Skip to main content

Development and Regeneration of the Vertebrate Brain

  • Chapter
  • First Online:
Regenerative Medicine - from Protocol to Patient
  • 1022 Accesses

Abstract

The vertebrate brain is hierarchically assembled about orthogonal axes using organizing centers that control cascades of signaling events. The reiterative generation of these centers at defined times, and in precise spatial locations, leads to the conversion of a contiguous and homogenous epithelial sheet into the most complex biological tissue in the animal kingdom. The critical events orchestrating the construction of a “typical” vertebrate brain are described. Attention is focused on specification of major brain regions common across the vertebrate phylogeny, rather than on the differentiation of constituent cell types and specific cytoarchitectures. By uncloaking the complex spatial interactions that unfold temporally during the build of the vertebrate brain, it becomes clear why regeneration of this tissue following injury is such a challenging task. And yet, while mammalian brains fail to regenerate, the brains of non-mammalian vertebrates, such as teleosts, reptiles and amphibians, can successfully reconstitute brain tissue following traumatic injury. Understanding the molecular and cellular bases of this remarkable regenerative capacity is revealing the importance of developmental programs, as well as exposing unexpected roles for extraneous processes such as inflammation. Recent discoveries are now fuelling hope for future therapeutic approaches that will ameliorate the debilitating consequences of brain injury in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acampora D, Mazan S, Lallemand Y, Avantaggiato V, Maury M, Simeone A, Brulet P (1995) Forebrain and midbrain regions are deleted in Otx2−/− mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 121:3279–3290

    CAS  PubMed  Google Scholar 

  • Adolf B, Chapouton P, Lam CS, Topp S, Tannhäuser B, Strähle U, Götz M, Bally-Cuif L (2006) Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon. Dev Biol 295:278–293

    Article  CAS  PubMed  Google Scholar 

  • Alexander T, Nolte C, Krumlauf R (2009) Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol 25:431–456

    Article  CAS  PubMed  Google Scholar 

  • Almli LM, Wilczynski W (2007) Regional distribution and migration of proliferating cell populations in the adult brain of Hyla cinerea (Anura, Amphibia). Brain Res 1159:112–118

    Article  CAS  PubMed  Google Scholar 

  • Alvarado-Mallart R-M (2005) The chick/quail transplantation model: discovery of the isthmic organizer center. Brain Res Rev 49:109–113

    Article  PubMed  Google Scholar 

  • Anderson RM, Lawrence AR, Stottman RW, Bachiller D, Klingensmith J (2002) Chordin and noggin promote organizing centers of forebrain development in the mouse. Development 129:4975–4987

    CAS  PubMed  Google Scholar 

  • Angeles Luque M, Perez-Perez MP, Herrero L, Torres B (2005) Involvement of the optic tectum and mesencephalic reticular formation in the generation of saccadic eye movements in goldfish. Brain Res Rev 49:388–397

    Article  CAS  PubMed  Google Scholar 

  • Assimacopoulos S, Kao T, Issa NP, Grove EA (2012) Fibroblast growth factor 8 organizes the neocortical area map and regulates sensory map topography. J Neurosci 32:7191–7201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey P (1916) Morphology of the roof plate of the forebrain and the lateral choroid plexuses in the human embryo. J Comp Neurol 26:79–120

    Article  Google Scholar 

  • Ballintijn CM, Roberts JL (1976) Neural control and proprioceptive load matching in reflex respiratory movements of fishes. Fed Proc 35:1983–1991

    CAS  PubMed  Google Scholar 

  • Barbosa JS, Sanchez-Gonzalez R, Di Giaimo R, Baumgart EV, Theis FJ, Götz M, Ninkovic J (2015) Live imaging of adult neural stem cell behaviour in the intact and injured zebrafish brain. Science 348:789–793

    Article  CAS  PubMed  Google Scholar 

  • Bardet SM, Ferran JLE, Sanchez-Arrones L, Puelles L (2010) Ontogenetic expression of Sonic hedgehog in the chick subpallium. Front Neuroanat 4:28

    PubMed  PubMed Central  Google Scholar 

  • Barreiro-Iglesias A, Villar-Cheda B, Abalo X-M, Anadon R, Rodicio MC (2008) The early scaffold of axon tracts in the brain of a primitive vertebrate, the sea lamprey. Brain Res Bull 75:42–52

    Article  CAS  PubMed  Google Scholar 

  • Bartelmez GW (1923) The subdivisions of the neural folds in man. J Comp Neurol 35:231–247

    Article  Google Scholar 

  • Bell E, Wingate RJT, Lumsden A (1999) Homeotic transformation of rhombomere identity after localized Hoxb1 misexpression. Science 284:2168–2171

    Article  CAS  PubMed  Google Scholar 

  • Bell CC, Han V, Sawtell NB (2008) Cerebellum-like structures and their implications for cerebellar function. Annu Rev Neurosci 31:1–24

    Article  CAS  PubMed  Google Scholar 

  • Berg DA, Kirkham M, Beljajeva A, Knapp D, Habermann B, Ryge J, Tanaka EM, Simon A (2010) Efficient regeneration by activation of neurogenesis in homeostatically quiescent regions of the adult vertebrate brain. Development 137:4127–4134

    Article  CAS  PubMed  Google Scholar 

  • Berg DA, Kirkham M, Wang H, Frisén J, Simon A (2011) Dopamine controls neurogenesis in the adult salamander midbrain in homeostasis and during regeneration of dopamine neurons. Cell Stem Cell 8:426–433

    Article  CAS  PubMed  Google Scholar 

  • Bernardini S, Gargiolo C, Cannata SM, Filoni S (2010) Neurogenesis during optic tectum regeneration in Xenopus laevis. Develop Growth Differ 52:365–376

    Article  Google Scholar 

  • Bernstein JJ (1967) The regenerative capacity of the telencephalon of the goldfish and rat. Exp Neurol 17:44–56

    Article  CAS  PubMed  Google Scholar 

  • Bishop KM, Goudreau G, O’Leary DDM (2000) Regulation of area identity in mammalian neocortex by Emx2 and Pax6. Science 288:344–349

    Article  CAS  PubMed  Google Scholar 

  • Bonfanti L (2011) From hydra regeneration to human brain structural plasticity: a long trip through narrowing roads. Sci World J 11:1270–1299

    Article  Google Scholar 

  • Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, Kirschner M, Lander ES, Thorndyke M, Nakano H, Kohn AB, Heyland A, Moroz LL, Copley RR, Telford MJ (2006) Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444:85–88

    Article  CAS  PubMed  Google Scholar 

  • Bourlat SJ, Nielsen C, Economou AD, Telford MJ (2008) Testing the new animal phylogeny: a phylum level molecular analysis of the animal kingdom. Mol Phylogenet Evol 49:23–31

    Article  CAS  PubMed  Google Scholar 

  • Boyan GS, Reichert H (2011) Mechanisms for complexity in the brain: generating the insect central complex. Trends Neurosci 34:247–257

    Article  CAS  PubMed  Google Scholar 

  • Boycott BB (1961) The functional organization of the brain of the cuttlefish Sepia officinalis. Proc Roy Soc Lond Ser B Biol Sci 153:503–534

    Article  Google Scholar 

  • Butler AB (2000a) Chordate evolution and the origin of the craniates: an old brain in a new head. Anat Rec 261:111–125

