Skip to main content
Log in

Spatially resolved piezo-spectroscopic characterizations for the validation of theoretical models of notch-root stress fields in ceramic materials

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The main aim of this work is a precise experimental assessment of the local stress fields developed at the notch-root in a ruby crystal, selected as a paradigm brittle material, by means of photo- and electron-stimulated luminescence techniques. Our approach takes advantage of the piezo-spectroscopic (PS) effect, which consists of a spectral shift of the luminescence emitted by the material due to lattice strain. Highly spatially resolved stress maps were extensively collected at the notch-root and spectral shifts monitored for the chromophoric (R-lines) fluorescence observed in a single-crystalline ruby sample. Experimental data were analyzed and compared to the theoretical solutions of notch-root stress fields given by Filippi and by Creager-Paris. Due to its inherent simplifications, the Creager–Paris solution was found leading to underestimation of the maximum stress value piled up in the material, while the Filippi’s solution represented a more suitable approximation for the stress field developed at the notch-root.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neuber H. (1961). Theory of stress concentration for shear strained prismatical bodies with arbitrary nonlinear stress-strain law. J. Appl. Mech. 28: 544–550

    MATH  MathSciNet  Google Scholar 

  2. Glinka G. and Molski K. (1981). A method of elastic-plastic stress and strain calculation at a notch root. Mater. Sci. Eng. 50: 93–100

    Article  Google Scholar 

  3. Topper T.H., Wetzel R.M. and Morrow J. (1969). Neuber’s rule applied to fatigue of notched specimens. J. Mater. 4: 200–209

    Google Scholar 

  4. Gemma A.E. (1985). An approximate elasto-plastic analysis of the effect of plain strain at the surface of a notch. Eng. Fract. Mech. 21: 495–501

    Article  Google Scholar 

  5. Hoffman M. and Seeger T. (1985). A generalized method for estimating multiaxial elastic–plastic notch stresses and strains, parts 1 and 2. J. Eng. Mater. Tech. 107: 250–260

    Article  Google Scholar 

  6. Glinka G. (1985). Calculation of inelastic notch-tip strain-stress histories under cyclic loadings. Eng. Fract. Mech. 22: 839–854

    Article  Google Scholar 

  7. Moftahar A., Buczynski A. and Glinka G. (1995). Calculation of elasto-plastic strains and stresses in notches multiaxial loading. Int. J. Fract. 70: 357–373

    Article  Google Scholar 

  8. Singh M.N.K., Glinka G. and Dubey R.N. (1996). Elastic-plastic stress-strain calculation in notched bodies subjected to non-proportional loading. Int. J. Fract. 76: 39–60

    Google Scholar 

  9. Creager M. and Paris P.C. (1967). Elastic field equations for blunt cracks with reference to stress-corrosion cracking. Int. J. Fract. Mech. 3: 247–252

    Google Scholar 

  10. Mao H.K., Bell M.P., Shaner J.W. and Steinberg D.J. (1978). Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R 1 fluorescence pressure gauge from 0.06 to 1 Mbar. J. Appl. Phys. 49: 3276–3283

    Article  Google Scholar 

  11. Xu J., Mao H.K. and Bell P.M. (1986). High pressure ruby and diamond fluorescence: observations at 0.21 to 0.55 terapascal. Science 232: 1404–1406

    Article  Google Scholar 

  12. Funamori N. and Jeanloz R. (1997). High-pressure transformation of Al 2 O 3. Science 278: 1109–1111

    Article  Google Scholar 

  13. Urtiew P.A. (1974). Effect of shock loading on transparency of sapphire crystals. J. Appl. Phys. 45: 3490–3493

    Article  Google Scholar 

  14. Nellis W.J. and Yoo C.S. (1990). Issues concerning shock temperature measurements of iron and other metals. J. Geophys. Res. 95: 21749–21752

    Article  Google Scholar 

  15. McQueen R.G. and Isaak D.G. (1990). Characterizing windows for shock wave radiation studies. J. Geophys. Res. 95: 21753–21765

    Article  Google Scholar 

  16. Grabner L. (1978). Spectroscopic technique for the measurement of residual stress in sintered Al 2 O 3. J. Appl. Phys. 49: 580

    Article  Google Scholar 

  17. Lipkin D.M. and Clarke D.R. (1996). Measurements of the stress in oxide scales formed by oxidation of alumina-forming alloys. Oxid. Met. 45: 267–280

    Article  Google Scholar 

  18. Ma Q. and Clarke D.R. (1994). Piezospectroscopic determination of residual stresses in polycrystalline alumina. J. Am. Ceram. Soc. 77: 298–302

