Skip to main content

Characterization and Performance of Stress- and Damage-Sensing Smart Coatings

  • Chapter
  • First Online:
Industrial Applications for Intelligent Polymers and Coatings
  • 3155 Accesses

Abstract

Mechanical enhancement of polymers with high modulus reinforcements, such as ceramic particles, has facilitated the development of structural composites with applications in the aerospace industry where strength to efficiency ratio is of significance. These modifiers have untapped multifunctional sensing capabilities that can be enabled by deploying these particles innovatively in polymer composites and as coatings. This chapter highlights some of the recent and novel findings in the development of piezospectroscopic particle-reinforced polymers as smart stress- and damage-sensing coatings. The sections in this chapter describe the piezospectroscopic effect for alumina-based particulate composites, show the derivation of multiscale mechanics to quantify substrate stresses with piezospectroscopy, and demonstrate their performance in stress and damage sensing applied to a composite material. The noninvasive instrumentation is outlined and discussed for current and future applications in the industry ranging from manufacturing quality control to in-service damage inspections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaplyanskii AA, Przhevuskii AK (1962) Sov Phys Dokaldy 7(1):313

    Google Scholar 

  2. Frank O, Tsoukleri G, Riaz I, Papagelis K, Parthenios J, Ferrari AC, Geim AK, Novoselov KS, Galiotis C (2011) Nat Commun 2(255):1

    Google Scholar 

  3. He J, Clarke DR (1997) J Am Ceram Soc 80:69–78

    Article  Google Scholar 

  4. Stevenson A, Jones A, Raghavan S (2011) Nano Lett 11:3274

    Article  Google Scholar 

  5. Barnett JD, Block S, Piermarini GJ (1973) Rev Sci Instrum 44:1

    Article  Google Scholar 

  6. Grabner L (1978) J Appl Phys 49(5):580

    Article  Google Scholar 

  7. Christensen R, Lipkin D, Clarke D (1996) Appl Phys Lett 69:3754

    Article  Google Scholar 

  8. Ma Q, Clarke DR (1993) J Am Ceram Soc 76(6):1433

    Article  Google Scholar 

  9. Porporati AA, Miyatake T, Schilcher K, Zhu W, Pezzotti G (2011) J Eur Ceram Soc 31:2031

    Article  Google Scholar 

  10. Liu H, Wang Q, Wu J, Zhang C, Wang J, Tang Y (2008) Seventh international conference on photonics and imaging in biology and medicine

    Google Scholar 

  11. Freihofer G, Schulzgen A, Raghavan S (2014) Acta Mater 81:211

    Article  Google Scholar 

  12. Munisso MC, Yano S, Zhu W, Pezzotti G (2008) Continuum Mech Thermodyn 20:123

    Article  Google Scholar 

  13. Pezzotti G (1999) J Raman Spectrosc 30:867

    Article  Google Scholar 

  14. Raghavan S, Imbrie PK (2009) Am Ceram Soc 11(11):1

    Google Scholar 

  15. Raghavan S, Imbrie P (2008) Proceedings of the materials science and technology 2008 conference, Pittsburgh, PA

    Google Scholar 

  16. Lipkin D, Clarke D (1996) Oxid Met 45:267

    Article  Google Scholar 

  17. Burris DL, Sawyer WG (2006) Wear 260(7):915

    Article  Google Scholar 

  18. Withey PA, Vemuru VSM, Bachilo SM, Nagarajaiah S, Weisman RB (2012) Nano Lett 12(7):34970

    Article  Google Scholar 

  19. Lee MY, Ahn SK, Montgomery ST (2006) Statistical analysis of compositional factors affecting the compressive strength of alumina-loaded epoxy. Technical report, SANDIA National laboratories

