Flood Tolerant Trees in Seasonally Inundated Lowland Tropical Floodplains

  • Pia ParolinEmail author
  • Leandro V. Ferreira
  • Maria Teresa F. Piedade
  • Cátia Nunes da Cunha
  • Florian Wittmann
  • Mauricio E. Arias
Part of the Tree Physiology book series (TREE, volume 6)


This chapter focuses on trees and their responses to flooding in large fresh water flood-pulsed ecosystems. The regularity and predictability of the flood pulse has allowed for the development of adaptations by which a large number of tree species are able to grow in ecosystems subjected to seasonally inundated sites. By comparing diversity and tree responses in four floodplain ecosystems on different continents, we attempt to improve our understanding of the factors influencing spatial distribution of plants, diversity of species and adaptations and thus contribute to our knowledge of tropical wetland ecology. In this way, we hope to assist in the successful restoration of degraded floodplains and promote the sustainable use and conservation of these highly valuable ecosystems.


Anoxic soils Fresh water flooding Growth rings Hypoxia Waterlogging 


  1. Arias ME, Cochrane TA, Piman T, Kummu M, Caruso B, Killeen TJ (2012) Quantifying changes in flooding and habitats in the Tonle Sap Lake (Cambodia) caused by water infrastructure development and climate change in the Mekong Basin. J Environ Manage 112:53–66Google Scholar
  2. Arias ME, Cochrane TA, Norton D, Killeen TJ, Khon P (2013) The flood pulse as the underlying driver of vegetation in the largest wetland and fishery of the Mekong Basin. Ambio 42(7):864–876CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arias ME, Cochrane TA, Elliott V (2014a) Modelling future changes of habitat and fauna in the Tonle Sap wetland of the Mekong. Environ Conserv 41:165–175CrossRefGoogle Scholar
  4. Arias ME, Cochrane TA, Kummu M, Lauri H, Koponen J, Holtgrieve GW, Piman T (2014b) Impacts of hydropower and climate change on drivers of ecological productivity of Southeast Asia’s most important wetland. Ecol Model 272:252–263CrossRefGoogle Scholar
  5. Ayres JMC (1993) The várzea forests of Mamirauá. In: Estudos de Mamirauá. SociedadeCivilMamirauá (ed), Tefé, Brazil, vol I, pp 1–123.Google Scholar
  6. Balslev H, Luteyn J, Oellgaard B, Holm-Nielsen LB (1987) Composition and structure of adjacent unflooded and floodplain forest in Amazonian Ecuador. Opera Botanica 92:37–57Google Scholar
  7. Bonyongo CM, Veenendaal E, Bredenkamp G (2000) Floodplain vegetation in the Nxaraga Lagoon area, Okavango Delta, Botswana. S Afr J Bot 66:15–21CrossRefGoogle Scholar
  8. Campbell DG, Daly DC, Prance GT, Maciel UN (1986) Quantitative ecological inventory of terra firme and várzea tropical forest on the Rio Xingu, Brazilian Amazon. Brittonia 38:369–393CrossRefGoogle Scholar
  9. Cochrane TA, Arias ME, Piman T (2014) Historical impact of water infrastructure on water levels of the Mekong river and the tonle sap system. Hydrol Earth Sci Discuss 11:4403–4431CrossRefGoogle Scholar
  10. Crawford RMM (1989) The anaerobic retreat. In: Crawford RMM (ed) Studies in plant survival. Ecological case histories of plant adaptation to adversity. Studies in Ecology, vol 11. Blackwell Scientific Publications, pp 105–129 Google Scholar
  11. Cunha CN, Junk WJ (2001) Distribution of woody plant communities along the flood gradient in the Pantanal of Poconé, Mato Grosso, Brazil. Int J Ecol Environ Sci 27:63–70Google Scholar
  12. Dalmolin AC, Dalmagro HJ, de Almeida Lobo F, Zortéa M, Junior A, Rogríguez Ortíz CE, Vourlitis GL (2012) Effects of flooding and shading on growth and gas exchange of Vochysia divergens Pohl (Vochysiaceae) of invasive species in the Brazilian Pantanal. Braz J Plant Physiol 24:75–84CrossRefGoogle Scholar