    Article  CAS  PubMed  Google Scholar 

  • Butler AB (2000b) Topography and topology of the teleost telencephalon: a paradox resolved. Neurosci Lett 293:95–98

    Article  CAS  PubMed  Google Scholar 

  • Caballero IM, Manuel MN, Molinek M, Quintana-Urzainqui I, Mi D, Shimogori T, Price DJ (2014) Cell-autonomous repression of Shh by transcription factor Pax6 regulates diencephalic patterning by controlling the central diencephalic organizer. Cell Rep 8:1405–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao M, Shu N, Cao Q, Wang Y, He Y (2014) Imaging functional and structural connectivity. Mol Neurobiol 50:1111–1123

    Article  CAS  PubMed  Google Scholar 

  • Caronia-Brown G, Yoshida M, Gulden F, Assimacopoulos S, Grove EA (2014) The cortical hem regulates the size and patterning of neocortex. Development 141:2855–2865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee M, Li JYH (2012) Patterning and compartment formation in the diencephalon. Front Neuroanat 6:66

    Google Scholar 

  • Chenn A, Walsh CA (2002) Regulation of cerebral cortical size by control of cycle exit. Science 297:365–369

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Kubicki M, Whitford TJ, Alvarado JL, Terry DP, Niznikiewicz M, McCarley RW, Kwon JS, Shenton ME (2011) Diffusion tensor imaging of anterior commissural fibers in patients. Schizophr Res 130:78–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Cholfin JA, Rubenstein JLR (2008) Frontal cortex subdivision patterning is coordinately regulated by Fgf8, Fgf17 and Emx2. J Comp Neurol 509:144–155

    Article  PubMed  PubMed Central  Google Scholar 

  • Christian JL, Moon RT (1993) Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Gene Dev 7:13–28

    Article  CAS  PubMed  Google Scholar 

  • Clint SC, Zupanc GKH (2001) Neuronal regeneration in the cerebellum of adult zebrafish, Apteronotus leptorhynchus: guidance of migrating young cells by radial glia. Dev Brain Res 130:15–23

    Article  CAS  Google Scholar 

  • Cobos I, Shimamura K, Rubenstein JLR, Martinez S, Puelles L (2001) Fate map of the avian anterior forebrain at the four-somite stage, based on the analysis of quail-chick chimeras. Development 239:46–67

    CAS  Google Scholar 

  • Creuzet SE, Martinez S, Le Douarin NM (2006) The cephalic neural crest exerts a critical effect on forebrain and midbrain development. Proc Natl Acad Sci U S A 103:14033–14038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crossley PH, Martin GR (1995) The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121:439–451

    CAS  PubMed  Google Scholar 

  • Crossley PH, Martinez S, Ohkubo Y, Rubenstein JLR (2001) Coordinate expression of FGF8, OTX2, BMP4, and SHH in the rostral prosencephalon during development of the telencephalic and optic vesicles. Neuroscience 108:183–206

    Article  CAS  PubMed  Google Scholar 

  • Dale L, Howes G, Price BMJ, Smith JC (1992) Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development. Development 115:573–585

    CAS  PubMed  Google Scholar 

  • Davidson D, Graham E, Sime C, Hill R (1988) A gene with sequence similarity to Drosophila engrailed is expressed during the development of the neural tube and vertebrae in the mouse. Development 104:305–316

    CAS  PubMed  Google Scholar 

  • De Brunie FT, van Wezel-Meijler G, Leijser LM, Steggerda SJ, van den Berg-Huysmans AA, Rijken M, van Buchem MA, van der Grond J (2013) Tractography of white-matter tracts in very preterm infants. Dev Med Child Neurol 55:427–433

    Article  Google Scholar 

  • De Robertis EM (2006) Spemann’s organizer and self-regulation in amphibian embryos. Nat Rev Mol Cell Biol 7:296–302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Del Bigio MR (1993) Neuropathological changes caused by hydrocephalus. Acta Neuropoathol 85:573–585

    Article  Google Scholar 

  • del Grande P, Ciani F, Franceschini V, Minelli G (1982) Acetylcholinesterase reappearance in the early reparative process in the optic tectum of newt. An electron microscopic study. Basic Appl Histochem 26:271–278

    PubMed  Google Scholar 

  • del Grande P, Franceschini V, Minelli G, Ciani F (1984) Matrix area activity in the regenerating optic tectum of Rana esculenta. Z Mikrosk Anat Forsch 98:72–80

    PubMed  Google Scholar 

  • Delaune E, Lemaire P, Kodjabachian L (2005) Neural induction in Xenopus requires early FGF signaling in addition to BMP inhibition. Development 132:299–310

    Article  CAS  PubMed  Google Scholar 

  • Dennis EL, Thompson PM (2013) Mapping connectivity in the developing brain. Int J Dev Neurosci 31:525–542

    Article  CAS  PubMed  Google Scholar 

  • Desmond ME, Jacobson AG (1977) Embryonic brain enlargement requires cerebrospinal fluid pressure. Dev Biol 57:188–198

    Article  CAS  PubMed  Google Scholar 

  • Desmond ME, Levitan ML (2002) Brain expansion in the chick embryo initiated by experimentally produced occlusion of the spinal neurocoel. Anat Rec 268:147–159

    Article  PubMed  Google Scholar 

  • Dohrmann CE, Hemmati-Brivanlou A, Thomsen GH, Fields A, Woolf TM, Melton DA (1993) Expression of activin mRNA during early development in Xenopus laevis. Dev Biol 157:474–483

    Article  CAS  PubMed  Google Scholar 

  • Dyson S, Gurdon JB (1998) The interpretation of position in a morphogen gradient as revealed by occupancy of activin receptors. Cell 93:557–568

    Article  CAS  PubMed  Google Scholar 

  • Eagleson GW, Dempewolf RD (2002) The role of the anterior neural ridge and Fgf-8 in early forebrain patterning and regionalization in Xenopus laevis. Comp Biochem Physiol B 132:179–189

    Article  PubMed  Google Scholar 

  • Eagleson G, Ferreiro B, Harris WA (1995) Fate of the anterior neural ridge and the morphogenesis of the Xenopus forebrain. J Neurobiol 28:146–158

    Article  CAS  PubMed  Google Scholar 

  • Eisenstat DD, Liu JK, Mione M, Zhong W, Yu G, Anderson SA, Ghattas I, Puelles L, Rubenstein JLR (1999) DLX-1, DLX-2, and DLX-5 expression define distinct stages of basal forebrain differentiation. J Comp Neurol 414:217–237

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Yoshino J, Kado K, Tochini S (2007) Brain regeneration in anuran amphibians. Develop Growth Differ 49:121–129

    Article  Google Scholar 

  • Esposito A, Demeurisse G, Alberti B, Fabbro F (1999) Complete mutism after midbrain periaqueductal gray lesion. Neuroreport 10:681–685

    Article  CAS  PubMed  Google Scholar 

  • Fainsod A, Deissler K, Yelin R, Marom K, Epstein M, Pillemer G, Steinbeisser H, Blum M (1997) The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4. Mech Dev 63:39–50

    Article  CAS  PubMed  Google Scholar 

  • Ferretti P, Prasongchean W (2015) Adult neurogenesis and regeneration: focus on nonmammalian vertebrates. In: Kuhn HG, Eisch AJ (eds) Neural stem cells in development, adulthood and disease. Springer, New York, pp 1–21