    Google Scholar 

  20. Setchell RE, Anderson MU, Montgomery ST (2007) J Appl Phys 101:083527

    Article  Google Scholar 

  21. Millett JCF, Deas D, Bourne NK, Montgomery ST (2007) J Appl Phys 102:063518

    Article  Google Scholar 

  22. Song B, Chen W, Montgomery S, Forrestal M (2009) J Compos Mater 43:1519

    Article  Google Scholar 

  23. Siegel R, Chang S, Ash B, Stone J, Ajayan P, Doremus R, Schadler L (2001) Scripta Mater 44:2061–2064

    Article  Google Scholar 

  24. Derby B (1998) Curr Opinion Solid State Mater Sci 3:490

    Article  Google Scholar 

  25. Suraj RPS, Zunjarrao C (2006) Compos Sci Technol 66:2296–2305

    Article  Google Scholar 

  26. Vaia RA, Maguire JF (2007) Chem Mater 19:2736–2751

    Article  Google Scholar 

  27. Millett JCF, Bourne NK, Deas D (2005) J Phys D Appl Phys 38:930

    Article  Google Scholar 

  28. Marur P, Batra R, Garcia G, Loos A (2004) J Mater Sci 39(4):1437

    Article  Google Scholar 

  29. Ji QL, Zhang MQ, Rong MZ, Wetzel B, Friedrich K (2004) J Mater Sci 39(21):6487

    Article  Google Scholar 

  30. Sawyer WG, Freudenberg KD, Bhimaraj P, Schadler LS (2003) Wear 254:573

    Article  Google Scholar 

  31. Shao X, Xue Q, Liu W, Teng M, Liu H, Tao X (2005) J Appl Polym Sci 95(5):993

    Article  Google Scholar 

  32. Chen B (2004) Encyclopedia of nanoscience and nanotechnology. Dekker, New York

    Google Scholar 

  33. Zunjarrao SC, Singh RP (2006) Compos Sci Technol 66(13):2296

    Article  Google Scholar 

  34. Cho J, Joshi M, Sun C (2006) Compos Sci Technol 66:1941

    Article  Google Scholar 

  35. Douce J, Boilot JP, Biteau J, Scodellaro L, Jimenez A (2004) Thin Solid Films 466(1):114

    Article  Google Scholar 

  36. Lim S, Zeng K, He C (2010) Mater Sci Eng A 527(21):5670

    Article  Google Scholar 

  37. Stevenson A, Jones A, Raghavan S (2011) Polymer 43:923

    Article  Google Scholar 

  38. Beyerlein IJ, Amer MS, Schadler LS, Phoenix SL (2011) Sci Eng Compos Mater 7(1–2):151

    Google Scholar 

  39. Ravichandran G, Subhash G (1995) lnt J Solids Struct 32:2627

    Article  Google Scholar 

  40. Lankford J (1977) J Mater Sci 12:791

    Article  Google Scholar 

  41. Lankford J, Predebon W, Staehler J, Subhash G, Pletka B, Anderson C (1998) Mech Mater 29:205

    Article  Google Scholar 

  42. Eshelby R (1957) Proc R Soc Lond A241:376

    Article  Google Scholar 

  43. Mori T, Tanaka K (1973) Acta Metall 21(5):571

    Article  Google Scholar 

  44. Freihofer G (2014) Nanocomposite coating mechanics via piezospectroscopy. PhD thesis, University of Central Florida

    Google Scholar 

  45. Hallett SR, Green BG, Jiang WG, Cheung KH, Wisnom MR (2009) Int J Fract 158:169

    Article  Google Scholar 

  46. Freihofer G, Dustin J, Tat H, Schlzgen A, Raghavan S (2015) AIP Adv 5:037139

    Article  Google Scholar 

  47. Freihofer G, Schülzgen A, Raghavan S (2015) Damage mapping with a degrading elastic modulus using piezospectroscopic coatings. NDT E Int 75:65–71

    Article  Google Scholar 

  48. Freihofer G, Bullock A, Vaughn F, Tat H, Dustin J, Schülzgen A, Raghavan S (2014) Proceeding of the society for the advancement of material and process engineering 2014 conference, Seattle, WA

    Google Scholar 

  49. Camanho PP, Maimí P, Davila C (2007) Compos Sci Technol 67(13):2715

    Article  Google Scholar 

  50. Vinogradov V, Hashin Z (2005) Int J Solids Struct 42:365

    Article  Google Scholar 

  51. Mollenhauer D, Iarve E, Kim R, Langley B (2006) Compos A Appl Sci Manuf 37:282

    Article  Google Scholar 

  52. Hanhan I, Durnberg E, Freihofer G, Akin P, Raghavan S (2014) J Instrum 9, P11005

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. CMMI 1130837.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seetha Raghavan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Freihofer, G., Raghavan, S. (2016). Characterization and Performance of Stress- and Damage-Sensing Smart Coatings. In: Hosseini, M., Makhlouf, A. (eds) Industrial Applications for Intelligent Polymers and Coatings. Springer, Cham. https://doi.org/10.1007/978-3-319-26893-4_4

Download citation

Publish with us

Policies and ethics