Skip to main content

Impact of Fertilizers and Pesticides on Soil Microflora in Agriculture

  • Chapter
  • First Online:
Sustainable Agriculture Reviews

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 19))

Abstract

Soil health management is crucial for ensuring sustainable agricultural productions and maintenance of biodiversity. Fertilizers and pesticides are a necessary evil for industrial agriculture. Though, they continue to be critically important tools for global food security, their undesirable effects cannot be overlooked particularly when sustainable agriculture is the universal focus. Apart from a range of widely discussed and well-known adverse effects of chemical fertilizers and pesticides on environment and human health they have also been held responsible for strongly influencing the microbial properties of soil.

Soil microflora is a key component of agricultural ecosystems that not only plays a significant role in the basic soil processes but is also actively involved in enhancing soil fertility and crop productivity. Microbial activity in soil has a strong impact on its physical properties and at the same time it is also instrumental in pursuing eco-friendly practices like bioremediation and biocontrol of phytopathogens in agricultural soils. Soil microorganisms have thus been accepted as the bioindicators of soil health and activity.

Fertilizers and pesticides tend to have long persistence in the soil so they are bound to affect the soil micoflora thereby disturbing soil health. Amendment of soil with fertilizers and pesticides strongly influences a range of soil functions and properties like rhizodeposition, nutrient content of bulk and rhizospheric soil, soil organic carbon, pH, moisture, activities of soil enzymes and many others. All these factors indirectly lead to a shift in the population dynamics of soil microflora along with the direct effects of fertilizers and pesticides such as toxicity and altered substrate availability profile of the soil. Though such effects are variable depending on many biotic and abiotic factors ranging from soil characteristics to crop variety, still it has been well established that long term and excessive chemical inputs in soil undoubtedly influence the soil microbial communities in terms of their structural and functional diversity as well as the dominant soil species.

Here, we review the impact of long term usage of fertilizers and pesticides on the soil microflora of cultivated soils in relation to soil health and fertility, their persistence level in soil, factors affecting their toxicity and pesticide degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACC:

1- aminocyclopropane-1-carboxylic acid

ARDRA:

Amplified Ribosomal DNA Restriction Analysis

AWCD:

Average Well Color Development

BOO:

Bromoxynil Octanoate

CLCP:

Community Level Catabolic Profiles

CLPP:

Community Level Physiological Profiles

CRP:

Catabolic Response Profiles

DDT:

p, p-dichlorodiphenyltrichloroethane

DGGE:

Denaturing Gradient Gel Electrophoresis

DHA:

Dehydrogenase Activity

EPA:

The United States Environmental Protection Agency

FAME:

Fatty Acid Methyl Ester Analysis

FAO:

The Food and Agriculture Organization of the United Nations

MBC:

Microbial Biomass Carbon

MDS:

Minimum Data Set

NPK:

Nitrogen, Phosphorus and Potassium

PBT:

Persistent Bioaccumulative and Toxic

PCR:

Polymerase Chain Reaction

PLFA:

Phospholoipid Fatty Acid Analysis

SOC:

Soil Organic Carbon

WHO:

World Health Organization

References

  • Abo-Amer AA (2012) Characterization of a strain of Pseudomonas putida isolated from agricultural soil that degrades cadusafos (an organophosphorus pesticide). World J Microbiol Biotechnol 28:805–814

    Article  CAS  PubMed  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 168:173–181

    Article  CAS  Google Scholar 

  • Anonymous (2000) Pesticide types and formulations. In: Arizona agricultural pesticide applicator training manual. College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona, pp III1–III21. http://ag.arizona.edu/pubs/insects/az1149/

  • Araujo ASF, Monteiro RTR, Abarkeli RB (2003) Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere 52:799–804. doi:10.1016/S0045-6535(03)00266-2

    Article  CAS  PubMed  Google Scholar 

  • Avidano L, Gamalero E, Cossa GP, Carraro E (2005) Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Appl Soil Ecol 30:21–33

