Skip to main content

The Effects of Rising Temperature on the Ecophysiology of Tropical Forest Trees

  • Chapter
  • First Online:
Tropical Tree Physiology

Part of the book series: Tree Physiology ((TREE,volume 6))

Abstract

The response of tropical trees to rising temperatures represents a key uncertainty that limits our ability to predict biosphere-atmosphere feedbacks in a warming world. We review the current understanding of temperature effects on the ecophysiology of tropical trees from organelle to biome level, where we distinguish between short-term responses, acclimation, and adaptation . We present new data on short-term temperature responses of photosynthesis and dark respiration , and temperature acclimation of photosynthesis. We also compare new field and laboratory-obtained photosynthesis-temperature response data. We identify several priority study areas. (1) Acclimation: We need to better understand photosynthetic acclimation, for example to determine whether the adjustment of the thermal optimum of photosynthesis (TOpt) is consistently negated by a decrease in photosynthesis at TOpt, as we observed. (2) Growth: Whereas tropical seedlings may grow better with warming, canopy trees reportedly grow worse; we do not currently know what explains these contrasting temperature effects. (3) Reproduction: Tropical trees may be close to reproductive temperature thresholds, as heat sterility in crops occurs in the upper 30 °C range. Nonetheless, the temperature sensitivity of tropical tree reproduction is virtually unstudied. (4) Mortality: How does heat-induced atmospheric drought (high leaf-to-air vapor pressure deficit ) affect tropical tree mortality? (5) Stomatal behavior: What is the specific role of temperature in the induction of midday-stomtal closure on sunny days? Better knowledge in these areas will improve our ability to predict carbon fluxes in tropical forests experiencing ongoing warming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    Article  CAS  PubMed  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Man 259:660–684

    Article  Google Scholar 

  • Alves EG, Harley P, Gonçalves JFC, da Silva CE, Moura KJ (2014) Effects of light and temperature on isoprene emission at different leaf developmental stages of Eschweilera coriacea in central Amazon. Acta Amazonica 44:9–18

    Article  CAS  Google Scholar 

  • Anderegg WR, Ballantyne AP, Smith WK, Majkut J, Rabin S, Beaulieu C, Birdsey R, Dunne JP et al (2015a) Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proc Nal Acad Sci USA 112:15591–15596

    Google Scholar 

  • Anderegg WRL, Hicke JA, Fisher RA, Allen CD, Aukema J, Bentz B, Hood S, Lichstein JW et al (2015b) Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol 208:674–683

    Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351

    Article  CAS  PubMed  Google Scholar 

  • Atkin OK, Bruhn D, Tjoelker MG (2005) Response of plant respiration to changes in temperature: mechanisms and consequences of variations in Q10 values and acclimation. In: Lambers H, Ribas-Carbo M (eds) Plant respiration: from cell to ecosystem. Springer, Dordrecht, pp 95–135

    Chapter  Google Scholar 

  • Atkin OK, Sherlock D, Fitter A, Jarvis S, Hughes J, Campbell C, Hurry V, Hodge A (2009) Temperature dependence of respiration in roots colonized by arbuscular mycorrhizal fungi. New Phytol 182:188–199

    Article  CAS  PubMed  Google Scholar 

  • Atkin OK, Bloomfield KJ, Reich PB, Tjoelker MG, Asner GP, Bonal D, Bönisch G, Bradford M et al (2015) Global variability in leaf respiration among plant functional types in relation to climate and leaf traits. New Phytol 206:614–636

    Article  CAS  PubMed  Google Scholar 

  • Bauweraerts I, Ameye M, Wertin TM, McGuire MA, Teskey RO, Steppe K (2014) Water availability is the decisive factor for the growth of two tree species in the occurrence of consecutive heat waves. Agr Forest Meteorol 189:19–29

    Article  Google Scholar 

  • Bernacchi CJ, Pimentel C, Long SP (2003) In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant Cell Environ 26:1419–1430

    Article  CAS  Google Scholar 

  • Berry J, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Booth BBB, Jones CD, Collins M, Totterdell IJ, Cox PM, Sitch S, Huntingford C, Betts RA, Harris GR, Lloyd J (2012) High sensitivity of future global warming to land carbon cycle processes. Environ Res Lett 7:024002