    Google Scholar 

  • Folgueira M, Bayley P, Navratilova P, Becker TS, Wilson SW, Clarke JDW (2012) Morphogenesis underlying the development of the everted telencephalon. Neural Dev 7:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Font E, Garcia-Verdugo JM, Alcántara S, López-Garcia C (1991) Neuron regeneration reverses 3-acetylpyridine-induced cell loss in the cerebral cortex of adult lizards. Brain Res 551:230–235

    Article  CAS  PubMed  Google Scholar 

  • Font E, Desfilis E, Pérez-Cañellas MM, Garcia-Verdugo JM (2001) Neurogenesis and neuronal regeneration in the adult reptilian brain. Brain Behav Evol 58:276–295

    Article  CAS  PubMed  Google Scholar 

  • Fukuchi-Shimogori T, Grove EA (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294:1071–1074

    Article  CAS  PubMed  Google Scholar 

  • Furuta Y, Piston DW, Hogan BLM (1997) Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124:2203–2212

    CAS  PubMed  Google Scholar 

  • Garcia-Lopez R, Pombero A, Martinez S (2009) Fate map of the chick embryo neural tube. Develop Growth Differ 51:145–165

    Article  Google Scholar 

  • Garcia-Verdugo JM, Ferrón S, Flames N, Collado L, Desfilis E, Font E (2002) The proliferative zone in adult vertebrates: a comparative study using reptiles, birds, and mammals. Brain Res Bull 57:765–775

    Article  PubMed  Google Scholar 

  • Garda A-L, Echevarria D, Martinez S (2001) Neuroepithelial co-expression of Gbx2 and Otx2 precedes Fgf8 expression in the isthmic organizer. Mech Dev 101:111–118

    Article  CAS  PubMed  Google Scholar 

  • Gehring WJ (1987) Homeo boxes in the study of development. Science 236:1245–1252

    Article  CAS  PubMed  Google Scholar 

  • Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391:357–362

    Article  CAS  PubMed  Google Scholar 

  • Godsave SF, Slack JMW (1989) Clonal analysis of mesoderm induction in Xenopus laevis. Dev Biol 134:486–490

    Article  CAS  PubMed  Google Scholar 

  • Godsave SF, Slack JMW (1991) Single cell analysis of mesoderm formation in the Xenopus embryo. Development 111:523–530

    CAS  PubMed  Google Scholar 

  • Goodson JL, Bass AH (2002) Vocal-acoustic circuitry and descending vocal pathways in teleost fish: convergence with terrestrial vertebrates reveals conserved traits. J Comp Neurol 448:298–322

    Article  PubMed  Google Scholar 

  • Grandel H, Kaslin J, Ganz J, Wenzel I, Brand M (2006) Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Dev Biol 295:263–277

    Article  CAS  PubMed  Google Scholar 

  • Green JBA, Howes G, Symes K, Cooke J, Smith JC (1990) The biological effects of XTC-MIF: quantitative comparison with Xenopus bFGF. Development 108:173–183

    CAS  PubMed  Google Scholar 

  • Green JBA, New HV, Smith JC (1992) Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell 71:731–739

    Article  CAS  PubMed  Google Scholar 

  • Grove EA, Tole S, Limon J, Yip L-W, Ragsdale CW (1998) The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125:2315–2325

    CAS  PubMed  Google Scholar 

  • Guillemot F, Zimmer C (2011) From cradle to grave: the multiple roles of fibroblast growth factors in neural development. Neuron 71:574–588

    Article  CAS  PubMed  Google Scholar 

  • Gurdon JB, Bourillot P-Y (2001) Morphogen gradient interpretation. Nature 413:797–803

    Article  CAS  PubMed  Google Scholar 

  • Gurdon JB, Mitchell A, Mahony D (1995) Direct and continuous assessment by cells of their position in a morphogen gradient. Nature 376:520–521

    Article  CAS  PubMed  Google Scholar 

  • Hamasaki T, Leingärtner A, Ringstedt T, O’Leary DDM (2004) EMX2 regulates the size and positioning of the primary sensory and motor areas in neocortex by direct specification of cortical progenitors. Neuron 43:359–372

    Article  CAS  PubMed  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  CAS  PubMed  Google Scholar 

  • Hannibal RL, Patel NH (2013) What is a segment? EvoDevo 4:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Harland R, Gerhart J (1997) Formation and function of Spemann’s organizer. Annu Rev Cell Dev Biol 13:611–667

    Article  CAS  PubMed  Google Scholar 

  • Hartenstein V, Cardona A, Pereanu W, Younossi-Hartenstein A (2008) Modeling the developing Drosophila brain: rationale, technique, and application. BioSci 58:823–836

    Article  Google Scholar 

  • Hartline DK, Colman DR (2007) Rapid conduction and the evolution of giant axons and myelinated fibers. Curr Biol 17:R29–R35

    Article  CAS  PubMed  Google Scholar 

  • Harvey SA, Smith JC (2009) Visualisation and quantification of morphogen gradient formation in the zebrafish. PLoS Biol 7, e10000101

    Article  CAS  Google Scholar 

  • Hashimoto M, Hibi M (2012) Development and evolution of cerebellar neural circuits. Dev Growth Differ 54:373–389

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto H, Itoh M, Yamanaka Y, Yasashita S, Shimizu T, Solnica-Krezel L, Hibi M, Hirano T (2000) Zebrafish Dkk1 functions in forebrain specification and axial mesendoderm formation. Dev Biol 217:138–152

    Article  CAS  PubMed  Google Scholar 

  • Hawley AHB, Wunnenberg-Stapleton K, Hashimoto C, Laurnet MN, Watabe T, Blumberg BW, Cho KWY (1995) Disruption of BMP signals in embryonic ectoderm leads to direct neural induction. Gene Dev 9:2923–2935

    Article  CAS  PubMed  Google Scholar 

  • Hayes WP, Meyer RI (1988) Optic synapse number but not density is constrained during regeneration onto surgically halved tectum in goldfish: HRP-EM evidence that optic fibers compete for fixed numbers of postsynaptic sites on the tectum. J Comp Neurol 274:539–559

    Article  CAS  PubMed  Google Scholar 

  • Hemmati-Brivanlou A, Melton DA (1994) Inhibition of activin receptor signaling promotes neutralization in Xenopus. Cell 77:273–281

    Article  CAS  PubMed  Google Scholar 

  • Hemmati-Brivanlou A, Melton DA (1997) Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell 88:13–17

    Article  CAS  PubMed  Google Scholar 

  • Hemmati-Brivanlou A, Thomsen GH (1995) Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4. Dev Genet 17:78–89

    Article  CAS  PubMed  Google Scholar 

  • Hemmati-Brivanlou A, Kelly OG, Melton DA (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77:283–295

    Article  CAS  PubMed  Google Scholar 

  • Herrman E, Call J, Herandez-Lloreda MV, Hare B, Tomasello M (2007) Humans have evolved specialised skills of social cognition: the cultural intelligence hypothesis. Science 317:1360–1366

    Article  CAS  Google Scholar 

  • Hjorth JT, Key B (2001) Are pioneer axons guided by regulatory gene expression domains in the zebrafish forebrain? High-resolution analysis of the patterning of the zebrafish brain during axon tract formation. Dev Biol 229:271–286

    Article  CAS  PubMed  Google Scholar 

  • Hjorth JT, Key B (2002) Development of axon pathways in the zebrafish central nervous system. Int J Dev Biol 46:609–619