    Article  Google Scholar 

  • Balezentiene L, Klimas E (2009) Effect of organic and mineral fertilizers and land management on soil enzyme activities. Agron Res 7(Special issue I):191–197

    Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz K, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1- aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    Article  CAS  PubMed  Google Scholar 

  • Berg G (2000) Diversity of antifungal and plant-associated Serratia plymuthica strains. J Appl Microbiol 88:952–960

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya P, Nayak AK, Mohanty S, Tripathi R, Shahid M, Kumar A, Raja R, Panda BB, Roy KS, Neogi S, Dash PK, Shukla AK, Rao KS (2013) Greenhouse gas emission in relation to labile soil C, N pools and functional microbial diversity as influenced by 39 years long-term fertilizer management in tropical rice. Soil Tillage Res 129:93–105

    Article  Google Scholar 

  • BÅ‚aszak M, PeÅ‚ech R, Graczyk P (2011) Screening of microorganisms for biodegradation of simazine pollution (Obsolete Pesticide Azotop 50 WP). Water Air Soil Pollut 220:373–385

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bliev UK, Martynov AN, Zarkov AV, Maximova LI (1985) Effect of verpa preparation on the fertility of soddy podzolic soil. Agrochimica 2:97–100

    Google Scholar 

  • Bohme L, Langer U, Bohme F (2005) Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agric Ecosyst Environ 109:141–152

    Article  Google Scholar 

  • Bollag JM, Liu SY (1990) A biological transformation processes of pesticides. In: Cheng HH (ed) Pesticide in the environment. Soil Science Society of America, Madison, pp 169–211

    Google Scholar 

  • Bollag JM, Mertz T, Otjen L (1994) Role of microorganisms in soil bioremediation. In: Anderson TA, Coats JR (eds) Bioremediation through rhizosphere technology, vol 563, ACS symposium series. American Chemical Society, Washington, pp 2–10. doi:10.1021/bk-1994-0563.ch001

    Chapter  Google Scholar 

  • Borneman J, Skroch PW, O’Sullivan KM, Paulus JA, Rumjanek NG, Jansen JL, Nienhuis J, Triplett EW (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol 62:1935–1943

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brookes P (2001) The soil microbial biomass: concept, measurement and applications in soil ecosystem research. Microbes Environ 16:131–140

    Article  Google Scholar 

  • Bunemann EK, McNeill A (2004) Impact of fertilizers on soil biota. In: Lines R (ed) Proceedings current research into soil biology in agriculture. Kelly, Tamworth, pp 64–71

    Google Scholar 

  • Cai T, Chen L, Xu J, Cai S (2011) Degradation of bromoxynil octanoate by strain Acinetobacter sp. Curr Microbiol 63:218–225

    Article  CAS  PubMed  Google Scholar 

  • Canet R, Birrnstingl JG, Malcom DG, Real-Lopez JM, Beck AJ (2001) Biodegradation of polycyclic aromatic hydrocarbons (PAHS) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil. Bioresour Technol 76:113–117

    Article  CAS  PubMed  Google Scholar 

  • Casida LE, Klein DA, Santoro T (1964) Soil dehydrogenase activity. Soil Sci 98:371–376

    Article  CAS  Google Scholar 

  • Chauhan PK, Singh V, Dhatwalia VK, Abhishek B (2011) Physico-chemical and microbial activity of soil under conventional and organic agricultural systems. J Chem Pharm Res 3:799–804

    CAS  Google Scholar 

  • Chen SK, Edwards CA, Subler S (2001) Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations. Soil Biol Biochem 33:1971–1980

    Article  CAS  Google Scholar 

  • Chowdhury A, Pradhan S, Saha M, Sanyal N (2008) Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian J Microbiol 48:114–127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cruz AF, Hamel C, Hanson K, Selles F, Zentner RP (2009) Thirty-seven years of soil nitrogen and phosphorus fertility management shapes the structure and function of the soil microbial community in a brown chernozem. Plant Soil 315:173–184

