Skip to main content

Flood Tolerant Trees in Seasonally Inundated Lowland Tropical Floodplains

  • Chapter
  • First Online:
Tropical Tree Physiology

Abstract

This chapter focuses on trees and their responses to flooding in large fresh water flood-pulsed ecosystems. The regularity and predictability of the flood pulse has allowed for the development of adaptations by which a large number of tree species are able to grow in ecosystems subjected to seasonally inundated sites. By comparing diversity and tree responses in four floodplain ecosystems on different continents, we attempt to improve our understanding of the factors influencing spatial distribution of plants, diversity of species and adaptations and thus contribute to our knowledge of tropical wetland ecology. In this way, we hope to assist in the successful restoration of degraded floodplains and promote the sustainable use and conservation of these highly valuable ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arias ME, Cochrane TA, Piman T, Kummu M, Caruso B, Killeen TJ (2012) Quantifying changes in flooding and habitats in the Tonle Sap Lake (Cambodia) caused by water infrastructure development and climate change in the Mekong Basin. J Environ Manage 112:53–66

    Google Scholar 

  • Arias ME, Cochrane TA, Norton D, Killeen TJ, Khon P (2013) The flood pulse as the underlying driver of vegetation in the largest wetland and fishery of the Mekong Basin. Ambio 42(7):864–876

    Article  PubMed  PubMed Central  Google Scholar 

  • Arias ME, Cochrane TA, Elliott V (2014a) Modelling future changes of habitat and fauna in the Tonle Sap wetland of the Mekong. Environ Conserv 41:165–175

    Article  Google Scholar 

  • Arias ME, Cochrane TA, Kummu M, Lauri H, Koponen J, Holtgrieve GW, Piman T (2014b) Impacts of hydropower and climate change on drivers of ecological productivity of Southeast Asia’s most important wetland. Ecol Model 272:252–263

    Article  Google Scholar 

  • Ayres JMC (1993) The várzea forests of Mamirauá. In: Estudos de Mamirauá. SociedadeCivilMamirauá (ed), Tefé, Brazil, vol I, pp 1–123.

    Google Scholar 

  • Balslev H, Luteyn J, Oellgaard B, Holm-Nielsen LB (1987) Composition and structure of adjacent unflooded and floodplain forest in Amazonian Ecuador. Opera Botanica 92:37–57

    Google Scholar 

  • Bonyongo CM, Veenendaal E, Bredenkamp G (2000) Floodplain vegetation in the Nxaraga Lagoon area, Okavango Delta, Botswana. S Afr J Bot 66:15–21

    Article  Google Scholar 

  • Campbell DG, Daly DC, Prance GT, Maciel UN (1986) Quantitative ecological inventory of terra firme and várzea tropical forest on the Rio Xingu, Brazilian Amazon. Brittonia 38:369–393

    Article  Google Scholar 

  • Cochrane TA, Arias ME, Piman T (2014) Historical impact of water infrastructure on water levels of the Mekong river and the tonle sap system. Hydrol Earth Sci Discuss 11:4403–4431

    Article  Google Scholar 

  • Crawford RMM (1989) The anaerobic retreat. In: Crawford RMM (ed) Studies in plant survival. Ecological case histories of plant adaptation to adversity. Studies in Ecology, vol 11. Blackwell Scientific Publications, pp 105–129

    Google Scholar 

  • Cunha CN, Junk WJ (2001) Distribution of woody plant communities along the flood gradient in the Pantanal of Poconé, Mato Grosso, Brazil. Int J Ecol Environ Sci 27:63–70

    Google Scholar 

  • Dalmolin AC, Dalmagro HJ, de Almeida Lobo F, Zortéa M, Junior A, Rogríguez Ortíz CE, Vourlitis GL (2012) Effects of flooding and shading on growth and gas exchange of Vochysia divergens Pohl (Vochysiaceae) of invasive species in the Brazilian Pantanal. Braz J Plant Physiol 24:75–84

    Article  CAS  Google Scholar 

  • Damasceno Júnior GA, Semir J, Santos FAM, Leitão Filho HF (2005) Structure, distribution of species, and inundation in a riparian forest of Rio Paraguai, Pantanal, Brazil. Flora 200:119–135