    Article  CAS  Google Scholar 

  • Bracho-Nuñez A, Knothe NM, Welter S, Staudt M, Costa WR, Liberato MAR, Piedade MTF, Kesselmeier J (2013) Leaf level emissions of volatile organic compounds (VOC) from some Amazonian and mediterranean plants. Biogeosci 10:5855–5873

    Article  CAS  Google Scholar 

  • Breshears DD, Adams HD, Eamus D, McDowell NG, Law DJ, Will RE, Williams AP, Zou CB (2013) The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. Front Plant Sci 4:266

    Article  PubMed  PubMed Central  Google Scholar 

  • von Caemmerer S (2000) Biochemical models of leaf photosynthesis (2). CSIRO Publishing, Collingwood, Australia

    Google Scholar 

  • von Caemmerer S, Quick WP (2000) Rubisco: physiology in vivo. In: Leegood RC, Sharkey TD, von Caemmerer S (eds) Photosynthesis. Springer, Dordrecht, pp 85–113

    Chapter  Google Scholar 

  • Cavaleri MA, Oberbauer SF, Ryan MG (2008) Foliar and ecosystem respiration in an old-growth tropical rain forest. Plant Cell Environ 31:473–483

    Article  CAS  PubMed  Google Scholar 

  • Cavaleri MA, Reed SC, Smith WK, Wood TE (2015) Urgent need for warming experiments in tropical forests. Glob Change Biol 21:2111–2121

    Article  Google Scholar 

  • Cernusak LA, Winter K, Dalling JW, Holtum JA, Jaramillo C, Körner C, Leakey ADB, Norby RJ et al (2013) Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research. Funct Plant Biol 40:531–551

    Article  CAS  Google Scholar 

  • Chambers JQ, Tribuzy ES, Toledo LC, Crispim BF, Higuchi N, Dos Santos J, Araújo AC, Kruijt B et al (2004) Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency. Ecol Appl 14:S72–S88

    Article  Google Scholar 

  • Cheesman AW, Winter K (2013a) Growth response and acclimation of CO2 exchange characteristics to elevated temperatures in tropical tree seedlings. J Exp Bot 64:3817–3828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheesman AW, Winter K (2013b) Elevated night-time temperatures increase growth in seedlings of two tropical pioneer tree species. New Phytol 197:1185–1192

    Article  CAS  PubMed  Google Scholar 

  • Clark DA (2004) Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition. Philos Trans Roy Soc B 359:477–491

    Article  CAS  Google Scholar 

  • Clark DA, Piper SC, Keeling CD, Clark DB (2003) Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proc Natl Acad Sci USA 100:5852–5857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark DA, Clark DB, Oberbauer SF (2013) Field-quantified responses of tropical rainforest aboveground productivity to increasing CO2 and climatic stress, 1997–2009. J Geophys Res-Biogeo 118:783–794

    Article  Google Scholar 

  • Clark DB, Clark DA, Oberbauer SF (2010) Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. Glob Change Biol 16:747–759

    Article  Google Scholar 

  • Condit R, Hubbell SP, Foster RB (1995) Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol Monogr 65:419–439

    Article  Google Scholar 

  • Condit R, Engelbrecht BM, Pino D, Pérez R, Turner BL (2013) Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proc Natl Acad Sci USA 110:5064–5068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coomes DA, Flores O, Holdaway R, Jucker T, Lines ER, Vanderwel MC (2014) Wood production response to climate change will depend critically on forest composition and structure. Glob Change Biol 20:3632–3645

    Article  Google Scholar 

  • Corlett RT (2011) Impacts of warming on tropical lowland rainforests. Trends Ecol Evol 27:145–150

    Google Scholar 

  • Cunningham SC, Read J (2002) Comparison of temperate and tropical rainforest tree species: photosynthetic responses to growth temperature. Oecologia 133:112–119

    Article  Google Scholar 

  • Cunningham SC, Read J (2003) Do temperate rainforest trees have a greater ability to acclimate to changing temperatures than tropical rainforest trees? New Phytol 157:55–64

    Article  Google Scholar 

  • Cunningham SC, Read J (2006) Foliar temperature tolerance of temperate and tropical evergreen rain forest trees of Australia. Tree Physiol 26:1435–1443