    Article  CAS  Google Scholar 

  • Cycon M, Piotrowska-Seget Z (2007) Effect of selected pesticides on soil microflora involved in organic matter and nitrogen transformations: pot experiment. Pol J Ecol 55:207–220

    CAS  Google Scholar 

  • Das AC, Mukherjee D (2000) Soil application of insecticides influences microorganisms and plant nutrients. Appl Soil Ecol 14:55–62

    Article  Google Scholar 

  • de Vries FT, Hoffland E, van Eekeren N, Brussaard L, Bloem J (2006) Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol Biochem 38:2092–2103

    Article  CAS  Google Scholar 

  • Doran JW, Parkin TB (1994) Defining and assessing soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for a sustainable environment, vol 35, SSSA special publication. SSSA, Wisconsin, pp 3–23

    Google Scholar 

  • Doran JW, Safley M (1997) Defining and assessing soil health and sustainable productivity. In: Pankhurst C, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Wallingford, pp 1–28

    Google Scholar 

  • Doran JW, Sarrantonio M, Liebig MA (1996) Soil health and sustainability. Adv Agron 56:1–54

    Article  CAS  Google Scholar 

  • Duah-Yentumi S, Johnson DB (1986) Changes in soil microflora in response to repeated applications of some pesticides. Soil Biol Biochem 18:629–635

    Article  CAS  Google Scholar 

  • Edwards CA (1975) Factors that affect the persistence of pesticides in plants and soils. Pure Appl Chem 42:39–56

    Article  CAS  Google Scholar 

  • Eisenhauer N, Klier M, Partsch S, Sabais ACW, Scherber C, Weisser WW, Scheu S (2009) No interactive effects of pesticides and plant diversity on soil microbial biomass and respiration. Appl Soil Ecol 42:31–36

    Article  Google Scholar 

  • Engelen B, Meinken K, Wintzingerode FV, Heuer H, Malkomes HP, Backhaus H (1998) Monitoring impact of a pesticide treatment on bacterial soil communities by metabolic and genetic fingerprinting in addition to conventional testing procedures. Appl Environ Microbiol 64:2814–2821

    PubMed Central  CAS  PubMed  Google Scholar 

  • EPA U.S. (2000) Persistent bioaccumulative and toxic (PBT) chemical program. http://www.epa.gov/pbt/pubs/pestaction.htm#Introduction

  • EPA U.S. (2012a) Types of pesticides. http://www.epa.gov/pesticides/about/types.htm

  • EPA U.S. (2012b) Half-life. http://www.epa.gov/agriculture/ag101/pesthalflife.html

  • Fan J, Yang G, Zhao H, Shi G, Geng Y, Hou T, Tao K (2012) Isolation, identification and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil. J Gen Appl Microbiol 58:263–271

    Article  CAS  PubMed  Google Scholar 

  • FAO (2012) FAOSTAT Statistical databases and data-sets of the Food and Agriculture Organization of the United Nations. http://faostat.fao.org/default.aspx

  • Fields ML, Hemphill DD (1996) Effect of zytron and its degradation products on soil microorganisms. Appl Microbiol 14:724–731

    Google Scholar 

  • Gans J, Wolinsky M et al (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Glanz JT (1995) Saving our soil: solutions for sustaining earth’s vital resource. Johnson Books, Boulder

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth promotion by free living bacterial. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glover-Amengor M, Tetteh FM (2008) Effect of pesticide application rate on yield of vegetables and soil microbial communities. West Afr J App Ecol 12:1

    Google Scholar 

  • Griffiths RI, Bailey MJ, McNamara NP, Whiteley AS (2005) The functions and components of the Sourhope soil microbiota. Appl Soil Ecol 33:114–126

