Skip to main content

Mechanisms of Adhesion to Clays, with Reference to Soil Systems

  • Chapter
Bacterial Adhesion

Abstract

Soil is undoubtedly the most complex of all microbial habitats. Primarily because of this complexity, there is insufficient information on how and where most microbial events—including adhesion—occur in soil in situ and which microbes are numerically and physiologically the most important participants in these events. The abiotic components of soil have been relatively well defined, both qualitatively and quantitatively. However, the micro-geographic distribution and the geometric relations of abiotic components to each other, and to the microbiotic component, and the interactions among and between the abiotic and microbiotic components are not clearly defined. Most of what is known about the composition of the abiotic components has been obtained by dispersing soil (either chemically or physically, including sonically) and, after careful fractionation, conducting detailed chemical (both inorganic and organic) and physical analyses on the individual fractions (see Marshall, 1964; Rich and Kunze, 1964; Black, 1965; Schnitzer and Kahn, 1972; Gieseking, 1975; Dixon and Weed, 1977; Greenland and Hayes, 1978; Stevenson, 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D. J., Ridinger, D. N., Spendlove, R. S., and Barnett, B. B., 1982, Protamine precipitation of two reovirus particle types from polluted waters, Appl. Environ. Microbiol. 44:589–596.

    PubMed  CAS  Google Scholar 

  • Ahmed, R., and Fields, B. N., 1981, Reassortment of genome segments between reovirus defective interfering particles and infectious virus: Construction of temperature-sensitive and attenuated viruses by rescue of mutants from DI particles, Virology 111:351–363.

    PubMed  CAS  Google Scholar 

  • Albert, J. T., and Harter, R. D., 1973, Adsorption of lysozyme and ovalbumin by clay: Effect of clay suspension pH and clay mineral type, Soil Sci. 115:130–136.

    CAS  Google Scholar 

  • Ardeshi, F., and Ames, G. F. L., 1980, Cloning of the histidine transport genes from Salmonella typhimurium and characterization of an analogous transport system in Escherichia coli, in: Membrane Transport and Neuroreceptors (D. L. Oxender, A. Blume, I. Diamond, and C. F. Fox, eds.), Liss, New York, pp. 51–64.

    Google Scholar 

  • Arnold, P. W., 1978, Surface-electrolyte interactions, in: The Chemistry of Soil Constituents (D. J. Greenland and M. H. B. Hayes, eds.), Dekker, New York, pp. 355–404.

    Google Scholar 

  • Atlas, R. M., and Bartha, R., 1981, Microbial Ecology, Addison-Wesley, Reading, Mass.

    Google Scholar 

  • Audic, J. M., Faub, G. M., and Navarro, J. M., 1984, Specific activity of Nitrobacter through attachment on granular media, Water Res. 18:745–750.

    CAS  Google Scholar 

  • Babich, H., and Stotzky, G., 1974, Air pollution and microbial ecology, Crit. Rev. Environ. Control 4:353–421.

    Google Scholar 

  • Babich, H., and Stotzky, G., 1977a, Reductions in the toxicity of cadmium to microorganisms by clay minerals, Appl. Environ. Microbiol. 33:696–705.

    PubMed  CAS  Google Scholar 

  • Babich, H., and Stotzky, G., 1977b, Effect of cadmium on fungi and on interactions between fungi and bacteria in soil: Influence of clay minerals and pH, Appl. Environ. Microbiol. 33:1059–1066.

    PubMed  CAS  Google Scholar 

  • Babich, H., and Stotzky, G., 1978, Effects of cadmium on the biota: Influence of environmental factors, Adv. Appl. Microbiol. 23:55–117.

    PubMed  CAS  Google Scholar 

  • Babich, H., and Stotzky, G., 1979, Abiotic factors affecting the toxicity of lead to fungi, Appl. Environ. Microbiol. 38:506–513.

    PubMed  CAS  Google Scholar 

  • Babich, H., and Stotzky, G., 1980a, Reductions in inactivation rates of bacteriophages by clay minerals in lake water, Water Res. 14:185–187.

    Google Scholar 

  • Babich, H., and Stotzky, G., 1980b, Environmental factors that influence the toxicity of heavy metals and gaseous pollutants to microorganisms, Crit. Rev. Microbiol. 9:99–145.