    Article  CAS  PubMed  Google Scholar 

  • De Kauwe MG, Lin YS, Wright IJ, Medlyn BE, Crous KY, Ellsworth DS, Maire V, Prentice IC et al (2016) A test of the ‘one‐point method’ for estimating maximum carboxylation capacity from field‐measured, light‐saturated photosynthesis. New Phytol In Press. doi:10.1111/nph.13815

    Google Scholar 

  • Diffenbaugh NS, Scherer M (2011) Observational and model evidence of global emergence of permanent, unprecedented heat in the 20th and 21st centuries. Clim Change 107:615–624

    Article  PubMed  PubMed Central  Google Scholar 

  • Doughty CE (2011) An in situ leaf and branch warming experiment in the Amazon. Biotropica 43:658–665

    Article  Google Scholar 

  • Doughty CE, Goulden ML (2008) Are tropical forests near a high temperature threshold? J Geophys Res Biogeosci 113:G00B07

    Google Scholar 

  • Duan H, Duursma RA, Huang G, Smith RA, Choat B, O’Grady AP, Tissue DT (2014) Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings. Plant Cell Environ 37:1598–1613

    Article  CAS  PubMed  Google Scholar 

  • Dusenge ME, Wallin G, Gårdesten J, Niyonzima F, Adolfsson L, Nsabimana D, Uddling J (2015) Photosynthetic capacity of tropical tree species in relation to leaf nutrients, successional group identity and growth temperature. Oecologia 177:1183–1194

    Article  PubMed  Google Scholar 

  • Easterling DR, Horton B, Jones PD, Peterson TC, Karl TR, Parker DE, Salinger MJ, Razuvayev V et al (1997) Maximum and minimum temperature trends for the globe. Science 277:346–366

    Article  Google Scholar 

  • Ellsworth DS, Crous KY, Lambers H, Cooke J (2015) Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species. Plant Cell Environ 38:1142–1156

    Article  CAS  PubMed  Google Scholar 

  • Esmail S, Oelbermann M (2011) The impact of climate change on the growth of tropical agroforestry tree seedlings. Agrofor Syst 83:235–244

    Article  Google Scholar 

  • Fahey C, Winter K, Slot M, Kitajima K (2016) Influence of arbuscular mycorrhizal fungi on whole-plant respiration and thermal acclimation of tropical tree seedlings. Ecol & Evol. In Press. doi:10.1002/ece3.1952

    Google Scholar 

  • Harley PC, Sharkey TD (1991) An improved model of C3 photosynthesis at high CO2: reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast. Photosyn Res 27:169–178

    CAS  PubMed  Google Scholar 

  • Hietz P, Turner BL, Wanek W, Richter A, Nock CA, Wright SJ (2011) Long-term change in the nitrogen cycle of tropical forests. Science 334:664–666

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka K, Ishikawa K, Borjigidai A, Muller O, Onoda Y (2006) Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. J Exp Bot 57:291–302

    Article  CAS  PubMed  Google Scholar 

  • Holtum JA, Winter K (2014) Limited photosynthetic plasticity in the leaf-succulent CAM plant Agave angustifolia grown at different temperatures. Funct Plant Biol 41:843–849

    Article  CAS  Google Scholar 

  • Huntingford C, Zelazowski P, Galbraith D, Mercado LM, Sitch S, Fisher R, Lomas M, Walker AP et al (2013) Simulated resilience of tropical rainforests to CO2-induced climate change. Nat Geosci 6:268–273

    Article  CAS  Google Scholar 

  • Hüve K, Bichele I, Ivanova H, Keerberg O, Pärnik T, Rasulov B, Tobias M, Niinemets Ü (2012) Temperature responses of dark respiration in relation to leaf sugar concentration. Physiol Plant 144:320–334

    Article  PubMed  CAS  Google Scholar 

  • Issarakraisila M, Considine JA (1994) Effects of temperature on pollen viability in mango cv. ‘Kensington’. Ann Bot-London 73:231–240

    Article  Google Scholar 

  • Jamieson MA, Schwartzberg EG, Raffa KF, Reich PB, Lindroth RL (2015) Experimental climate warming alters aspen and birch phytochemistry and performance traits for an outbreak insect herbivore. Glob Change Biol 21:268–2710

    Article  Google Scholar 

  • Janzen DH (1967) Why mountain passes are higher in the tropics. Am Nat 101:233–249