  13. Damasceno Júnior GA, Semir J, Santos FAM, Leitão Filho HF (2005) Structure, distribution of species, and inundation in a riparian forest of Rio Paraguai, Pantanal, Brazil. Flora 200:119–135CrossRefGoogle Scholar
  14. De Simone O, Müller E, Junk WJ, Schmidt W (2002a) Adaptations of Central Amazon tree species to prolonged flooding: root morphology and leaf longevity. Funct Plant Biol 29:1025–1035CrossRefGoogle Scholar
  15. De Simone O, Haase K, Müller E, Junk WJ, Gonsior GA, Schmidt W (2002b) Impact of root morphology on metabolism and oxygen distribution in roots and rhizosphere from two Central Amazon floodplain tree species. Funct Plant Biol 29:1025–1035CrossRefGoogle Scholar
  16. De Simone O, Haase K, Müller E, Junk WJ, Hartmann K, Schreiber L, Schmidt W (2003) Apoplasmic barriers and oxygen transport properties of hypodermal cell walls in roots from four Amazonian tree species. Plant Physiol (in press)Google Scholar
  17. Ellery WN, Tacheba B (2003). Floristic diversity of the Okavango Delta, Botswana. In: Alonso LE, Nordin LA (eds) Chapter 5 in A rapid biological assessment of the aquatic ecosystems of the Okavango Delta, Botswana: High Water Survey. RAP Bulletin of Biological AssessmentGoogle Scholar
  18. Ellery WN, Ellery K, McCarthy TS (1993) Plant distribution in islands of the Okavango Delta, Botswana: determinants and feedback interactions. Afr J Ecol 31:118–134CrossRefGoogle Scholar
  19. Ellery WN, McCarthy TS, Dangerfield JM (2000) Floristic diversity in the Okavango Delta, Botswana as an endogenous product of biological activity. In: Gopal B., Junk W.J, Davis J.A. (eds.). Biodiversity in wetlands: assessment, function and conservation. Backhuis, Leiden. Vol. IGoogle Scholar
  20. Finlayson CM (2005) Plant Ecology of Australia’s Tropical Floodplain Wetlands: A Review. Ann Bot 96:541–555CrossRefPubMedPubMedCentralGoogle Scholar
  21. Finlayson CM, Bailey BJ, Cowie ID (1989) Macrophytic Vegetation of the Magela Flood Plain, Northern Australia. Research Report No. 5, Office of the Supervising Scientist, Sydney, Australia, 38 ppGoogle Scholar
  22. Finlayson CM, Cowie ID, Bailey BJ (1990) Characteristics of a seasonally flooded freshwater system in monsoonal Australia. In: Whigham DF, Good RE, Kvet J (eds) Wetland Ecology and Management: Case studies. Kluwer Aca-demic Publishers, Dordrecht, The Netherlands, pp 141–162CrossRefGoogle Scholar
  23. Franklin DC, Brocklehurst PS, Lynch D, Bowman DMJS (2007) Niche differentiation and regeneration in the seasonally flooded Melaleuca forests of northern Australia. J Trop Ecol 23:457–468CrossRefGoogle Scholar
  24. Furch B (1984) Untersuchungen zur Überschwemmungstoleranz von Bäumen der Várzea und des Igapó. Blattpigmente. Biogeographica 19:77–83Google Scholar
  25. Galetti M et al (2008) Big fish are the best: seed dispersal of Bactris glaucescens by the Pacu fish (Piaractus mesopotamicus) in the Pantanal, Brazil. Biotropica 40:386–389CrossRefGoogle Scholar
  26. Gill CJ (1970) The flooding tolerance of woody species - a review. Forestry Abstracts 31:671–688Google Scholar
  27. Gottsberger G (1978) Seed dispersal by fish in the inundated regions of Humaitá, Amazonia. Biotropica 10:170–183CrossRefGoogle Scholar
  28. Goulding M (1980) Interactions of fishes with fruits and seeds. In: Goulding M (ed) The fishes and the forest. Explorations in Amazonian natural history. University of California Press, pp 217–232Google Scholar
  29. Haase K, De Simone O, Junk WJ, Schmidt W (2003) Internal oxygen transport in cuttings from flood-adapted varzea tree species. Tree Physiol 23(15):1069–1076CrossRefPubMedGoogle Scholar
  30. Heinl M, Sliva J, Tacheba B (2004) Vegetation changes after single fire-events in the Okavango Delta wetland, Botswana. S Afr J Bot 70:695–704CrossRefGoogle Scholar