    Article  Google Scholar 

  • Handelsman J, Tiedje J (2007) The new science of metagenomics. Committee on metagenomics: challenges and functional applications, National Research Council (US) of National Academy of Sciences. National Academies Press (US), Washington (DC)

    Google Scholar 

  • Harris RF, Bezdicek DF (1994) Descriptive aspects of soil quality health. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for a sustainable environment, vol 35, SSSA special publication. SSSA, Wisconsin, pp 23–36

    Google Scholar 

  • Hodges SC (1995) Soil fertility basics. North Carolina State University, Soil science extension, pp 2–75

    Google Scholar 

  • Hoorman JJ, Islam R (2010) Understanding soil microbes and nutrient recycling. Fact sheet agriculture and natural resources. Ohio State University Extension, Columbus, OH

    Google Scholar 

  • Imfeld G, Vuilleumier S (2012) Measuring the effects of synthetic pesticides on bacterial communities in soil: a review. Eur J Soil Biol 49:1–4

    Article  CAS  Google Scholar 

  • Ishaq A, Khan JA, Ahmed N (1994) Biodegradation of a pesticide alpha-cyano, 3 phenoxybenzyl-2,2-dimethyl-3 (2,2-dichlorophenyl) by Pseudomonas aeuroginosa. Pak J Agric Res 15:242–250

    CAS  Google Scholar 

  • Islam MR, Trivedi P, Palaniappan P, Reddy MS, Sa T (2009) Evaluating the effect of fertilizer application on soil microbial community structure in rice based cropping system using fatty acid methyl esters (FAME) analysis. World J Microbiol Biotechnol 25:1115–1117

    Article  CAS  Google Scholar 

  • Jana TK, Debnath NC, Basak RK (1998) Effect of insecticides on the composition of organic matter, ammonification and nitrification in a Fluventic ustochrept. J Int Soc Soil Sci 46:133–134

    CAS  Google Scholar 

  • Jumpponen A, Jones KL, Blair J (2010) Vertical distribution of fungal communities in tallgrass prairie soil. Mycologia 102:1027–1041. doi:10.3852/09-316

    Article  PubMed  Google Scholar 

  • Kalyanasundaram D, Kavitha S (2012) Effect of butachlor on the microbial population of direct sown rice. World Acad Sci Eng Technol 69:853–855

    Google Scholar 

  • Kang GS, Beri V, Rupela OP, Sidhu BS (2005) A new index to assess soil quality and sustainability of wheat-based cropping systems. Biol Fertil Soils 41:389–398

    Article  Google Scholar 

  • Klug MJ, Tiedje JM (1993) Response of microbial communities to changing environmental conditions: chemical and physiological approaches. In: Guerrero R, Pedros-Alio C (eds) Trends in microbial ecology. Spanish Society for Microbiology, Spain, pp 371–378

    Google Scholar 

  • Kong WD, Zhu YG, Fu B, Han X, Zhang L, He J (2008) Effect of long-term application of chemical fertilizers on microbial biomass and functional diversity of a black soil. Pedosphere 18:801–808

    Article  CAS  Google Scholar 

  • Kozdroj J, van Elsas JD (2001) Structural diversity of microbial communities in arable soils of a heavily industrialised area determined by PCR-DGGE fingerprinting and FAME profiling. Appl Soil Ecol 17:31–42

    Article  Google Scholar 

  • Kumar V, Ghosh BC, Bhat R (2000) Complementary effect of crop wastes and inorganic fertilizers on yield, nutrient uptake and residual fertility in mustard (Brassica juncea)-rice (Oryza sativa) cropping sequence. Indian J Agric Sci 70:69–72

    Google Scholar 

  • Larson WE, Pierce FJ (1991) Conservation and enhancement of soil quality. In: IBSRAM proceedings 2, evaluation for sustainable land management in the developing world, vol 12, pp 175–203

    Google Scholar 

  • Larson WE, Pierce FJ (1994) The dynamics of soil quality as a measure of sustainable management. In: Defining soil quality for a sustainable environment, Special publication, Soil Science Society America, pp 37–51