    Article  Google Scholar 

  • De Simone O, Müller E, Junk WJ, Schmidt W (2002a) Adaptations of Central Amazon tree species to prolonged flooding: root morphology and leaf longevity. Funct Plant Biol 29:1025–1035

    Article  Google Scholar 

  • De Simone O, Haase K, Müller E, Junk WJ, Gonsior GA, Schmidt W (2002b) Impact of root morphology on metabolism and oxygen distribution in roots and rhizosphere from two Central Amazon floodplain tree species. Funct Plant Biol 29:1025–1035

    Article  Google Scholar 

  • De Simone O, Haase K, Müller E, Junk WJ, Hartmann K, Schreiber L, Schmidt W (2003) Apoplasmic barriers and oxygen transport properties of hypodermal cell walls in roots from four Amazonian tree species. Plant Physiol (in press)

    Google Scholar 

  • Ellery WN, Tacheba B (2003). Floristic diversity of the Okavango Delta, Botswana. In: Alonso LE, Nordin LA (eds) Chapter 5 in A rapid biological assessment of the aquatic ecosystems of the Okavango Delta, Botswana: High Water Survey. RAP Bulletin of Biological Assessment

    Google Scholar 

  • Ellery WN, Ellery K, McCarthy TS (1993) Plant distribution in islands of the Okavango Delta, Botswana: determinants and feedback interactions. Afr J Ecol 31:118–134

    Article  Google Scholar 

  • Ellery WN, McCarthy TS, Dangerfield JM (2000) Floristic diversity in the Okavango Delta, Botswana as an endogenous product of biological activity. In: Gopal B., Junk W.J, Davis J.A. (eds.). Biodiversity in wetlands: assessment, function and conservation. Backhuis, Leiden. Vol. I

    Google Scholar 

  • Finlayson CM (2005) Plant Ecology of Australia’s Tropical Floodplain Wetlands: A Review. Ann Bot 96:541–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finlayson CM, Bailey BJ, Cowie ID (1989) Macrophytic Vegetation of the Magela Flood Plain, Northern Australia. Research Report No. 5, Office of the Supervising Scientist, Sydney, Australia, 38 pp

    Google Scholar 

  • Finlayson CM, Cowie ID, Bailey BJ (1990) Characteristics of a seasonally flooded freshwater system in monsoonal Australia. In: Whigham DF, Good RE, Kvet J (eds) Wetland Ecology and Management: Case studies. Kluwer Aca-demic Publishers, Dordrecht, The Netherlands, pp 141–162

    Chapter  Google Scholar 

  • Franklin DC, Brocklehurst PS, Lynch D, Bowman DMJS (2007) Niche differentiation and regeneration in the seasonally flooded Melaleuca forests of northern Australia. J Trop Ecol 23:457–468

    Article  Google Scholar 

  • Furch B (1984) Untersuchungen zur Überschwemmungstoleranz von Bäumen der Várzea und des Igapó. Blattpigmente. Biogeographica 19:77–83

    Google Scholar 

  • Galetti M et al (2008) Big fish are the best: seed dispersal of Bactris glaucescens by the Pacu fish (Piaractus mesopotamicus) in the Pantanal, Brazil. Biotropica 40:386–389

    Article  Google Scholar 

  • Gill CJ (1970) The flooding tolerance of woody species - a review. Forestry Abstracts 31:671–688

    Google Scholar 

  • Gottsberger G (1978) Seed dispersal by fish in the inundated regions of Humaitá, Amazonia. Biotropica 10:170–183

    Article  Google Scholar 

  • Goulding M (1980) Interactions of fishes with fruits and seeds. In: Goulding M (ed) The fishes and the forest. Explorations in Amazonian natural history. University of California Press, pp 217–232

    Google Scholar 

  • Haase K, De Simone O, Junk WJ, Schmidt W (2003) Internal oxygen transport in cuttings from flood-adapted varzea tree species. Tree Physiol 23(15):1069–1076

    Article  PubMed  Google Scholar 

  • Heinl M, Sliva J, Tacheba B (2004) Vegetation changes after single fire-events in the Okavango Delta wetland, Botswana. S Afr J Bot 70:695–704