    Article  Google Scholar 

  • Jaramillo C, Ochoa D, Contreras L, Pagani M, Carvajal-Ortiz H, Pratt LM, Krishnan S, Cardona A et al (2010) Effects of rapid global warming at the Paleocene-Eocene boundary on neotropical vegetation. Science 330:957–961

    Article  CAS  PubMed  Google Scholar 

  • Jardine K, Meyers K, Abrell L, Alves EG, Serrano AMY, Kesselmeier J, Karl T, Guenther A et al (2013) Emissions of putative isoprene oxidation products from mango branches under abiotic stress. J Exp Bot 64:3669–3679

    Article  CAS  PubMed Central  Google Scholar 

  • Jardine K, Chambers JQ, Alves EG, Teixeira A, Garcia S, Holm J, Niguchi N, Abrell L et al (2014) Dynamic balancing of isoprene carbon sources reflects photosynthetic and photorespiratory responses to temperature stress. Plant Physiol 166:2051–2064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jarvis P, Linder S (2000) Constraints to growth of boreal forests. Nature 405:904–905

    Article  CAS  PubMed  Google Scholar 

  • Keller M, Lerdau M (1999) Isoprene emission from tropical forest canopy leaves. Glob Biogeochem Cycles 13:19–29

    Article  CAS  Google Scholar 

  • Kirschbaum MUF, Farquhar GD (1984) Temperature dependence of whole-leaf photosynthesis in Eucalyptus pauciflora Sieb. ex Spreng. Funct Plant Biol 11:519–538

    Google Scholar 

  • Kitajima K, Poorter L (2008) Functional basis for resource niche partitioning by tropical trees. In: Carson WP, Schnitzer SA (eds) Tropical forest community ecology. Blackwell, Oxford, pp 172–188

    Google Scholar 

  • Königer M, Winter K (1993) Growth and photosynthesis of Gossypium hirsutum L. at high photon flux densities: effects of soil temperatures and nocturnal air temperatures. Agronomie 13:423–431

    Article  Google Scholar 

  • Körner C (2009) Responses of humid tropical trees to rising CO2. Annu Rev Ecol Evol Syst 40:61–79

    Article  Google Scholar 

  • Kositsup B, Montpied P, Kasemsap P, Thaler P, Améglio T, Dreyer E (2009) Photosynthetic capacity and temperature responses of photosynthesis of rubber trees (Hevea brasiliensis Müll. Arg.) acclimate to changes in ambient temperatures. Trees 23:357–365

    Article  CAS  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384:557–560

    Article  CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Biol 42:313–349

    Article  CAS  Google Scholar 

  • Krause GH, Winter K, Krause B, Jahns P, García M, Aranda J, Virgo A (2010) High-temperature tolerance of a tropical tree, Ficus insipida: methodological reassessment and climate change considerations. Funct Plant Biol 37:890–900

    Article  Google Scholar 

  • Krause GH, Cheesman AW, Winter K, Krause B, Virgo A (2013) Thermal tolerance, net CO2 exchange and growth of a tropical tree species, Ficus insipida, cultivated at elevated daytime and nighttime temperatures. J Plant Physiol 170:822–827

    Article  CAS  PubMed  Google Scholar 

  • Krause GH, Winter K, Krause B, Virgo A (2015) Light-stimulated heat tolerance in leaves of two neotropical tree species, Ficus insipida and Calophyllum longifolium. Funct Plant Biol 42:42–51

    Article  CAS  Google Scholar 

  • Lewis SL, Lloyd J, Sitch S, Mitchard ET, Laurance WF (2009) Changing ecology of tropical forests: evidence and drivers. Annu Rev Ecol Evol Syst 40:529–549

    Article  Google Scholar 

  • Lin D, Xia J, Wan S (2010) Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytol 188:187–198

    Article  PubMed  Google Scholar 

  • Li XM, Chao DY, Wu Y, Huang X, Chen K, Cui LG, Su L, Ye W-W, et al. (2015). Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat Genet 47:827–833

    Google Scholar 

  • Lloyd J, Farquhar GD (2008) Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Phil Trans R Soc B 363:1811–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loreto F, Fineschi S (2015) Reconciling functions and evolution of isoprene emission in higher plants. New Phytol 206:578–582