    Article  Google Scholar 

  19. He J. and Clarke D.R. (1995). Determination of the piezospectroscopic coefficients for chromium-doped sapphire. J. Am. Ceram. Soc. 78: 1347–1353

    Article  Google Scholar 

  20. Molis S.E. and Clarke D.R. (1990). Measurement of stresses using fluorescence in an optical microprobe: stresses around indentations in a chromium-doped sapphire. J. Am. Ceram. Soc. 73: 3189–3194

    Article  Google Scholar 

  21. Ma Q. and Clarke D.R. (1993). Stress measurement in single-crystal and polycrystalline ceramics using their optical fluorescence. J. Am. Ceram. Soc. 76: 1433–1440

    Article  Google Scholar 

  22. Ma Q., Liang L.C., Clarke D.R. and Hutchinson J.W. (1994). Mechanics of the push-out process from in situ measurement of the stress distribution along embedded sapphire fibers. Acta Metall. Mater. 42: 3299–3308

    Article  Google Scholar 

  23. Sergo V., Clarke D.R. and Pompe W. (1995). Deformation bands in ceria-stabilized tetragonal zirconia/alumina: I measurement of internal stresses. J. Am. Ceram. Soc. 78: 633–640

    Article  Google Scholar 

  24. Vos W.L. and Schouten J.A. (1991). On the temperature correction to the ruby pressure scale. J. Appl. Phys. 69: 6744–6746

    Article  Google Scholar 

  25. Gallas M.R., Chu Y.C. and Piermarini G.J. (1995). Calibration of the raman effect in α-Al 2 O 3 ceramic for residual stress measurements. J. Mater. Res. 10: 2817–2822

    Article  Google Scholar 

  26. Sergo, V.: Measurements of residual stresses. In: Meriani, S., Sergo, V. (eds.) Proceedings of FOURTH EUROCERAMICS. Basic Science—Optimization of properties and Performances by Improved Design and Microstructure Control, vol. 3. pp. 47–54 (1995)

  27. Gomez F.J. and Elices M. (2004). Criterion for blunted V-notched samples. Int. J. Fract. 127: 239–264

    Article  Google Scholar 

  28. Munisso M.C., Zhu W. and Pezzotti G. (2007). Stress dependence of sapphire cathodoluminescence from optically active oxygen defects as a function of crystallographic orientation. J. Phys. Chem. A 11: 3526–3533

    Article  Google Scholar 

  29. Filippi S., Lazzarin P. and Tovo R. (2002). Developments of some explicit formulas useful to describe elastic stress fields ahead of notches in plates. Int. J. Solids Struct. 39: 4543–4565

    Article  MATH  Google Scholar 

  30. Evans, A.G.: Fracture mechanics determinations. In: Bradt, R.C., Hasselman, D.P.H., Lange, F.F. (eds.) Fracture Mechanics of Ceramics. Concepts, Flaws, and Fractography, vol.1, pp. 17–47. Plenum Press, New York (1973)

  31. Zhu W., Wan K. and Pezzotti G. (2006). Methods of piezo-spectroscopic calibration of thin-film materials: I Ball-on-ring biaxial flexure. Meas. Sci. Technol. 17: 191–198

    Article  Google Scholar 

  32. Zhu W., Porporati A.A., Matsutani A., Lama N. and Pezzotti G. (2007). Spatially resolved crack-tip stress analysis in semiconductor by cathodoluminescence piezo-spectroscopy. J. Appl. Phys. 101: 103531–103543

    Article  Google Scholar 

  33. Zhu W. and Pezzotti G. (2005). Spatially resolved stress analysis in Al 2 O 3/3Y-TZP multilayered composite using confocal fluorescence spectroscopy. Appl. Spectr. 59: 1042–1048

    Article  Google Scholar 

  34. Pezzotti G., Zhu W., Leto A., Matsutani A. and Porporati A.A. (2006). Electron probe response function and piezo-spectroscopic behavior of semiconductor materials in presence of highly graded stress fields. J. Phys. D 39: 4975–4986

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Pezzotti.

Additional information

Communicated by W. H. Müller

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munisso, M.C., Yano, S., Zhu, W. et al. Spatially resolved piezo-spectroscopic characterizations for the validation of theoretical models of notch-root stress fields in ceramic materials. Continuum Mech. Thermodyn. 20, 123–132 (2008). https://doi.org/10.1007/s00161-008-0074-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-008-0074-0

Keywords

Navigation