    Google Scholar 

  • Lazcano C, Gomez-Brandon M, Revilla P, Dominguez J (2013) Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biol Fertil Soils 49:723–733. doi:10.1007/s00374-012-0761-7

    Article  CAS  Google Scholar 

  • Li Z, Wu X, Chen B (2007) Changes in transformation of soil organic C and functional diversity of soil microbial community under different land uses. Agric Sci China 6:1235–1245

    Article  CAS  Google Scholar 

  • Li X, Zhang H, Wu M, Zhang Y, Zhang C (2008) Effect of methamidophos on soil fungi community in microcosms by plate count, DGGE and clone library analysis. J Environ Sci 20:619–25. doi:10.1016/S1001-0742(08)62103-8

    Article  CAS  Google Scholar 

  • Li F, Liu M, Li Z, Jiang C, Han F, Che Y (2013) Changes in soil microbial biomass and functional diversity with a nitrogen gradient in soil columns. Appl Soil Ecol 64:1–6

    Article  Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 6311:4516–4522

    Google Scholar 

  • Liu C, Yang F, Lu X, Huang F, Liu L, Yang C (2010a) Isolation, identification and soil remediation of atrazine-degrading strain T3 AB1. Wei Sheng Wu Xue Bao 50:1642–1650

    CAS  PubMed  Google Scholar 

  • Liu Z, Fu B, Zheng X, Liu G (2010b) Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe: a regional scale study. Soil Biol Biochem 42:445–450

    Article  CAS  Google Scholar 

  • Lopes AR, Faria C, Prieto-Fernandez A, Trasar-Cepeda C, Manaia CM, Nunes OC (2011) Comparative study of the microbial diversity of bulk paddy soil of two rice fields subjected to organic and conventional farming. Soil Biol Biochem 43:115–125

    Article  CAS  Google Scholar 

  • Lupwayi NZ, Harker KN, Dosdall LM, Turkington TK, Blackshaw RE, O’Donovan JT, Carcamo HA, Otani JK, Clayton GW (2009a) Changes in functional structure of soil bacterial communities due to fungicide and insecticide applications in canola. Agric Ecosyst Environ 130:109–114

    Article  CAS  Google Scholar 

  • Lupwayi NZ, Harker KN, Clayton GW, O’Donovan JT, Blackshaw RE (2009b) Soil microbial response to herbicides applied to glyphosate-resistant canola. Agric Ecosyst Environ 129:171–176

    Article  CAS  Google Scholar 

  • Lupwayi NZ, Brandt SA, Harker KN, O’Donovan JT, Clayton GW, Turkington TK (2010) Contrasting soil microbial responses to fertilizers and herbicides in a canola–barley rotation. Soil Biol Biochem 42:1997–2004

    Article  CAS  Google Scholar 

  • Lupwayi NZ, Lafond GP, Ziadi N, Grant CA (2012) Soil microbial response to nitrogen fertilizer and tillage in barley and corn. Soil Tillage Res 118:139–146

    Article  Google Scholar 

  • Malghani S, Chatterjee N, Hu X, Zejiao L (2009) Isolation and characterization of a profenofos degrading bacterium. J Environ Sci 21:1591–1597

    Article  CAS  Google Scholar 

  • Martinez-Toledo MV, Salmeron V, Rodelas B, Pozo C, Gonzalez-Lopez J (1998) Effects of the fungicide captan on some functional groups of soil microflora. Appl Soil Ecol 7:245–255

    Article  Google Scholar 

  • Megadi VB, Tallur PN, Hoskeri RS, Mulla SI, Ninnekar HZ (2010) Biodegradation of pendimethalin by Bacillus circulans. Indian J Biotechnol 9:173–177

    CAS  Google Scholar 

  • Moghaddam NS, Zakaria MP, Omar D, Sijam K, Khakvar R (2011) Effects of imidacloprid on the biodiversity of soil microbes in selected soils of Malaysia. In: Proceedings 2nd international conference on environmental science and development IPCBEE, 4, IACSIT Press, Singapore