    Article  Google Scholar 

  • Heinl M, Neuenschwander A, Sliva J, Vanderpost C (2006) Interactions between fire and flooding in the Okavango Delta floodplains, Botswana. Landscape Ecol 21:699–709

    Article  Google Scholar 

  • Heinl M, Frost P, Vanderpost C, Sliva J (2007) Fire activity on drylands and floodplains in the southern Okavango Delta, Botswana. J Arid Environ 68:77–87

    Article  Google Scholar 

  • Hughes FMR (1988) The ecology of African floodplain forests in semi-arid and arid zones: a review. J Biogeogr 15:127–140

    Article  Google Scholar 

  • Jackson MB, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol 1:274–287

    Article  CAS  Google Scholar 

  • James EK, Loureiro MD, Pott A, Pott VJ, Martins CM, Franco AA, Sprent JI (2001) Flooding-tolerant legume symbioses from the Brazilian Pantanal. New Phytol 150:723–738

    Article  Google Scholar 

  • Joly CA, Crawford RMM (1982) Variation in tolerance and metabolic responses to flooding in some tropical trees. J Exp Bot 33:799–809

    Article  Google Scholar 

  • Junk WJ (1989) Flood tolerance and tree distribution in Central Amazonian floodplains. In: Nielsen LB, Nielsen IC, Balslev H (eds) Tropical forests: Botanical dynamics, speciation and diversity. Academic Press, London, 47–64

    Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. In: Dodge DP (ed) Proceedings of the International Large River Symposium. Canadian Publications of Fisheries and Aquatic Sciences, vol 106. pp 110–127

    Google Scholar 

  • Junk WJ, Brown MT, Campbell I, Finlayson M, Gopal B, Ramberg L, Warner BG (2006) The comparative biodiversity of seven globally important wetlands: a synthesis. Aquat Sci 68:400–414

    Article  Google Scholar 

  • Klinge H, Rodrigues W (1968) Litter production in an area of Amazonian terra firme forest. Part I. Litterfall, organic and total nitrogen contents of litter. Amazoniana 1:287–302  

    Google Scholar 

  • Kozlowski TT (1984) Responses of woody plants to flooding. In: Kozlowski TT (ed) Flooding and plant growth. Academic Press, Orlando, pp 129–163

    Chapter  Google Scholar 

  • Kubitzki K (1989) The ecogeographical differentiation of Amazonian inundation forests. Plant Syst Evol 162:285–304

    Article  Google Scholar 

  • Kubitzki K, Ziburski A (1994) Seed dispersal in flood plain forests of Amazonia. Biotropica 26:30–43

    Article  Google Scholar 

  • Lowry J, Finlayson CM (2004) A review of spatial data sets for wetland inventory in northern Australia. Darwin, Australia: Supervising Scientist Report 178, Supervising Scientist

    Google Scholar 

  • Malhi Y, Aragao LEOC, Galbraith D, Huntingford C, Fisher R, Zelazowski P, Sitch S, McSweeney C, Meir P (2009) Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. PNAS 106:20610–20615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy TS (2006) Groundwater in the wetlands of the Okavango Delta, Botswana, and its contribution to the structure and function of the ecosystem. J Hydrol 320:264–282

    Article  CAS  Google Scholar 

  • McDonald A, Pech B, Phauk V, Leev B (1997) Plant communities of the Tonle Sap flood plain. Contribution to the nomination of the Tonle Sap as Biosphere Reserve for UNESCO’s “Man in the Biosphere Program”. UNESCO, Phnom Penh

    Google Scholar 

  • McGregor S, Lawson V, Christophersen P, Kennett R, Boyden J, Bayliss P, Liedloff A, McKaige B, Andersen AN (2010) Indigenous wetland burning: conserving natural and cultural resources in Australia’s World Heritage-listed Kakadu National Park. Human Ecol 38:721–730

    Article  Google Scholar 

  • McJannet D (2008) Water table and transpiration dynamics in a seasonally inundated Melaleuca quinquenervia forest, north Queensland, Australia. Hydrol Process 22:3079–3090

    Article  Google Scholar 

  • Moegenburg SM (2002) Spatial and temporal variation in hydrochory in Amazonian floodplain forest. Biotropica 34:606–612

