heart of mesoderm lineage specification. Cell Stem Cell 3(1):1–2

    Article  CAS  PubMed  Google Scholar 

  • Xu XQ, Graichen R, Soo SY, Balakrishnan T, Rahmat SN, Sieh S, Tham SC, Freund C, Moore J, Mummery C, Colman A, Zweigerdt R, Davidson BP (2008) Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation 76(9):958–970

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1(1):39–49

    Article  CAS  PubMed  Google Scholar 

  • Yuasa S, Itabashi Y, Koshimizu U, Tanaka T, Sugimura K, Kinoshita M, Hattori F, Fukami SI, Shimazaki T, Okano H, Ogawa S, Fukuda K (2005) Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat Biotechnol 23(5):607–611

    Article  CAS  PubMed  Google Scholar 

  • Zaffran S, Kelly RG, Meilhac SM, Buckingham ME, Brown NA (2004) Right ventricular myocardium derives from the anterior heart field. Circ Res 95(3):261–268

    Article  CAS  PubMed  Google Scholar 

  • Zandstra PW, Bauwens C, Yin T, Liu Q, Schiller H, Zweigerdt R, Pasumarthi KB, Field LJ (2003) Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng 9(4):767–778

    Article  CAS  PubMed  Google Scholar 

  • Zaruba MM, Theiss HD, Vallaster M, Mehl U, Brunner S, David R, Fischer R, Krieg L, Hirsch E, Huber B, Nathan P, Israel L, Imhof A, Herbach N, Assmann G, Wanke R, Mueller-Hoecker J, Steinbeck G, Franz WM (2009) Synergy between CD26/DPP-IV inhibition and G-CSF improves cardiac function after acute myocardial infarction. Cell Stem Cell 4(4):313–323

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann WH, Cesnjevar R (2009) Cardiac tissue engineering: implications for pediatric heart surgery. Pediatr Cardiol 30(5):716–723

    Article  PubMed  PubMed Central  Google Scholar 

  • Zweigerdt R, Burg M, Willbold E, Abts H, Ruediger M (2003) Generation of confluent cardiomyocyte monolayers derived from embryonic stem cells in suspension: a cell source for new therapies and screening strategies. Cytotherapy 5(5):399–413

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang-Michael Franz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brenner, C., David, R., Franz, WM. (2016). Stem Cells for Cardiovascular Regeneration. In: Steinhoff, G. (eds) Regenerative Medicine - from Protocol to Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-27610-6_6

Download citation

Publish with us

Policies and ethics