    CAS  PubMed  Google Scholar 

  • Hoch RV, Rubenstein JLR, Pleasure S (2009) Genes and signaling events that establish regional patterning of the mammalian forebrain. Sem Cell Dev Biol 20:378–386

    Article  CAS  Google Scholar 

  • Hoch RV, Clarke JA, Rubenstein JLR (2015) Fgf signaling controls the telencephalic distribution of Fgf-expressing progenitors generated in the rostral patterning center. Neural Dev 10:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hochner B, Shomrat T, Fiorito G (2006) The octopus: a model for a comparative analysis of the evolution of learning and memory. Biol Bull 210:308–317

    Article  PubMed  Google Scholar 

  • Holtfreter J (1944) Neural differentiation of ectoderm through exposure to saline solution. J Exp Zool 95:307–343

    Article  Google Scholar 

  • Hoppler S, Moon RT (1998) BMP-2/-4 and Wnt-8 cooperatively pattern the Xenopus mesoderm. Mech Dev 71:119–129

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Nakamura S, Osumi N (2000) Fate mapping of the mouse prosencephalic neural plate. Dev Biol 219:373–383

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Tanaka H, Okamoto H, Ohshima T (2010) Characterization of neural stem cells and their progeny in the adult zebrafish optic tectum. Dev Biol 342:26–38

    Article  CAS  PubMed  Google Scholar 

  • Joyner AL, Liu A, Millet S (2000) Otx2, Gbx2 and Fgf8 interact to position and maintain a mid-hindbrain organizer. Curr Opin Cell Biol 12:736–741

    Article  CAS  PubMed  Google Scholar 

  • Juraver-Geslin HA, Gomez-Skarmeta JL, Durand BC (2014) The conserved barH-like homeobox-2 gene barhl2 acts downstream of orthodenticle-2 and together with Iroquois-3 in establishment of the caudal forebrain signaling center induced by Sonic hedgehog. Dev Biol 396:107–120

    Article  CAS  PubMed  Google Scholar 

  • Kasberg AD, Brunskill EW, Potter SS (2013) SP8 regulates signaling centers during craniofacial development. Dev Biol 381:312–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaslin J, Ganz J, Brand M (2008) Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain. Phil Trans R Soc 363:101–122

    Article  Google Scholar 

  • Katahira T, Sato T, Sugiyama S, Okafuji T, Araki I, Funahashi J, Nakamura H (2000) Interaction between Otx2 and Gbx2 defines the organizing center for the optic tectum. Mech Dev 91:43–52

    Article  CAS  PubMed  Google Scholar 

  • Kawano Y, Kypta R (2003) Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116:2627–2634

    Article  CAS  PubMed  Google Scholar 

  • Kengaku M, Okamoto H (1993) Basic fibroblast growth factor induces differentiation of neural tube and neural crest lineages of cultured ectoderm cells from Xenopus gastrula. Development 119:1067–1078

    CAS  PubMed  Google Scholar 

  • Kengaku M, Okamoto H (1995) bFGF as a possible morphogen for the anteroposterior axis of the central nervous system in Xenopus. Development 121:3121–3130

    CAS  PubMed  Google Scholar 

  • Key B (2003) Molecular development of the frog. In: Jamieson B (ed) Reproductive biology and phylogeny of anura. Science Publishers, Inc., New Hampshire, pp 411–436

    Google Scholar 

  • Kiecker C, Lumsden A (2004) Hedgehog signaling from the ZLI regulates diencephalic regional identity. Nat Neurosci 7:1242–1249

    Article  CAS  PubMed  Google Scholar 

  • Kiecker C, Lumsden A (2005) Compartments and their boundaries in vertebrate brain development. Nat Rev Neurosci 6:553–564

    Article  CAS  PubMed  Google Scholar 

  • Kiecker C, Lumsden A (2012) The role of organizers in patterning the nervous system. Annu Rev Neurosci 35:347–367

    Article  CAS  PubMed  Google Scholar 

  • Kiecker C, Niehrs C (2001) A morphogen gradient of Wnt/β-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 128:4189–4201

    CAS  PubMed  Google Scholar 

  • Kirkham M, Hameed LS, Berg DA, Wang H, Simon A (2014) Progenitor cell dynamics in the newt telencephalon during homeostasis and neuronal regeneration. Stem Cell Rep 2:507–519

    Article  Google Scholar 

  • Kirsche W (1983) The significance of matrix zones for brain regeneration and brain transplantation with special considerations of lower vertebrates. In: Wallace RB, Das GD (eds) Neural tissue transplantation research. Springer, New York

    Google Scholar 

  • Kishimoto N, Shimizu K, Sawamoto K (2012) Neuronal regeneration in a zebrafish model of brain injury. Dis Mod Mech 5:200–209

    Article  CAS  Google Scholar 

  • Kittelberger JM, Bass AH (2013) Vocal-motor and auditory connectivity of the midbrain periaqueductal tray in a teleost fish. J Comp Neurol 521:791–812

    Article  PubMed  PubMed Central  Google Scholar 

  • Kittelberger JM, Land BR, Bass AH (2006) Midbrain periaqueductal gray and vocal patterning in a teleost fish. J Neurophysiol 96:71–85

    Article  PubMed  Google Scholar 

  • Kobayashi D, Kobayashi M, Matsumoto K, Ogura T, Nakafuku M, Shimamura K (2002) Early subdivisions in the neural plate define distinct competence for inductive signals. Development 129:83–93

    CAS  PubMed  Google Scholar 

  • Koester SE, O’Leary DDM (1994) Axons of early generated neurons in cingulate cortex pioneer the corpus callosum. J Neurosci 14:6608–6620

    CAS  PubMed  Google Scholar 

  • Köster RW, Fraser SE (2006) FGF signaling mediates regeneration of the differentiating cerebellum through repatterning of the anterior hindbrain and reinitiation of neuronal migration. J Neurosci 26:7293–7304

    Article  PubMed  CAS  Google Scholar 

  • Kroehne V, Freudenreich D, Hans S, Kaslin J, Brand M (2011) Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development 138:4831–4841

    Article  CAS  PubMed  Google Scholar 

  • Kumral E, Uzunkopru C, Ciftci S, Demirci T (2011) Acute respiratory failure due to unilateral dorsolateral bulbar infarction. Eur Neurol 66:70–74

    Article  PubMed  Google Scholar 

  • Kuratani S, Horigome N, Ueki T, Aizawa S, Hirano S (1998) Stereotyped axonal bundles formation and neuromeric patterns in embryos of a cyclostome, Lampetra japonica. J Comp Neurol 391:99–114

    Article  CAS  PubMed  Google Scholar 

  • Kyritsis N, Kizil C, Zocher S, Kroehne V, Kaslin J, Freudenreich D, Iltzsche A, Brand M (2012) Acute inflammation initiates the regenerative response in adult zebrafish brain. Science 338:1353–1356

    Article  CAS  PubMed  Google Scholar 

  • Kyritsis N, Kizil C, Brand M (2014) Neuroinflammation and central nervous system regeneration in vertebrates. Trends Cell Biol 24:128–135