    Article  Google Scholar 

  • Montes R, San José JJ (1995) Vegetation and soil analyses of topo-sequences in the Orinoco llanos. Flora 190:1–33

    Google Scholar 

  • MRC (2005) Overview of the Hydrology of the Mekong Basin. Vientiane, Lao PDR

    Google Scholar 

  • Murray-Hudson M, Wolski P, Murray-Hudson F, Brown M, Kashe K (2014) Disaggregating hydroperiod: components of the seasonal flood pulse as drivers of plant species distribution in floodplains of a tropical wetland. Wetlands

    Google Scholar 

  • Nunes da Cunha C, Junk WJ (2001) Distribution of woody plant communities along the flood gradient in the Pantanal of Poconé, Mato Grosso, Brazil. Int J Ecol Env Sci 27:63–70

    Google Scholar 

  • O’Grady AP, Eamus D, Cook PG, Lamontagne S (2006) Comparative water use by the riparian trees Melaleuca argentea and Corymbia bella in the wet-dry tropics of northern Australia. Tree Physiol 26:219–228

    Article  PubMed  Google Scholar 

  • Oldeland J, Erb C, Finckh M, Jürgens N (2013) Environmental Assessments in the Okavango Region. Biodiversity & Ecology 5: 418. Biocentre Klein Flottbek and Botanical Garden, Hamburg

    Google Scholar 

  • Oliveira MT, Damasceno-Junior GA, Pott A, Paranhos Filho AC, Suare YR, Parolin P (2014) Regeneration of riparian forests of the Brazilian Pantanal under flood and fire influence. For Ecol Manage 331:256–263

    Article  Google Scholar 

  • Oyama MD, Nobre CA (2003) A new climate-vegetation equilibrium state for Tropical South America. Geophysical Research Letters 30(23):2199–2203  

    Google Scholar 

  • Parolin P (2000) Phenology and CO2-assimilation of trees in Central Amazonian floodplains. J Trop Ecol 16:465–473

    Article  Google Scholar 

  • Parolin P (2002) Submergence tolerance vs. escape from submergence: two strategies of seedling establishment in Amazonian floodplains. Environ Exp Bot 48:177–186

    Article  Google Scholar 

  • Parolin P (2009) Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian Floodplains. Ann Bot 103:359–376

    Article  PubMed  PubMed Central  Google Scholar 

  • Parolin P, Junk WJ (2002) The effect of submergence on seed germination in trees from Amazonian floodplains. Boletim Museu Goeldi

    Google Scholar 

  • Parolin P, Wittmann F (2010) Struggle in the flood – Tree responses to flooding stress in four tropical floodplain systems. AoB Plants

    Google Scholar 

  • Parolin P, Armbrüster N, Wittmann F, Ferreira LV, Piedade MTF, Junk WJ (2002) A Review of tree phenology in central Amazonian floodplains. Pesquisas, Botânica 52:195–222

    Google Scholar 

  • Parolin P, De Simone O, Haase K, Waldhoff D, Rottenberger S, Kuhn U, Kesselmeier J, Schmidt W, Piedade MTF, Junk WJ (2004) Central Amazon floodplain forests: tree survival in a pulsing system. Bot Rev 70:357–380

    Article  Google Scholar 

  • Parolin P, Lucas C, Piedade MTF, Wittmann F (2010) Drought responses of flood-tolerant trees in Amazonian floodplains. Ann Bot 105:129–139

    Article  PubMed  PubMed Central  Google Scholar 

  • Parolin P, Wittmann F, Ferreira L (2013) Fruit and seed dispersal in Amazonian floodplain trees – a review. Ecotropica 19:15–32

    Google Scholar 

  • Piedade MTF, Parolin P, Junk WJ (2006) Phenology, fruit production and seed dispersal of Astrocaryum jauari (Arecaceae) in Amazonian black-water floodplains. Revista de Biología Tropical 54:1171–1178

    Article  PubMed  Google Scholar 

  • Ponnamperuma FN (1984) Effects of flooding on soils. In: Kozlowski TT (ed) Flooding and plant growth. Academic Press, Orlando, pp 9–45