    Article  CAS  PubMed  Google Scholar 

  • Loveys BR, Atkinson LJ, Sherlock DJ, Roberts RL, Fitter AH, Atkin OK (2003) Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast-and slow-growing plant species. Glob Change Biol 9:895–910

    Article  Google Scholar 

  • Makino A, Nakano H, Mae T (1994) Effects of growth temperature on the responses of ribulose-1,5-bisphosphate carboxylase, electron-transport components, and sucrose synthesis enzymes to leaf nitrogen in rice, and their relationships to photosynthesis. Plant Physiol 105:1231–1238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malhi Y (2012) The productivity, metabolism and carbon cycle of tropical forest vegetation. J Ecol 100:65–75

    Article  CAS  Google Scholar 

  • Malhi Y, Silman M, Salinas N, Bush M, Meir P, Saatchi S (2010) Introduction: elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Glob Change Biol 16:3171–3175

    Article  Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997

    Article  CAS  PubMed  Google Scholar 

  • Meir P, Grace J, Miranda AC (2001) Leaf respiration in two tropical rainforests: constraints on physiology by phosphorus, nitrogen and temperature. Funct Ecol 15:378–387

    Article  Google Scholar 

  • Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659

    Article  CAS  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P et al (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976

    Article  Google Scholar 

  • Michaletz ST, Cheng D, Kerkhoff AJ, Enquist BJ (2014) Convergence of terrestrial plant production across global climate gradients. Nature 512:39–43

    CAS  PubMed  Google Scholar 

  • Monson RK, Jaeger CH, Adams WW, Driggers EM, Silver GM, Fall R (1992) Relationships among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature. Plant Physiol 98:1175–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monson RK, Jones RT, Rosenstiel TN, Schnitzler J-P (2013) Why only some plants emit isoprene. Plant Cell Environ 36:503–516

    Article  CAS  PubMed  Google Scholar 

  • Mora C, Frazier AG, Longman RJ, Dacks RS, Walton MM, Tong EJ, Sanchez TJ, Kaiser LR et al (2013) The projected timing of climate departure from recent variability. Nature 502:183–187

    Article  CAS  PubMed  Google Scholar 

  • Murakami Y, Tsuyama M, Kobayashi Y, Kodama H, Iba K (2000) Trienoic fatty acids and plant tolerance of high temperature. Science 287:476–479

    Article  CAS  PubMed  Google Scholar 

  • Nepstad DC, Tohver IM, Ray D, Moutinho P, Cardinot G (2007) Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88:2259–2269

    Article  PubMed  Google Scholar 

  • O’Brien MJ, Leuzinger S, Philipson CD, Tay J, Hector A (2014) Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nat Clim Change 4:710–714

    Article  CAS  Google Scholar 

  • Olivares I, Svenning J-C, van Bodegom PM, Balslev H (2015) Effects of warming and drought on the vegetation and plant diversity in the Amazon basin. Bot Rev 81:42–69

    Article  Google Scholar 

  • Osmond CB, Björkman O (1972) Simultaneous measurements of oxygen effects on net photosynthesis and glycolate metabolism in C3 and C4 species of Atriplex. Carnegie Inst Wash Yearb 71:141–148

    Google Scholar 

  • O’Sullivan OS, Weerasinghe KK, Evans JR, Egerton JJ, Tjoelker MG, Atkin OK (2013) High-resolution temperature responses of leaf respiration in snow gum (Eucalyptus pauciflora) reveal high-temperature limits to respiratory function. Plant Cell Environ 36:1268–1284

    Article  PubMed  Google Scholar 

  • Pan Y, Birdsey RA, Phillips OL, Jackson RB (2013) The structure, distribution, and biomass of the world’s forests. Annu Rev Ecol Evol Syst 44:593–622

    Article  Google Scholar 

  • Pau S, Wolkovich EM, Cook BI, Nytch CJ, Regetz J, Zimmerman JK, Wright SJ (2013) Clouds and temperature drive dynamic changes in tropical flower production. Nat Clim Change 3:838–842

    Article  Google Scholar 

  • Patiño S, Herre EA, Tyree MT (1994) Physiological determinants of Ficus fruit temperature and implications for survival of pollinator wasp species: comparative physiology through an energy budget approach. Oecologia 100:13–20