  31. Heinl M, Neuenschwander A, Sliva J, Vanderpost C (2006) Interactions between fire and flooding in the Okavango Delta floodplains, Botswana. Landscape Ecol 21:699–709CrossRefGoogle Scholar
  32. Heinl M, Frost P, Vanderpost C, Sliva J (2007) Fire activity on drylands and floodplains in the southern Okavango Delta, Botswana. J Arid Environ 68:77–87CrossRefGoogle Scholar
  33. Hughes FMR (1988) The ecology of African floodplain forests in semi-arid and arid zones: a review. J Biogeogr 15:127–140CrossRefGoogle Scholar
  34. Jackson MB, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol 1:274–287CrossRefGoogle Scholar
  35. James EK, Loureiro MD, Pott A, Pott VJ, Martins CM, Franco AA, Sprent JI (2001) Flooding-tolerant legume symbioses from the Brazilian Pantanal. New Phytol 150:723–738CrossRefGoogle Scholar
  36. Joly CA, Crawford RMM (1982) Variation in tolerance and metabolic responses to flooding in some tropical trees. J Exp Bot 33:799–809CrossRefGoogle Scholar
  37. Junk WJ (1989) Flood tolerance and tree distribution in Central Amazonian floodplains. In: Nielsen LB, Nielsen IC, Balslev H (eds) Tropical forests: Botanical dynamics, speciation and diversity. Academic Press, London, 47–64Google Scholar
  38. Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. In: Dodge DP (ed) Proceedings of the International Large River Symposium. Canadian Publications of Fisheries and Aquatic Sciences, vol 106. pp 110–127Google Scholar
  39. Junk WJ, Brown MT, Campbell I, Finlayson M, Gopal B, Ramberg L, Warner BG (2006) The comparative biodiversity of seven globally important wetlands: a synthesis. Aquat Sci 68:400–414CrossRefGoogle Scholar
  40. Klinge H, Rodrigues W (1968) Litter production in an area of Amazonian terra firme forest. Part I. Litterfall, organic and total nitrogen contents of litter. Amazoniana 1:287–302  Google Scholar
  41. Kozlowski TT (1984) Responses of woody plants to flooding. In: Kozlowski TT (ed) Flooding and plant growth. Academic Press, Orlando, pp 129–163CrossRefGoogle Scholar
  42. Kubitzki K (1989) The ecogeographical differentiation of Amazonian inundation forests. Plant Syst Evol 162:285–304CrossRefGoogle Scholar
  43. Kubitzki K, Ziburski A (1994) Seed dispersal in flood plain forests of Amazonia. Biotropica 26:30–43CrossRefGoogle Scholar
  44. Lowry J, Finlayson CM (2004) A review of spatial data sets for wetland inventory in northern Australia. Darwin, Australia: Supervising Scientist Report 178, Supervising ScientistGoogle Scholar
  45. Malhi Y, Aragao LEOC, Galbraith D, Huntingford C, Fisher R, Zelazowski P, Sitch S, McSweeney C, Meir P (2009) Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. PNAS 106:20610–20615CrossRefPubMedPubMedCentralGoogle Scholar
  46. McCarthy TS (2006) Groundwater in the wetlands of the Okavango Delta, Botswana, and its contribution to the structure and function of the ecosystem. J Hydrol 320:264–282CrossRefGoogle Scholar
  47. McDonald A, Pech B, Phauk V, Leev B (1997) Plant communities of the Tonle Sap flood plain. Contribution to the nomination of the Tonle Sap as Biosphere Reserve for UNESCO’s “Man in the Biosphere Program”. UNESCO, Phnom PenhGoogle Scholar
  48. McGregor S, Lawson V, Christophersen P, Kennett R, Boyden J, Bayliss P, Liedloff A, McKaige B, Andersen AN (2010) Indigenous wetland burning: conserving natural and cultural resources in Australia’s World Heritage-listed Kakadu National Park. Human Ecol 38:721–730CrossRefGoogle Scholar
  49. McJannet D (2008) Water table and transpiration dynamics in a seasonally inundated Melaleuca quinquenervia forest, north Queensland, Australia. Hydrol Process 22:3079–3090CrossRefGoogle Scholar