    Chapter  Google Scholar 

  • Pott A, Pott VJ (1994) Plantas do Pantanal. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Brasilia 320 pp

    Google Scholar 

  • Prance GT, Schaller GB (1982) Preliminary study of some vegetation types of the Pantanal, Mato Grosso, Brazil. Brittonia 32:228–251

    Article  Google Scholar 

  • Ratter JA, Pott A, Pott VJ, Cunha CN, Haridasan M (1988) Observations on woody vegetation types in the Pantanal and at Corumbá. Brazil. Notes R Bot Gard Edinb 45:503–505

    Google Scholar 

  • Reich PB, Borchert P (1984) Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. J Ecol 72:61–74

    Article  Google Scholar 

  • Ringrose S (2003) Characterisation of riparian woodlands and their potential water loss in the distal Okavango Delta, Botswana. Appl Geogr 23:281–302

    Article  Google Scholar 

  • Ringrose S, Chipanshi AC, Matheson W, Chanda R, Motoma L, Magole I, Jellema A (2002) Climate- and human-induced woody vegetation changes in Botswana and their implications for human adaptation. Environ Manage 30:98–109

    Article  CAS  PubMed  Google Scholar 

  • Schlüter U-B, Furch B (1992) Morphologische, anatomische und physiologische Untersuchungen zur Überflutungstoleranz des Baumes Macrolobium acaciaefolium, charakteristisch für die Weiß- und Schwarzwasserüberschwemmungswälder bei Manaus, Amazonas. Amazoniana 12:51–69

    Google Scholar 

  • Schlüter U-B, Furch B, Joly CA (1993) Physiological and anatomical adaptations by young Astrocaryum jauari Mart. (Arecaceae) in periodically inundated biotopes of Central Amazonia. Biotropica 25:384–396

    Article  Google Scholar 

  • Scholander PF, Perez MO (1968) Sap tension in flooded trees and bushes of the Amazon. Plant Physiol 43:1870–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schöngart J, Piedade MFT, Ludwigshausen S, Horna V, Worbes M (2002) Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol 18:581–597

    Article  Google Scholar 

  • Schöngart J, Arieira J, Felfili Fortes C, Cezarine de Arruda E, Nunes da Cunha C (2011) Age-related and stand-wise estimates of carbon stocks and sequestration in the aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil. Biogeosciences 8:3407–3421

    Article  Google Scholar 

  • Sena Gomes AR, Kozlowski TT (1980) Responses of Melaleuca quinquenervia seedlings to flooding. Physiol Plant 49:373–377

    Article  Google Scholar 

  • Siebel HN, Blom CWPM (1998) Effects of irregular flooding on the establishment of tree species. Acta Bot Neerl 47:231–240

    Google Scholar 

  • Skeat AJ, East TJ, Corbett LK (1996) Impact of feral water buffalo. In: Finlayson CM, von Oertzen I (eds) Landscape and vegetation ecology of the Kakadu Region, Northern Australia. Kluwer Academic, Dordrecht. pp 155–177

    Google Scholar 

  • Taylor JA, Tulloch D (1985) Rainfall in the wet-dry tropics: extreme events at Darwin and similarities between years during the period 1870–1983. Aust J Ecol 10:281–295

    Article  Google Scholar 

  • Veenendaal EM, Mantlana KB, Pammenter NW, Weber P, Huntsman-Mapila P, Lloyd J (2008) Growth form and seasonal variation in leaf gas exchange of Colophospermum mopane savanna trees in northwest Botswana. Tree Physiol 28:417–424

    Article  CAS  PubMed  Google Scholar 

  • Veneklaas EJ, Fajardo A, Obregon S, Lozano J (2005) Gallery forest types and their environmental correlates in a Colombian Savanna landscape. Ecography 28:236–252

    Article  Google Scholar 

  • Visser EJW, Voesenek LACJ, Vartapetian BB, Jackson MB (2003) Flooding and plant growth. Ann Bot 91:107–109

    Article  CAS  PubMed Central  Google Scholar 

  • Waldhoff D (2003) Leaf structure in trees of Central Amazonian floodplain forests (Brazil). Amazoniana 17:451–469