    Article  Google Scholar 

  • Peraudeau S, Lafarge T, Roques S, Quiñones CO, Clement-Vidal A, Ouwerkerk PB, van Rie J, Fabre D et al (2015) Effect of carbohydrates and night temperature on night respiration in rice. J Exp Bot 66:3931–3944

    Google Scholar 

  • Phillips OL, Gentry AH (1994) Increasing turnover through time in tropical forests. Science 263:954–958

    Article  CAS  PubMed  Google Scholar 

  • Phillips OL, Van der Heijden G, Lewis SL, López‐González G, Aragão LE, Lloyd J. Malhi Y, Monteagudo A et al (2010) Drought–mortality relationships for tropical forests. New Phytol 187:631–646

    Google Scholar 

  • Piao S, Sitch S, Ciais P, Friedlingstein P, Peylin P, Wang X, Ahlström A, Anav A et al (2013) Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob Change Biol 19:2117–2132

    Article  Google Scholar 

  • Pilkington SM, Encke B, Krohn N, Hoehne M, Stitt M, Pyl ET (2015) Relationship between starch degradation and carbon demand for maintenance and growth in Arabidopsis thaliana in different irradiance and temperature regimes. Plant Cell Environ 38:157–171

    Article  CAS  PubMed  Google Scholar 

  • Pollastri S, Tsonev T, Loreto F (2014) Isoprene improves photochemical efficiency and enhances heat dissipation in plants at physiological temperatures. J Exp Bot 65:1565–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portis AR Jr (2003) Rubisco activase–Rubisco’s catalytic chaperone. Photosyn Res 75:11–27

    Article  CAS  PubMed  Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH Jr, Sheehy JE, Thomas JMG (2006) Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res 95:398–411

    Article  Google Scholar 

  • Prior LD, Bowman DM (2014) Big eucalypts grow more slowly in a warm climate: evidence of an interaction between tree size and temperature. Glob Change Biol 20:2793–2799

    Article  Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44:81–99

    Article  Google Scholar 

  • Randerson JT (2013) Climate science: global warming and tropical carbon. Nature 494:319–320

    Article  CAS  PubMed  Google Scholar 

  • Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086–1106

    Article  CAS  PubMed  Google Scholar 

  • Sage TL, Bagha S, Lundsgaard-Nielsen V, Branch HA, Sultmanis S, Sage R (2015) The effect of high temperature stress on male and female reproduction in plants. Field Crop Res 182:30–42

    Google Scholar 

  • Salinas N, Malhi Y, Meir P, Silman M, Roman Cuesta R, Huaman J, Salinas D, Huaman V et al (2011) The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytol 189:967–977

    Article  CAS  PubMed  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiol 134:1460–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki K, Saito T, Lämsä M, Oksman-Caldentey KM, Suzuki M, Ohyama K, Muranaka T, Ohara K, Yazaki K (2007) Plants utilize isoprene emission as a thermotolerance mechanism. Plant Cell Physiol 48:1254–1262

    Article  CAS  PubMed  Google Scholar 

  • Saugier B, Roy J, Mooney HA (2001) Estimations of global terrestrial productivity: converging toward a single number? In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic Press, New York, pp 543–557

    Chapter  Google Scholar 

  • Sharkey TD, Monson RK (2014) The future of isoprene emission from leaves, canopies and landscapes. Plant Cell Environ 37:1727–1740

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD, Yeh S (2001) Isoprene emission from plants. Annu Rev Plant Biol 52:407–436

    Article  CAS  Google Scholar 

  • Slot M, Poorter L (2007) Diversity of tropical tree seedling responses to drought. Biotropica 39:683–690

    Article  Google Scholar 

  • Slot M, Wright SJ, Kitajima K (2013) Foliar respiration and its temperature sensitivity in trees and lianas: in situ measurements in the upper canopy of a tropical forest. Tree Physiol 33:505–515

    Article  PubMed  Google Scholar 

  • Slot M, Rey-Sánchez C, Gerber S, Lichstein JW, Winter K, Kitajima K (2014a) Thermal acclimation of leaf respiration of tropical trees and lianas: response to experimental canopy warming, and consequences for tropical forest carbon balance. Glob Change Biol 20:2915–2926

    Article  Google Scholar 

  • Slot M, Rey-Sánchez C, Winter K, Kitajima K (2014b) Trait-based scaling of temperature-dependent foliar respiration in a species-rich tropical forest canopy. Funct Ecol 28:1074–1086