  50. Moegenburg SM (2002) Spatial and temporal variation in hydrochory in Amazonian floodplain forest. Biotropica 34:606–612CrossRefGoogle Scholar
  51. Montes R, San José JJ (1995) Vegetation and soil analyses of topo-sequences in the Orinoco llanos. Flora 190:1–33Google Scholar
  52. MRC (2005) Overview of the Hydrology of the Mekong Basin. Vientiane, Lao PDRGoogle Scholar
  53. Murray-Hudson M, Wolski P, Murray-Hudson F, Brown M, Kashe K (2014) Disaggregating hydroperiod: components of the seasonal flood pulse as drivers of plant species distribution in floodplains of a tropical wetland. WetlandsGoogle Scholar
  54. Nunes da Cunha C, Junk WJ (2001) Distribution of woody plant communities along the flood gradient in the Pantanal of Poconé, Mato Grosso, Brazil. Int J Ecol Env Sci 27:63–70Google Scholar
  55. O’Grady AP, Eamus D, Cook PG, Lamontagne S (2006) Comparative water use by the riparian trees Melaleuca argentea and Corymbia bella in the wet-dry tropics of northern Australia. Tree Physiol 26:219–228CrossRefPubMedGoogle Scholar
  56. Oldeland J, Erb C, Finckh M, Jürgens N (2013) Environmental Assessments in the Okavango Region. Biodiversity & Ecology 5: 418. Biocentre Klein Flottbek and Botanical Garden, HamburgGoogle Scholar
  57. Oliveira MT, Damasceno-Junior GA, Pott A, Paranhos Filho AC, Suare YR, Parolin P (2014) Regeneration of riparian forests of the Brazilian Pantanal under flood and fire influence. For Ecol Manage 331:256–263CrossRefGoogle Scholar
  58. Oyama MD, Nobre CA (2003) A new climate-vegetation equilibrium state for Tropical South America. Geophysical Research Letters 30(23):2199–2203  Google Scholar
  59. Parolin P (2000) Phenology and CO2-assimilation of trees in Central Amazonian floodplains. J Trop Ecol 16:465–473CrossRefGoogle Scholar
  60. Parolin P (2002) Submergence tolerance vs. escape from submergence: two strategies of seedling establishment in Amazonian floodplains. Environ Exp Bot 48:177–186CrossRefGoogle Scholar
  61. Parolin P (2009) Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian Floodplains. Ann Bot 103:359–376CrossRefPubMedPubMedCentralGoogle Scholar
  62. Parolin P, Junk WJ (2002) The effect of submergence on seed germination in trees from Amazonian floodplains. Boletim Museu GoeldiGoogle Scholar
  63. Parolin P, Wittmann F (2010) Struggle in the flood – Tree responses to flooding stress in four tropical floodplain systems. AoB PlantsGoogle Scholar
  64. Parolin P, Armbrüster N, Wittmann F, Ferreira LV, Piedade MTF, Junk WJ (2002) A Review of tree phenology in central Amazonian floodplains. Pesquisas, Botânica 52:195–222Google Scholar
  65. Parolin P, De Simone O, Haase K, Waldhoff D, Rottenberger S, Kuhn U, Kesselmeier J, Schmidt W, Piedade MTF, Junk WJ (2004) Central Amazon floodplain forests: tree survival in a pulsing system. Bot Rev 70:357–380CrossRefGoogle Scholar
  66. Parolin P, Lucas C, Piedade MTF, Wittmann F (2010) Drought responses of flood-tolerant trees in Amazonian floodplains. Ann Bot 105:129–139CrossRefPubMedPubMedCentralGoogle Scholar
  67. Parolin P, Wittmann F, Ferreira L (2013) Fruit and seed dispersal in Amazonian floodplain trees – a review. Ecotropica 19:15–32Google Scholar
  68. Piedade MTF, Parolin P, Junk WJ (2006) Phenology, fruit production and seed dispersal of Astrocaryum jauari (Arecaceae) in Amazonian black-water floodplains. Revista de Biología Tropical 54:1171–1178CrossRefPubMedGoogle Scholar
  69. Ponnamperuma FN (1984) Effects of flooding on soils. In: Kozlowski TT (ed) Flooding and plant growth. Academic Press, Orlando, pp 9–45CrossRefGoogle Scholar
  70. Pott A, Pott VJ (1994) Plantas do Pantanal. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Brasilia 320 ppGoogle Scholar
  71. Prance GT, Schaller GB (1982) Preliminary study of some vegetation types of the Pantanal, Mato Grosso, Brazil. Brittonia 32:228–251CrossRefGoogle Scholar