    Article  CAS  PubMed  Google Scholar 

  • Lacbawan F, Solomon BD, Roessler E, El-Jaick K, Domené S, Vélez JI, Zhou N, Hadley D, Balog JZ, Long R, Fryer A, Smith W, Omar S, McLean SD, Clarkson K, Lichty A, Clegg NJ, Delgado MR, Levey E, Stashinko E, Potocki L, Vanallen MI, Clayton-Smith J, Donnai D, Bianchi DW, Juliusson PB, Njølstad PR, Brunner HG, Carey JC, Hehr U, Müsebeck J, Wieacker PF, Postra A, Hennekam RC, van den Boogaard MJ, van Haeringen A, Paulussen A, Herbergs J, Schrander-Stumpel CT, Janecke AR, Chitayat D, Hahn J, McDonald-McGinn DM, Zackai EH, Dobyns WB, Muenke M (2009) Clinical spectrum of SIX3-associated mutations in holoprosencephaly: correlation between genotype, phenotype and function. J Med Genet 46:389–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagutin OV, Zhu CC, Kobayashi D, Topczewski J, Shimamura K, Puelles L, Russell HR, McKinnon PJ, Solnica-Krezel L, Oliver G (2003) Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev 17:368–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam CS, März M, Strähle U (2009) gfap and nestin reporter lines reveal characteristics of neural porgenitors in the adult zebrafish brain. Dev Dyn 238:475–486

    Article  CAS  PubMed  Google Scholar 

  • Lamb TM, Knecht AK, Smith WC, Stachel SE, Economides AN, Stahl N, Yancopolous GD, Harland RM (1993) Neural induction by the secreted polypeptide noggin. Science 262:713–718

    Article  CAS  PubMed  Google Scholar 

  • Lander AD (2007) Morpheus unbound: reimagining the morphogen gradient. Cell 128:245–256

    Article  CAS  PubMed  Google Scholar 

  • Larsen CW, Zeltser LM, Lumsden A (2001) Boundary formation and competition in the avian diencephalon. J Neurosci 21:4699–4711

    CAS  PubMed  Google Scholar 

  • Lavado A, Lagutin OV, Oliver G (2008) Six3 inactivation causes progressive caudalization and aberrant patterning of the mammalian diencephalon. Development 135:441–450

    Article  CAS  PubMed  Google Scholar 

  • Lee SM, Tole S, Grove E, McMahon AP (2000) A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 127:457–467

    CAS  PubMed  Google Scholar 

  • Levitt JJ, Kubicki M, Nestor PG, Ersner-Hershfield H, Westin CF, Alvarado JL, Kikinis R, Jolesz FA, McCarley RW, Shenton ME (2011) A diffusion tensor imaging study of the anterior limb of the internal capsule. Psychol Res 184:143–150

    Google Scholar 

  • Li JYH, Joyner AL (2001) Otx2 and Gbx2 are required for refinement and not induction of mid-hindbrain gene expression. Development 128:4979–4991

    CAS  PubMed  Google Scholar 

  • Linzenbold W, Lindig T, Himmelbach M (2011) Functional neuroimaging of the oculomotor brainstem network in humans. Neuroimage 57:1116–1123

    Article  PubMed  Google Scholar 

  • Liu A, Joyner AL (2001) EN and GBX2 play essential roles downstream of FGF8 in patterning the mouse mid/hindbrain region. Development 128:181–191

    CAS  PubMed  Google Scholar 

  • Lopez-Garcia C, Molowny A, Garcia-Verdugo JM, Ferrer I (1988) Delayed postnatal neurogenesis in the cerebral cortex of lizards. Dev Brain Res 43:167–174

    Article  Google Scholar 

  • Lumsden A (1990) The cellular basis of segmentation in the developing hindbrain. TINS 13:329–335

    CAS  PubMed  Google Scholar 

  • Lumsden A (2004) Segmentation and compartition in the early avian hindbrain. Mech Dev 121:1081–1088.

    Google Scholar 

  • Maden M, Manwell LA, Ormerod BK (2013) Proliferation zones in the axolotl brain and regeneration of the telencephalon. Neural Dev 8:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Manto M, Bower JM, Conforto AB, Delgado-Garcia JM, da Guarda SN et al (2012) Consensus paper: roles of the cerebellum in motor control – the diversity of ideas on cerebellar involvement in movement. Cerebellum 11:457–487

    Article  PubMed  PubMed Central  Google Scholar 

  • Marin F, Puelles L (1994) Patterning of the embryonic avian midbrain after experimental inversion: a polarizing activity from the isthmus. Dev Biol 163:19–37

    Article  CAS  PubMed  Google Scholar 

  • Mark M, Lufkin T, Vonesch JL, Ruberte E, Olivo JC, Dollé P, Lumsden A, Champon P (1993) Two rhombomeres are altered in Hoxa-1 mutant mice. Development 119:319–338

    CAS  PubMed  Google Scholar 

  • Martinez-Barbera JP, Signore M, Boyl PP, Puelles E, Acampora D, Gogoi R, Schubert F, Lumsden A, Simeone A (2001) Regionalisation of anterior neuroectoderm and its competence in responding to forebrain and midbrain inducing activities depend on mutual antagonism between OTX2 and GBX2. Development 128:4789–4800

    CAS  PubMed  Google Scholar 

  • März M, Schmidt R, Rastegar S, Strähle U (2011) Regenerative response following stab injury in the adult zebrafish telencephalon. Dev Dyn 240:2221–2231

    Article  PubMed  Google Scholar 

  • Mastick GS, Easter SS (1996) Initial organization of neurons and tracts in the embryonic mouse fore- and midbrain. Dev Biol 173:79–94

    Article  CAS  PubMed  Google Scholar 

  • Mastick GS, Davis NM, Andrews GL, Easter SS (1997) Pax-6 functions in boundary formation and axon guidance in the embryonic mouse forebrain. Development 124:1985–1997

    CAS  PubMed  Google Scholar 

  • McDowell N, Zorn AM, Crease DJ, Gurdon JB (1997) Activin has direct long-range signalling activity and can form a concentration gradient by diffusion. Curr Biol 7:671–681

    Article  CAS  PubMed  Google Scholar 

  • McKinley MJ, Yao ST, Uschakov A, McAllen RM, Rundgren M, Martelli D (2015) The median preoptic nucleus: front and center for the regulation of body fluid, sodium, temperature, sleep and cardiovascular homeostasis. Acta Physiol 214:8–32

    Article  CAS  Google Scholar 

  • Melton DA (1991) Pattern formation during animal development. Science 252:234–241

    Article  CAS  PubMed  Google Scholar 

  • Minelli G, del Grande P, Mambelli MC (1977) Preliminary study of the regenerative processes of the dorsal cortex of the telencephalon of Lacerta viridis. Z Mikrosk Anat Forsch 91:241–256

    CAS  PubMed  Google Scholar 

  • Minelli G, Franceschini V, del Grande P, Ciani F (1987) Newly-formed neurons in the regenerating optic tectum of Triturus cristatus carnifex. Basic Appl Histochem 31:43–52

    CAS  PubMed  Google Scholar 

  • Minelli G, del Grande P, Franceschini V, Ciani F (1990) Proliferative response of the mesencephalic matrix areas in the reparation of the optic tectum of Triturus cristatus carnifex. Z Mikrosk Anat Forsch 104:17–25

    CAS  PubMed  Google Scholar 

  • Moldrich RX, Gobius I, Pollack T, Zhang J, Ren T, Brown L, Mori S, de Juan Romero C, Britanova O, Tarabykin V, Richards LJ (2010) Molecular recognition of the developing commissural plate. J Comp Neurol 518:3645–3661