    Article  Google Scholar 

  • Slot M, Kitajima K (2015) General patterns of thermal acclimation of leaf respiration across biomes and plant types. Oecologia 177:885–900

    CAS  Google Scholar 

  • Slot M, Garcia MN, Winter K (2016) Temperature response of CO2 exchange in three tropical tree species. Funct Plant Biol. doi:10.1071/FP15320

    Google Scholar 

  • Smith NG, Dukes JS (2013) Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob Change Biol 19:45–63

    Article  Google Scholar 

  • Tambunan P, Baba S, Kuniyoshi A, Iwasaki H, Nakamura T, Yamasaki H, Oku H (2006) Isoprene emission from tropical trees in Okinawa Island, Japan. Chemosphere 65:2138–2144

    Article  CAS  PubMed  Google Scholar 

  • Tingey DT, Manning M, Grothaus LC, Burns WF (1979) The influence of light and temperature on isoprene emission rates from live oak. Physiol Plant 47:112–118

    Article  CAS  Google Scholar 

  • Vanderwel MC, Slot M, Lichstein JW, Reich PB, Kattge J, Atkin OK, Bloomfield K, Tjoelker M, Kitajima K (2015) Global convergence in projected leaf respiration from estimates of thermal acclimation across time and space. New Phytol 207:1026–1037

    Article  PubMed  Google Scholar 

  • Vargas GG, Cordero SR (2013) Photosynthetic responses to temperature of two tropical rainforest tree species from Costa Rica. Trees 27:1261–1270

    Article  CAS  Google Scholar 

  • Velikova V, Várkonyi Z, Szabó M, Maslenkova L, Nogues I, Kovács L, Peeva V, Busheva M et al (2011) Increased thermostability of thylakoid membranes in isoprene-emitting leaves probed with three biophysical techniques. Plant Physiol 157:905–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velikova V, Sharkey T, Loreto F (2012) Stabilization of thylakoid membranes in isoprene-emitting plants reduces formation of reactive oxygen species. Plant Signal Behav 7:139–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Vlam M, Baker PJ, Bunyavejchewin S, Zuidema PA (2014) Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees. Oecologia 174:1449–1461

    Article  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Walck JL, Hidayati SN, Dixon KW, Thompson K, Poschlod P (2011) Climate change and plant regeneration from seed. Glob Change Biol 17:2145–2161

    Article  Google Scholar 

  • Wang D, Li XF, Zhou ZJ, Feng XP, Yang WJ, Jiang DA (2010) Two Rubisco activase isoforms may play different roles in photosynthetic heat acclimation in the rice plant. Physiol Plant 139:55–67

    Article  CAS  PubMed  Google Scholar 

  • Way DA, Oren R (2010) Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol 30:669–688

    Article  PubMed  Google Scholar 

  • Way DA, Yamori W (2014) Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynth Res 119:89–100

    Article  CAS  PubMed  Google Scholar 

  • Wright SJ, Muller-Landau HC, Schipper J (2009) The future of tropical species on a warmer planet. Conserv Biol 23:1418–1426

    Article  PubMed  Google Scholar 

  • Zhang Y, Xu M, Chen H, Adams J (2009) Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate. Glob Ecol Biogeogr 18:280–290

    Article  Google Scholar 

  • Zhang Y, Yu G, Yang J, Wimberly MC, Zhang X, Tao J, Jiang Y, Zhu J (2014) Climate-driven global changes in carbon use efficiency. Glob Ecol Biogeogr 23:144–155

    Article  Google Scholar 

  • Zotz G, Harris G, Königer M, Winter K (1995) High rates of photosynthesis in a tropical pioneer tree, Ficus insipida. Flora 190:265–272

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Smithsonian Tropical Research Institute. M.S. was recipient of a CTFS-Forest-GEO postdoctoral fellowship. Milton Garcia assisted with in situ canopy measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martijn Slot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Slot, M., Winter, K. (2016). The Effects of Rising Temperature on the Ecophysiology of Tropical Forest Trees. In: Goldstein, G., Santiago, L. (eds) Tropical Tree Physiology. Tree Physiology, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-27422-5_18

Download citation

Publish with us

Policies and ethics