  72. Ratter JA, Pott A, Pott VJ, Cunha CN, Haridasan M (1988) Observations on woody vegetation types in the Pantanal and at Corumbá. Brazil. Notes R Bot Gard Edinb 45:503–505Google Scholar
  73. Reich PB, Borchert P (1984) Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. J Ecol 72:61–74CrossRefGoogle Scholar
  74. Ringrose S (2003) Characterisation of riparian woodlands and their potential water loss in the distal Okavango Delta, Botswana. Appl Geogr 23:281–302CrossRefGoogle Scholar
  75. Ringrose S, Chipanshi AC, Matheson W, Chanda R, Motoma L, Magole I, Jellema A (2002) Climate- and human-induced woody vegetation changes in Botswana and their implications for human adaptation. Environ Manage 30:98–109CrossRefPubMedGoogle Scholar
  76. Schlüter U-B, Furch B (1992) Morphologische, anatomische und physiologische Untersuchungen zur Überflutungstoleranz des Baumes Macrolobium acaciaefolium, charakteristisch für die Weiß- und Schwarzwasserüberschwemmungswälder bei Manaus, Amazonas. Amazoniana 12:51–69Google Scholar
  77. Schlüter U-B, Furch B, Joly CA (1993) Physiological and anatomical adaptations by young Astrocaryum jauari Mart. (Arecaceae) in periodically inundated biotopes of Central Amazonia. Biotropica 25:384–396CrossRefGoogle Scholar
  78. Scholander PF, Perez MO (1968) Sap tension in flooded trees and bushes of the Amazon. Plant Physiol 43:1870–1873CrossRefPubMedPubMedCentralGoogle Scholar
  79. Schöngart J, Piedade MFT, Ludwigshausen S, Horna V, Worbes M (2002) Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol 18:581–597CrossRefGoogle Scholar
  80. Schöngart J, Arieira J, Felfili Fortes C, Cezarine de Arruda E, Nunes da Cunha C (2011) Age-related and stand-wise estimates of carbon stocks and sequestration in the aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil. Biogeosciences 8:3407–3421CrossRefGoogle Scholar
  81. Sena Gomes AR, Kozlowski TT (1980) Responses of Melaleuca quinquenervia seedlings to flooding. Physiol Plant 49:373–377CrossRefGoogle Scholar
  82. Siebel HN, Blom CWPM (1998) Effects of irregular flooding on the establishment of tree species. Acta Bot Neerl 47:231–240Google Scholar
  83. Skeat AJ, East TJ, Corbett LK (1996) Impact of feral water buffalo. In: Finlayson CM, von Oertzen I (eds) Landscape and vegetation ecology of the Kakadu Region, Northern Australia. Kluwer Academic, Dordrecht. pp 155–177Google Scholar
  84. Taylor JA, Tulloch D (1985) Rainfall in the wet-dry tropics: extreme events at Darwin and similarities between years during the period 1870–1983. Aust J Ecol 10:281–295CrossRefGoogle Scholar
  85. Veenendaal EM, Mantlana KB, Pammenter NW, Weber P, Huntsman-Mapila P, Lloyd J (2008) Growth form and seasonal variation in leaf gas exchange of Colophospermum mopane savanna trees in northwest Botswana. Tree Physiol 28:417–424CrossRefPubMedGoogle Scholar
  86. Veneklaas EJ, Fajardo A, Obregon S, Lozano J (2005) Gallery forest types and their environmental correlates in a Colombian Savanna landscape. Ecography 28:236–252CrossRefGoogle Scholar
  87. Visser EJW, Voesenek LACJ, Vartapetian BB, Jackson MB (2003) Flooding and plant growth. Ann Bot 91:107–109CrossRefPubMedCentralGoogle Scholar
  88. Waldhoff D (2003) Leaf structure in trees of Central Amazonian floodplain forests (Brazil). Amazoniana 17:451–469Google Scholar
  89. Waldhoff D, Junk WJ, Furch B (1998) Responses of three Central Amazonian tree species to drought and flooding under controlled conditions. Int J Ecol Environ 24:237–252Google Scholar
  90. Waldhoff D, Junk WJ, Furch B (2002) Fluorescence parameters, chlorophyll concentration, and anatomical features as indicators for flood adaptation of an abundant tree species in Central Amazonia: Symmeria paniculata. Environ Exp Bot 48:225–235CrossRefGoogle Scholar