    Google Scholar 

  • Mohamed AT, El Hussein AA, El Siddig MA, Osman AG (2011) Degradation of oxyfluorfen herbicide by soil microorganisms biodegradation of herbicides. Biotechnology 109:274–279

    Google Scholar 

  • Moorman TB, Dowler CC (1991) Herbicide and rotation effects on soil and rhizosphere microorganisms and crop yields. Agric Ecosyst Environ 35:311–325

    Article  CAS  Google Scholar 

  • Munoz-Leoz B, Ruiz-Romera E, Antiguedad I, Garbisu C (2011) Tebuconazole application decreases soil microbial biomass and activity. Soil Biol Biochem 43:2176–2183

    Article  CAS  Google Scholar 

  • Nannipieri P, Badalucco L (2003) Biological processes. In: Bembi DK, Nieder R (eds) Processes in the soil–plant system: modelling concepts and applications. The Haworth Press, Binghamton/New York

    Google Scholar 

  • Nannipieri P, Grego S, Ceccanti B (1990) Ecological significance of the biological activity in soil. In: Bollag JM, Stotzky G (eds) Soil biochemistry, vol 6. Marcel Dekker, New York, pp 293–355

    Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Naphade SR, Durve AA, Bhot M, Varghese J, Chandra N (2012) Isolation, characterization and identification of pesticide tolerating bacteria from garden soil. Eur J Exp Biol 2:1943–1951

    CAS  Google Scholar 

  • Nautiyal CS, Chauhan PS, Bhatia CR (2010) Changes in soil physico-chemical properties and microbial functional diversity due to 14 years of conversion of grassland to organic agriculture in semi-arid agroecosystem. Soil Tillage Res 109:55–60

    Article  Google Scholar 

  • Nicholson PS, Hirsch PR (1998) The effects of pesticides on the diversity of culturable soil bacteria. J Appl Microbiol 84:551–558

    Article  CAS  Google Scholar 

  • Orgiazzi A, Lumini E, Nilsson RH, Girlanda M, Vizzini A et al (2012) Unravelling soil fungal communities from different mediterranean land-use backgrounds. PLoS ONE 7, e34847. doi:10.1371/journal.pone.0034847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perez-de-Mora A, Madrid CF (2007) Amendments and plant cover influence on trace element pools in a contaminated soil. Geoderma 139:1–10

    Article  CAS  Google Scholar 

  • Pinstrup-Andersen P (2001) The future world food situation and the role of plant diseases. Plant Health Inst. doi:10.1094/PHI-I-2001-0425-01

  • Prashar P, Kapoor N, Sachdeva S (2013) Biocontrol of plant pathogens using plant growth promoting rhizobacteria. Sustain Agric Rev 12:319–360

    Article  Google Scholar 

  • Rahman MM, Song KS, Rhee IK, Kim JE (2005) Impact of herbicide oxadiazon on microbial activity and nitrogen dynamics in soil environment. Agric Chem Biotechnol 48:187–192

    CAS  Google Scholar 

  • Rani MS, Lakshmi KV, Devi PS, Madhuri RJ, Aruna S, Jyothi K, Narasimha G, Venkateswarlu K (2008) Isolation and characterization of a chlorpyrifos degrading bacterium from agricultural soil and its growth response. Afr J Microbiol Res 2:26–31

    Google Scholar 

  • Rastogi G, Sani RK et al (2011) Molecular techniques to assess microbial community structure, function and dynamics in the environment. In: Ahmad I (ed) Microbes and microbial technology: agricultural and environmental applications. Springer, New York. doi:10.1007/978-1-4419-7931-5_2

    Google Scholar 

  • Romaniuk R, Giuffre L, Costantini A, Nannipieri P (2011) Assessment of soil microbial diversity measurements as indicators of soil functioning in organic and conventional horticulture systems. Ecol Indic 11:1345–1353