    Article  PubMed  PubMed Central  Google Scholar 

  • Monuki ES, Porter FD, Walsh CA (2001) Patterning of the dorsal telencephalon and cerebral cortex by a roof plate-Lhx2 pathway. Neuron 32:591–604

    Article  CAS  PubMed  Google Scholar 

  • Moreno N, Gonzalez A (2011) The non-evaginated secondary prosencephalon of vertebrates. Front Neuroanat 5:1–9

    Article  Google Scholar 

  • Mueller T, Dong Z, Berberoglu MA, Guo S (2011) The dorsal pallioum in zebrafish, Danio rerio (Cyprinidae, Teleostei). Brain Res 1381:95–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C, Chen L, Tsukui T, Gomer L, Dorward DW, Glinka A, Grinberg A, Huang SP, Niehrs C, Izpisúa Belmonte JC, Westphal H (2001) Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1:423–434

    Article  CAS  PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1984) Cerebral dysgraphia (future anencephaly) in a human twoin embryo at stage 13. Tetratol 30:167–177

    Article  Google Scholar 

  • Nakamura H, Sato T, Suzuki-Hirano A (2008) Isthmus organizer for mesencephalon and metencephalon. Develop Growth Differ 50:S113–S118

    Article  CAS  Google Scholar 

  • Nomura T, Gotoh H, Ono K (2013) Changes in the regulation of cortical neurogenesis contribute to encephalization during amniote brain evolution. Nat Commun 4:2206

    PubMed  Google Scholar 

  • Nonomura K, Yamaguchi Y, Hamachi M, Koike M, Uchiyama Y, Nakazato K, Mochizuki A, Sakaue-Sawano A, Miyawaki A, Yoshida H, Kuida K, Miura M (2013) Local apoptosis modulates early mammalian brain development through the elimination of morphogen-producing cells. Dev Cell 27:621–634

    Article  CAS  PubMed  Google Scholar 

  • Northam GB, Liégeois F, Tournier JD, Croft LJ, Johns PN, Chong WK, Wyatt JS, Baldeweg T (2012) Interhemispheric temporal lobe connectivity predicts language impairment. Brain 135:3781–3798

    Article  PubMed  PubMed Central  Google Scholar 

  • Northcutt RG (2008) Forebrain evolution in bony fishes. Brain Res Bull 75:191–205

    Article  PubMed  Google Scholar 

  • O’Leary DMM, Chou S-J, Sahara S (2007) Area patterning of the mammalian cortex. Neuron 56:252–269

    Article  PubMed  CAS  Google Scholar 

  • O’Rahilly R, Gardner E (1979) The initial development of the human brain. Acta Anat 104:123–133

    Article  PubMed  Google Scholar 

  • O’Rahilly R, Müller F (2008) Significant features in the early prenatal development of the human brain. Ann Anat 190:105–118

    Article  PubMed  Google Scholar 

  • Oelgeschlager M, Kuroda H, Reversade B, De Robertis EM (2003) Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryo. Dev Cell 4:219–230

    Article  CAS  PubMed  Google Scholar 

  • Olivera-Pasilio V, Peterson DA, Castello ME (2014) Spatial distribution and cellular composition of adult brain proliferative zones in the teleost, Gymnotus omarorum. Front Neuroanat 8:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Orioli IM, Castilla EE (2010) Epidemiology of holoprosencephalon: prevalence and risk factors. Am J Med Genet Part C (Sem Med Genet) 154C:13–21

    Article  Google Scholar 

  • Pani AM, Mullarkey EE, Aronowicz J, Assimacopoulos S, Grove EA, Lowe CJ (2012) Ancient deuterostome origins of vertebrate brain signaling centers. Nature 483:289–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parish CL, Beljajeva A, Arenas E, Simon A (2007) Midbrain dopaminergic neurogenesis and behavioural recovery in a salamander lesion-induced regeneration model. Development 134:2881–2887

    Article  CAS  PubMed  Google Scholar 

  • Perez-Perez MP, Luque MA, Herrero L, Nunez-Abades PA, Torres B (2003) Connectivity of the goldfish optic tectum with the mesencephalic and rhombencephalic reticular formation. Exp Brain Res 151:123–135

    Article  CAS  PubMed  Google Scholar 

  • Piccolo S, Sasai Y, Lu B, De Robertis EM (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86:589–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pombero A, Martinez S (2009) Telencephalic morphogenesis during the process of neurulation: an experimental study using quail-chick chimeras. J Comp Neurol 512:784–797

    Article  CAS  PubMed  Google Scholar 

  • Prager-Khoutorsky M, Bourque CW (2015) Anatomical organization of the rat organum vasculosum laminae terminalis. Am J Physiol Regul Integr Comp Physiol. doi:10.1152/ajpregu.00134.2015

    PubMed  Google Scholar 

  • Puelles L, Rubenstein JLR (2003) Forebrain gene expression domains and the evolving prosomeric model. TINS 26:469–476

    CAS  PubMed  Google Scholar 

  • Puelles L, Rubenstein JLR (2015) A new scenario of hypothalamic organization: rationale of new hypotheses introduced in the updated prosomeric model. Front Neuroanat 9:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Puelles L, Domenech-Ratto G, Martinez-de-la-Torre M (1987) Location of the rostral end of the longitudinal brain axis: review of an old topic in the light of marking experiments on the closing rostral neuropore. J Morphol 194:163–171

    Article  CAS  PubMed  Google Scholar 

  • Puelles L, Harrison M, Paxinos G, Watson C (2013) A developmental ontology for the mammalian brain based on the prosomeric model. Trends Neurosci 36:570–576

    Article  CAS  PubMed  Google Scholar 

  • Quartz SR (2003) Toward a developmental evolutionary psychology. Genes, development, and the evolution of the human cognitive architecture. In: Scher SJ, Raucher F (eds) Evolutionary psychology: alternative approaches. Springer, US, pp 185–210

    Google Scholar 

  • Rakic P, Yakovlev PI (1968) Development of the corpus callosum and cavum septi in man. J Comp Neurol 132:45–72

    Article  CAS  PubMed  Google Scholar 

  • Rash BG, Richards LJ (2001) A role for cingulate pioneering axons in the development of the corpus callosum. J Comp Neurol 434:147–157

    Article  CAS  PubMed  Google Scholar 

  • Raymond PA, Easter SS (1983) Postembryonic growth of the optic tectum in goldfish. I. Location of germinal cells and numbers of neurons produced. J Neurosci 3:1077–1091

    CAS  PubMed  Google Scholar 

  • Reifers F, Walsh EC, Leger S, Stainier DYR, Brand M (2000) Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar). Development 127:225–235

    CAS  PubMed  Google Scholar 

  • Rhinn M, Dierich A, Shawlot W, Behringer RR, Le Meur M, Ang SL (1998) Sequential roles for Otx2 in visceral endoderm and neuroectoderm for forebrain and midbrain induction and specification. Development 125:845–856

    CAS  PubMed  Google Scholar 

  • Robertshaw E, Kiecker C (2012) Phylogenetic origins of brain organizers. Scientifica 2012:475017

    Article  PubMed  PubMed Central  Google Scholar 

  • Robertshaw E, Matsumoto K, Lumsden A, Kiecker C (2013) Irx3 and pax6 establish differential competence for Shh-mediated induction of GABAergic and glutamatergic neurons of the thalamus. Proc Natl Acad Sci U S A 110:E3919–E3926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez F, Duran E, Gomez A, Ocana FM, Alvarez E, Jimenez-Moya F, Briglio C, Salas C (2005) Cognitive and emotional functions of the teleost fish cerebellum. Brain Res Bull 66:365–370