  91. Ward DP, Hamilton SK, Jardine TD, Pettit NE, Tews EK, Olley JM, Bunn SE, (2012) Assessing the seasonal dynamics of inundation, turbidity, and aquatic vegetation in the Australian wet–dry tropics using optical remote sensing. EcohydrolGoogle Scholar
  92. Warfe DM, Pettit NE, Davies PM, Pusey BJ, Hamilton SK, Kennard MJ, Townsend SA, Bayliss P, Ward DP, Douglas MM, Burford MA, Finn M, Bunn SE, Halliday IA (2011) The “wet–dry” in the wet–dry tropics drives river ecosystem structure and processes in northern Australia. Freshw Biol 56:2169–2195CrossRefGoogle Scholar
  93. Wittmann F (2012) Tree species composition and diversity in Brazilian freshwater floodplains. In: Pagano MC (ed) Mycorrhiza: occurrence in natural and restored environments. Nova Science Publ, New York, pp 223–263Google Scholar
  94. Wittmann F, Parolin P (2005) Aboveground roots in Amazonian floodplain trees. Biotropica 37:609–619CrossRefGoogle Scholar
  95. Wittmann F, Anhuf D, Junk WJ (2002) Tree species distribution and community structure of Central Amazonian várzea forests by remote sensing techniques. J Trop Ecol 18:805–820CrossRefGoogle Scholar
  96. Wittmann F, Junk WJ, Piedade MTF (2004) The várzea forests in Amazonia: Flooding and the highly dynamic geomorphology interact with natural forest succession. For Ecol Manage 196:199–212CrossRefGoogle Scholar
  97. Wittmann F, Zorzi BT, Tizianel FAT, Urquiza MVS, Faria RR, Sousa NM, Módena ES, Gamarra RM, Rosa ALM (2008) Tree species composition, structure, and aboveground wood biomass of a riparian forest of the lower Miranda River, Southern Pantanal, Brazil. Folia Geobotanica 43:397–411CrossRefGoogle Scholar
  98. Wittmann F, Householder E, Piedade MTF, Assis RL, Schöngart J, Parolin P, Junk WJ (2013) Habitat specificity, endemism and the neotropical distribution of Amazonian white-water floodplain trees. Ecography 36:690–707CrossRefGoogle Scholar
  99. Worbes M (1986) Lebensbedingungen und Holzwachstum in zentralamazonischen Überschwemmungswäldern. ScriptaGeobotanica, Erich Goltze, Göttingen 112Google Scholar
  100. Worbes M (1989) Growth rings, increment and age of trees in inundation forests, savannas and a mountain forest in the neotropics. IAWA Bulletin 10:109–122Google Scholar
  101. Worbes M (1997) The forest ecosystem of the floodplains. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecological Studies, vol 126. Springer, Heidelberg, pp 223–266Google Scholar
  102. Zeilhofer P, Schessl M (1994) Relationship between vegetation and environmental conditions in the northern Pantanal of Mato Grosso, Brazil. J Biogeogr 27:159–168CrossRefGoogle Scholar
  103. Ziburski A (1991) Dissemination, Keimung und Etablierung einiger Baumarten der Überschwemmungswälder Amazoniens. In: Rauh W (ed) Tropische und subtropische Pflanzenwelt. Akademie der Wissenschaften und der Literatur 77:1–96Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pia Parolin
    • 1
    • 2
    Email author
  • Leandro V. Ferreira
    • 3
  • Maria Teresa F. Piedade
    • 4
  • Cátia Nunes da Cunha
    • 5
  • Florian Wittmann
    • 6
  • Mauricio E. Arias
    • 7
  1. 1.Biocentre Klein Flottbek and Botanical GardenUniversity of HamburgHamburgGermany
  2. 2.INRA French National Institute for Agricultural ResearchUniv. Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia AgrobiotechSophia AntipolisFrance
  3. 3.Museu Paraense Emílio GoeldiBelémBrazil
  4. 4.INPAManausBrazil
  5. 5.Departamento de Botânica e EcologiaUniversidade Federal de Mato GrossoCuiabáBrazil
  6. 6.Department of BiogeochemistryMax Planck Institute for LimnologyMainzGermany
  7. 7.Department of Organismic and Evolutionary BiologyCambridgeUSA

Personalised recommendations