    Article  CAS  Google Scholar 

  • Sattler C, Kachele H, Verch G (2006) Assessing the intensity of pesticide use in agriculture. Agric Ecosyst Environ 119:299–304

    Article  Google Scholar 

  • Sebiomo A, Ogundero VW, Bankole SA (2011) Effect of four herbicides on microbial population, soil organic matter and dehydrogenase activity. Afr J Biotechnol 10:770–778

    CAS  Google Scholar 

  • Seymour N (2005) Impacts of pesticides and fertilizers on soil. In: Proceedings, soil biology- soil health conference, Condamine catchment management association Inc, RSL, Dalby

    Google Scholar 

  • Shengnan C, Jie G, Hua G, Qingjun Q (2011) Effect of microbial fertilizer on microbial activity and microbial community diversity in the rhizosphere of wheat growing on the Loess Plateau. Afr J Microbiol Res 5:137–143

    Google Scholar 

  • Silva TM, Stets MI, Mazzetto AM, Andrade FD, Pileggi SAV, Favero PR, Cantu MD, Carrilho E, Carneiro PIB, Pileggi M (2007) Degradation of 2,4-D herbicide by microorganisms isolated from Brazilian contaminated soil. Braz J Microbiol 38:522–525

    Article  Google Scholar 

  • Singh NS, Singh DK (2011) Biodegradation of endosulfan and endosulfan sulfate by Achromobacter xylosoxidans strain C8B in broth medium. Biodegradation 22:845–857

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Campbell CD, Sorenson SJ, Zhou J (2009) Soil genomics. Nat Rev Microbiol 7:756

    Article  CAS  PubMed  Google Scholar 

  • Sonkong K, Prasertsan P, Sobhon V (2008) Screening and identification of p, p’-DDT degrading soil isolates. Songklanakarin J Sci Technol 30:103–110

    Google Scholar 

  • Sradnick A, Murugan R, Oltmanns M, Raupp J, Joergensen RG (2013) Changes in functional diversity of the soil microbial community in a heterogeneous sandy soil after long-term fertilization with cattle manure and mineral fertilizer. Appl Soil Ecol 63:23–28

    Article  Google Scholar 

  • Stotzky G (1985) Mechanisms of adhesion to clays, with reference to soil systems. In: Savage DC, Fletcher M (eds) Bacterial adhesion: mechanisms and physiological significance. Plenum Press, New York, pp 195–253

    Chapter  Google Scholar 

  • Strickland MS, Rousk J (2010) Considering fungal: bacterial dominance in soils- methods, controls, and ecosystem implications. Soil Biol Biochem 42:1385–1395

    Article  CAS  Google Scholar 

  • Sumalan RM, Alexa E, Negrea M, Sumalan RL, Doncean A, Pop G (2010) Effect of glyphosate on the microbial activity of two Romanian soils. Commun Agric Appl Biol Sci 75:167–172

    CAS  PubMed  Google Scholar 

  • Sun HY, Deng SP, Raun WR (2004) Bacterial community structure and diversity in a century- old manure-treated agroecosystem. Appl Environ Microbiol 70:5868–5874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (1998) Principles and applications of soil microbiology. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Tallur PN, Megadi VB, Ninnekar HZ (2008) Biodegradation of cypermethrin by Micrococcus sp. Strain CPN1. Biodegradation 19:77–82

    Article  CAS  PubMed  Google Scholar 

  • Tan H, Barret M, Rice O, Dowling DN, Burke J, Morrissey JP, O’Gara F (2012) Long-term agrichemical use leads to alterations in bacterial community diversity. Plant Soil Environ 58:452–458

    CAS  Google Scholar 

  • Tancho A, Merckx R, Van Look K, Vlassak K (1992) The effect of carbofuran and monocrotophos on heat output, carbon and nitrogen mineralization of northern Thailand soils. Sci Total Environ 123(124):241–248