    Article  CAS  PubMed  Google Scholar 

  • Roth G, Dicke U (2005) Evolution of the brain and intelligence. Trends Cogn Sci 9:250–257

    Article  PubMed  Google Scholar 

  • Ruiz I Altaba A (1992) Planar and vertical signals in the induction and patterning of the Xenopus nervous system. Development 115:67–80

    Google Scholar 

  • Ruiz I Altaba A, Melton DA (1989) Interaction between peptide growth factors and homeobox genes in the establishment of antero-posterior polarity in frog embryos. Nature 341:33–38

    Article  CAS  PubMed  Google Scholar 

  • Sahir N, Bahi N, Evrard P, Gressens P (2000) Caffeine induces in vivo premature appearance of telencephalic vesicles. Dev Brain Res 121:213–217

    Article  CAS  Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, Gelssert D, Gont LK, De Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79:779–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sater AK, Steinhardt RA, Keller R (1993) Induction of neuronal differentiation by planar signals in Xenopus embryos. Dev Dyn 197:268–280

    Article  CAS  PubMed  Google Scholar 

  • Sauleau P, Pollak P, Krack P, Courjon JH, Vighetto A, Benabid AL, Pélisson D, Tilikete C (2008) Subthalamic stimulation improves orienting gaze movements in Parkinson’s disease. Clin Neurophysiol 119:1857–1863

    Article  PubMed  Google Scholar 

  • Schoenwolf GC (1979) Observations on closure of the neuropores in the chick embryo. Am J Anat 155:445–466

    Article  CAS  PubMed  Google Scholar 

  • Scholpp S, Foucher I, Staudt N, Peukert D, Lunsden A, Houart C (2007) Otx1l, Otx2 and Irx1b establish and position the ZLI in the diencephalon. Development 134:3167–3176

    Article  CAS  PubMed  Google Scholar 

  • Scott MY (1977) Behavioral tests of compression of retinotectal projection after partial tectal ablation in goldfish. Exp Neurol 54:579–590

    Article  CAS  PubMed  Google Scholar 

  • Segaar J (1961) Telencephalon and behaviour in Gasterosteus aculeatus. Behaviour 18:256–287

    Article  Google Scholar 

  • Selleck SB (2006) Proteoglycans and pattern formation: sugar biochemistry meets developmental genetics. Trends Genet 16:206–212

    Article  Google Scholar 

  • Semenov MV, Tamai K, Brott BK, Kuhl M, Sokol S, He X (2001) Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol 11:951–961

    Article  CAS  PubMed  Google Scholar 

  • Sereno AB, Briand KA, Amador SC, Szapiel SV (2006) Disruption of reflexive attention and eye movements in an individual with a collicular lesion. J Clin Exp Neuropsychol 28:145–166

    Article  PubMed  Google Scholar 

  • Shigeno S, Kidokoro H, Tsuchiya K, Segawa S, Yamamoto M (2001a) Development of the brain in the oegopsid squid, Todarodes pacificus: an atlas up to the hatching stage. Zool Sci 18:527–541

    Article  Google Scholar 

  • Shigeno S, Tsuchiya K, Segawa S (2001b) Embryonic and paralarval development of the central nervous system of the loliginid squid Sepioteuthis lessoniana. J Comp Neurol 437:449–475

    Article  CAS  PubMed  Google Scholar 

  • Shimamura K, Rubenstein JLR (1997) Inductive interactions direct early regionalization of the mouse forebrain. Development 124:2709–2718

    CAS  PubMed  Google Scholar 

  • Shimamura K, Hartigan DJ, Martinez S, Puelles L, Rubenstein JLR (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121:3923–3933

    CAS  PubMed  Google Scholar 

  • Shimogori T, Banuchi V, Ng HY, Strauss JB, Grove EA (2004) Embryonic signaling centers expressing BMP, WNT and FGF proteins interact to pattern the cerebral cortex. Development 131:5639–5647

    Article  CAS  PubMed  Google Scholar 

  • Shinya M, Eschbach C, Clark M, Lehrach H, Furutani-Seiki M (2000) Zebrafish Dkk1, induced by the pre-MBT Wnt signaling, is secreted from prechordal plate and patterns the anterior neural plate. Mech Dev 98:3–17

    Article  CAS  PubMed  Google Scholar 

  • Silver J, Lorenz SE, Wahlsten D, Coughlin J (1982) Axonal guidance during development of the great cerebral commissures: descriptive and experimental studies, in vivo, on the role of preformed glial pathways. J Comp Neurol 210:10–29

    Article  CAS  PubMed  Google Scholar 

  • Skaggs K, Goldman D, Parent JM (2014) Excitotoxic brain injury in adult zebrafish stimulates neurogenesis and long-distance neuronal integration. Glia 62:2061–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Slack JMW (1984) In vitro development of isolated ectoderm from axolotl gastrulae. J Embryol Exp Morphol 80:321–330

    CAS  PubMed  Google Scholar 

  • Slack JMW, Forman D (1980) An interaction between dorsal and ventral regions of the marginal zone in early amphibian embryos. Embryol Exp Morphol 56:283–299

    CAS  Google Scholar 

  • Smith WC, Harland RM (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70:829–840

    Article  CAS  PubMed  Google Scholar 

  • Smith JC, Price BMJ, Van Nimmen K, Huylebroeck D (1990) Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A. Nature 345:729–731

    Article  CAS  PubMed  Google Scholar 

  • Smith JC, Abdala APL, Borgman A, Rybak IA, Paton JFR (2013) Brainstem respiratory networks: building blocks and microcircuits. Trends Neurosci 36:152–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sporns O (2013) Structure and function of complex brain networks. Dialogues Clin Neurosci 15:247–262

    PubMed  PubMed Central  Google Scholar 

  • Stevenson JA, Yoon M (1980) Kinetics of cell proliferation in the halved tectum of adult goldfish. Brain Res 184:11–22

    Article  CAS  PubMed  Google Scholar 

  • Stoykova A, Fritsch R, Walther C, Gruss P (1996) Forebrain patterning defects in Small eye mutant mice. Development 122:3453–3465

    CAS  PubMed  Google Scholar 

  • Streeter GL (1927) Archetypes and symbolism. Science 65:405–412

    Article  CAS  PubMed  Google Scholar 

  • Suárez R, Gobius I, Richards LR (2014) Evolution and development of interhemispheric connections in the vertebrate brain. Front Hum Neurosci 8:497

    Article  PubMed  PubMed Central  Google Scholar 

  • Sultan P, Gutierrez MC, Carvalho B (2011) Neuraxial morphine and respiratory depression: finding the right balance. Drugs 71:1807–1819

    Article  CAS  PubMed  Google Scholar 

  • Szabo NE, Zhao TY, Zhou XL, Alvarez-Bolado G (2009) The role of sonic hedgehog of neural origin in thalamic differentiation in the mouse. J Neurosci 29(8):2453–2466

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Ruan H, Guo X, Li L, Shen W (2015) HDAC1 regulates the proliferation of radial glial cells in the developing Xenopus tectum. PLoS One 10(3):e0120118