    Google Scholar 

  • Waldhoff D, Junk WJ, Furch B (1998) Responses of three Central Amazonian tree species to drought and flooding under controlled conditions. Int J Ecol Environ 24:237–252

    Google Scholar 

  • Waldhoff D, Junk WJ, Furch B (2002) Fluorescence parameters, chlorophyll concentration, and anatomical features as indicators for flood adaptation of an abundant tree species in Central Amazonia: Symmeria paniculata. Environ Exp Bot 48:225–235

    Article  CAS  Google Scholar 

  • Ward DP, Hamilton SK, Jardine TD, Pettit NE, Tews EK, Olley JM, Bunn SE, (2012) Assessing the seasonal dynamics of inundation, turbidity, and aquatic vegetation in the Australian wet–dry tropics using optical remote sensing. Ecohydrol

    Google Scholar 

  • Warfe DM, Pettit NE, Davies PM, Pusey BJ, Hamilton SK, Kennard MJ, Townsend SA, Bayliss P, Ward DP, Douglas MM, Burford MA, Finn M, Bunn SE, Halliday IA (2011) The “wet–dry” in the wet–dry tropics drives river ecosystem structure and processes in northern Australia. Freshw Biol 56:2169–2195

    Article  Google Scholar 

  • Wittmann F (2012) Tree species composition and diversity in Brazilian freshwater floodplains. In: Pagano MC (ed) Mycorrhiza: occurrence in natural and restored environments. Nova Science Publ, New York, pp 223–263

    Google Scholar 

  • Wittmann F, Parolin P (2005) Aboveground roots in Amazonian floodplain trees. Biotropica 37:609–619

    Article  Google Scholar 

  • Wittmann F, Anhuf D, Junk WJ (2002) Tree species distribution and community structure of Central Amazonian várzea forests by remote sensing techniques. J Trop Ecol 18:805–820

    Article  Google Scholar 

  • Wittmann F, Junk WJ, Piedade MTF (2004) The várzea forests in Amazonia: Flooding and the highly dynamic geomorphology interact with natural forest succession. For Ecol Manage 196:199–212

    Article  Google Scholar 

  • Wittmann F, Zorzi BT, Tizianel FAT, Urquiza MVS, Faria RR, Sousa NM, Módena ES, Gamarra RM, Rosa ALM (2008) Tree species composition, structure, and aboveground wood biomass of a riparian forest of the lower Miranda River, Southern Pantanal, Brazil. Folia Geobotanica 43:397–411

    Article  Google Scholar 

  • Wittmann F, Householder E, Piedade MTF, Assis RL, Schöngart J, Parolin P, Junk WJ (2013) Habitat specificity, endemism and the neotropical distribution of Amazonian white-water floodplain trees. Ecography 36:690–707

    Article  Google Scholar 

  • Worbes M (1986) Lebensbedingungen und Holzwachstum in zentralamazonischen Überschwemmungswäldern. ScriptaGeobotanica, Erich Goltze, Göttingen 112

    Google Scholar 

  • Worbes M (1989) Growth rings, increment and age of trees in inundation forests, savannas and a mountain forest in the neotropics. IAWA Bulletin 10:109–122

    Google Scholar 

  • Worbes M (1997) The forest ecosystem of the floodplains. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecological Studies, vol 126. Springer, Heidelberg, pp 223–266

    Google Scholar 

  • Zeilhofer P, Schessl M (1994) Relationship between vegetation and environmental conditions in the northern Pantanal of Mato Grosso, Brazil. J Biogeogr 27:159–168

    Article  Google Scholar 

  • Ziburski A (1991) Dissemination, Keimung und Etablierung einiger Baumarten der Überschwemmungswälder Amazoniens. In: Rauh W (ed) Tropische und subtropische Pflanzenwelt. Akademie der Wissenschaften und der Literatur 77:1–96

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pia Parolin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Parolin, P., Ferreira, L.V., Piedade, M.T.F., da Cunha, C.N., Wittmann, F., Arias, M.E. (2016). Flood Tolerant Trees in Seasonally Inundated Lowland Tropical Floodplains. In: Goldstein, G., Santiago, L. (eds) Tropical Tree Physiology. Tree Physiology, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-27422-5_6

Download citation

Publish with us

Policies and ethics