    Article  Google Scholar 

  • Torsvik V, Sorheim R, Goksoyr J (1996) Total bacterial diversity in soil and sediment communities- a review. J Ind Microbiol 17:170–178

    Article  CAS  Google Scholar 

  • Tu CM (1992) Effect of some herbicides on activities of microorganisms and enzymes in soil. J Environ Sci Heal B 27:695–702

    Article  Google Scholar 

  • van Veen JA, Kuikman PJ (1990) Soil structural aspects of decomposition of organic matter by Vargas JM (1975) Pesticide degradation. J Arboric 1:232–233

    Google Scholar 

  • Vargas JM (1975) Pesticide degradation. J Arboric 1:232–233

    Google Scholar 

  • Velthof GL, Oenema O, Postma R, van Beusichem ML (1997) Effects of type and amount of applied nitrogen fertilizer on nitrous oxide fluxes from intensively managed grassland. Nutr Cycl Agroecosyst 46:257–267

    Article  Google Scholar 

  • Wang MC, Liu YH, Wang Q, Gong M, Hua XM, Pang YJ, Hu S, Yang YH (2008) Impacts of methamidophos on the biochemical, catabolic, and genetic characteristics of soil microbial communities. Soil Biol Biochem 40:778–788

    Article  CAS  Google Scholar 

  • Wu M, Qin H, Chen Z, Wu J, Wei W (2011) Effect of long-term fertilization on bacterial composition in rice paddy soil. Biol Fertil Soils 47:397–405

    Article  Google Scholar 

  • Wu F, Gai Y, Jiao Z, Liu Y, Ma X, An L, Wang W, Feng H (2012) The community structure of microbial in arable soil under different long-term fertilization regimes in the Loess Plateau of China. Afr J Microbiol Res 6:6152–6164

    CAS  Google Scholar 

  • Xie S, Liu J, Li L, Qiao C (2009a) Biodegradation of malathion by Acinetobacter johnsonii MA19 and optimization of cometabolism substrates. J Environ Sci (China) 21:76–82

    Article  CAS  Google Scholar 

  • Xie W, Zhou J, Wangb H, Chen X, Lu Z, Yu J, Chen X (2009b) Short-term effects of copper, cadmium and cypermethrin on dehydrogenase activity and microbial functional diversity in soils after long-term mineral or organic fertilization. Agric Ecosyst Environ 129:450–456

    Article  CAS  Google Scholar 

  • Yang YH, Yao J, Hu S, Qi Y (2000) Effects of agricultural chemicals on DNA sequence diversity of soil microbial community: a study with RAPD marker. Microb Ecol 39:72–79

    Article  CAS  PubMed  Google Scholar 

  • Yang YJ, Dungan RS, Ibekwe AM, Valenzuela-Solano C, Crohn DM, Crowley DE (2003) Effect of organic mulches on soil bacterial communities one year after application. Biol Fertil Soils 38:273–281. doi:10.1007/s00374-003-0639-9

    Article  CAS  Google Scholar 

  • Yang YH, Chen DM, Jin Y, Wang HB, Duan YQ, Guo XK, He HB, Lin WX (2011) Effect of different fertilizers on functional diversity of microbial flora in rhizospheric soil under tobacco monoculture. Acta Agron Sin 37:105–111

    CAS  Google Scholar 

  • Zacharia JT (2011) Identity, physical and chemical properties of pesticides. In: Stoytcheva M (ed) Pesticides in the modern world - trends in pesticides analysis. Intech Publisher, Rijeka, pp 1–18. doi:10.5772/17513

    Google Scholar 

  • Zhong WH, Cai ZC (2007) Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay. Appl Ecol 36:84–91

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratibha Prashar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Prashar, P., Shah, S. (2016). Impact of Fertilizers and Pesticides on Soil Microflora in Agriculture. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-26777-7_8

Download citation

Publish with us

Policies and ethics