    Article  PubMed  PubMed Central  Google Scholar 

  • Temple S (2001) The development of neural stem cells. Nature 414:112–117

    Article  CAS  PubMed  Google Scholar 

  • ten Donkelaar HJ, Yamada S, Shiota K, van der Vliet T (2014) Overview of the development of the human brain and spinal cord. In: ten Donkelaar HJ, Lsammens M, Hori A (eds) Clinical neuroembryology. Development and developmental disorders of the human central nervous system, 2nd edn. Springer, Berlin, pp 1–51

    Google Scholar 

  • Terao Y, Fukuda H, Shirota Y, Yugeta A, Yoshioka M, Suzuki M, Hanajima R, Nomura Y, Segawa M, Tsuji S, Ugawa Y (2013) Deterioration of horizontal saccades in progressive supranuclear palsy. Clin Neurophysiol 124:354–363

    Article  PubMed  Google Scholar 

  • Theil T, Alvarez-Bolado G, Walter A, Rüther U (1999) Gli3 is required for Emx gene expression during dorsal telencephalon development. Development 126:3561–3571

    CAS  PubMed  Google Scholar 

  • Theil T, Aydin S, Koch S, Grotewold L, Rüther U (2002) Wnt and Bmp signalling cooperatively regulate graded Emx2 expression in the dorsal telencephalon. Development 129:3045–3054

    CAS  PubMed  Google Scholar 

  • Thomsen G, Woolf T, Whitman M, Sokol S, Vaughan J, Vale W, Melton DA (1990) Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 63:485–493

    Article  CAS  PubMed  Google Scholar 

  • Tian E, Kimura C, Takeda N, Aizawa S, Matsuo I (2002) Otx2 is required to respond to signals from the anterior neural ridge for forebrain specification. Dev Biol 242:204–223

    Article  CAS  PubMed  Google Scholar 

  • Torres B, Luque MA, Perez-Perez MP, Herrero L (2005) Visual orienting response in goldfish: a multidisciplinary study. Brain Res Bull 66:376–380

    Article  CAS  PubMed  Google Scholar 

  • Toyoda R, Assimacopoulos S, Wilcoxon J, Taylor A, Feldman P, Suzuki-Hirano A, Shimogori T, Grove EA (2010) FGF8 acts as a classic diffusible morphogen to pattern the neocortex. Development 137:3439–3448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udin SB (1977) Rearrangements of the retinotectal projection in Rana pipiens after unilateral caudal half-tectum ablation. J Comp Neurol 173:561–582

    Article  CAS  PubMed  Google Scholar 

  • van den Eijnden-Van Raaij AJM, van Zoelent EJJ, van Nimmen K, Koster CH, Snoek GT, Durston AJ, Huylebroeck D (1990) Activin-like factor from a Xenopus cell line responsible for mesoderm induction. Nature 345:733–734

    Google Scholar 

  • Wang Y, Song L, Zhou CJ (2011) The canonical Wnt/β-catenin signaling pathway regulates Fgf signaling for early facial development. Dev Biol 349:250–260

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Dai Z, Gong G, Zhou C, He Y (2015) Understanding the structural-functional relationships. Neuroscientist 21:290–305

    Article  PubMed  Google Scholar 

  • Wassarman KM, Lewandoski M, Campbell K, Joyner AL, Rubenstein JL, Martinez S, Martin GR (1997) Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124:2923–2934

    CAS  PubMed  Google Scholar 

  • Wheeler AL, Voineskos AN (2014) A review of structural neuroimaging in schizophrenia. Front Hum Neurosci 8:653

    Article  PubMed  PubMed Central  Google Scholar 

  • Wills AE, Choi VM, Bennett MJ, Khokha MK, Harland RM (2010) BMP antagonists and FGF signaling contribute to different domains of the neural plate. Dev Biol 337:335–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson L, Chambers D (2015) Transcriptomic analysis of midbrain and individual rhombomeres in the chick embryo. Sci Data 1:140014

    Google Scholar 

  • Wobrock T, Gruber O, Schneider-Axmann T, Wölwer W, Gaebel W, Riesbeck M, Maier W, Klosterkötter J, Schneider F, Buchkremer G, Möller HJ, Schmitt A, Bender S, Schlösser R, Falkai P (2009) Internal capsule size associated with outcome in first-episode schizophrenia. Eur Arch Psychiatry Clin Neurosci 259:278–283

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25:1–47

    Article  CAS  PubMed  Google Scholar 

  • Xuan S, Baptista CA, Balas G, Tao W, Soares VC, Lai E (1995) Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres. Neuron 14:1141–1152

    Article  CAS  PubMed  Google Scholar 

  • Yamada S, Samtani RR, Lee ES, Lockett E, Uwabe C, Shiota K, Anderson SA, Lo CW (2010) Developmental atlas of the early first trimester human embryo. Dev Dyn 239:1585–1595

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamazaki A, Yoshida M, Uematsu K (2002) Post-hatching development of the brain in Octopus ocellatus. Zool Sci 19:763–771

    Article  PubMed  Google Scholar 

  • Yoon M (1971) Reorganization of retinotectal projection following surgical operations on the tectum in goldfish. Exp Neurol 33:395–411

    Article  CAS  PubMed  Google Scholar 

  • Yoon MG (1973) Retention of the original topographic polarity by the 180° rotated tectal implant in young adult goldfish. J Physiol 233:575–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshino J, Tochinai S (2004) Successful reconstitution of the non-regenerating adult telencephalon by cell transplantation in Xenopus laevis. Develop Growth Differ 46:523–534

    Article  Google Scholar 

  • Yu SR, Burkhardt M, Nowak M, Ries J, Petrasek Z, Schlopp S, Schwille P, Brand M (2009) Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461:533–536

    Article  CAS  PubMed  Google Scholar 

  • Zalc B, Goujet D, Colman D (2008) The origin of the myelination program in vertebrates. Curr Biol 18:R511–R512

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman LB, de Jesus-Escobar JM, Harland RM (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86:599–606

    Article  CAS  PubMed  Google Scholar 

  • Zupanc GKH (1999) Neurogenesis, cell death and regeneration in the adult gymnotiform brain. J Exp Biol 202:1435–1446

    CAS  PubMed  Google Scholar 

  • Zupanc GKH (2001) Adult neurogenesis and neuronal regeneration on the central nervous system of teleost fish. Brain Behav Evol 58:250–275

    Article  CAS  PubMed  Google Scholar 

  • Zupanc GKH (2013) Teleost fish as a model system to study successful regeneration of the central nervous system. Curr Top Microbiol Immunol 367:193–233

    CAS  PubMed  Google Scholar 

  • Zupanc GK, Horschke I (1996) Tectal input to the central posterior/prepacemaker nucleus of weakly electric fish, Apteronotus leptorhyhchus: an in vitro tract-tracing study. Brain Res 739:201–209

    Article  CAS  PubMed  Google Scholar 

  • Zupanc GKH, Sirbulescu RF (2011) Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish. Eur J Neurosci 34:917–929

    Article  PubMed  Google Scholar 

  • Zupanc GKH, Sirbulescu RF (2013) Teleost fish as a model system to study successful regeneration of the central nervous system. Curr Top Microbiol Immunol 367:193–233

    Google Scholar 

Download references

Disclosure Statement

The author states that he has not been paid for this work and has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Key .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Key, B. (2016). Development and Regeneration of the Vertebrate Brain. In: Steinhoff, G. (eds) Regenerative Medicine - from Protocol to Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-27583-3_8

Download citation

Publish with us

Policies and ethics