    Google Scholar 

  • Babich, H., and Stotzky, G., 1982, Gaseous and heavy metal air pollutants, in: Experimental Microbial Ecology (R. G. Burns and J. H. Slater, eds.), Blackwell, Oxford, pp. 631–670.

    Google Scholar 

  • Babich, H., and Stotzky, G., 1983a, Influence of chemical speciation on the toxicity of heavy metals to the microbiota, in: Aquatic Toxicology (J. O. Nriagu, ed.), Wiley, New York, pp. 1–46.

    Google Scholar 

  • Babich, H., and Stotzky, G., 1983b, Toxicity of nickel to microbes: Environmental aspects, Adv. Appl. Microbiol. 29:195–265.

    PubMed  CAS  Google Scholar 

  • Baier, R. E., 1980, Substrata influences on adhesion of microorganisms and their resultant new surface properties, in: Adsorption of Microorganisms to Surfaces (G. Bitton and K. C. Marshall, eds.), Wiley, New York, pp. 59–104.

    Google Scholar 

  • Bartnicki-Garcia, S., 1968, Cell wall chemistry, morphogenesis and taxonomy in fungi, Annu. Rev. Microbiol. 22:67–108.

    Google Scholar 

  • Berg, G. (ed.), 1967, Transmission of Viruses by the Water Route, Wiley, New York.

    Google Scholar 

  • Berg, G., Bodily, H. L., Lennette, E. H., Melnick, J. L., and Metecalf, T. G. (eds.), 1974, Viruses in Water, American Public Health Association, Washington, D.C.

    Google Scholar 

  • Bitton, G., 1980a, Introduction to Environmental Virology, Wiley, New York.

    Google Scholar 

  • Bitton, G., 1980b, Adsorption of viruses to surfaces: Technological and ecological implications, in: Adsorption of Microorganisms to Surfaces (G. Bitton and K. C. Marshall, eds.), Wiley, New York, pp. 331–374.

    Google Scholar 

  • Black, C. A. (ed.), 1965, Methods of Soil Analyses, Parts 1 and 2, American Society of Agronomy, Madison, Wise.

    Google Scholar 

  • Bondietti, E., Martin, J. P., and Haider, K., 1971, Influence of nitrogen source and clay on growth and phenolic polymer production by Stachybotrys species, Rendersonula toruloidea, and Aspergillus sydowi, Soil Sci. Soc. Am. Proc. 35:917–922.

    CAS  Google Scholar 

  • Bremmer, J. M., 1967, Nitrogenous compounds, in: Soil Biochemistry, Volume 1 (A. D. McLaren and G. H. Peterson, eds.), Dekker, New York, pp. 19–66.

    Google Scholar 

  • Brewer, R., 1964, Fabric and Mineral Analysis of Soils, Wiley, New York.

    Google Scholar 

  • Bright, J. J., and Fletcher, M., 1983, Amino acid assimilation and electron transport system activity in attached and free-living marine bacteria, Appl. Environ. Microbiol. 45:818–825.

    PubMed  CAS  Google Scholar 

  • Brown, G., Newman, A. C. D., Rayner, J. H., and Weir, A. H., 1978, The structure and chemistry of soil clay minerals, in: The Chemistry of Soil Constituents (D. J. Greenland and M. H. B. Hayes, eds.), Dekker, New York, pp. 29–178.

    Google Scholar 

  • Burnett, J. H., 1976, Fundamentals of Mycology, Arnold & Arnold, New York.

    Google Scholar 

  • Burns, R. G., 1983, Extracellular enzyme-substrate interactions in soil, in: Microbes in Their Natural Environments (J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), Cambridge University Press, London, pp. 249–298.

    Google Scholar 

  • Burns, R. G., and Slater, J. H. (eds), 1982, Experimental Microbial Ecology, Blackwell, Oxford.

    Google Scholar 

  • Burt, W. R., 1982, Identification of coprogen B and its breakdown products from Histoplasma capsulatum, Infect. Immun. 35:990–996.

    CAS  Google Scholar 

  • Burt, W. R., Underwood, A. L., and Appleton, G. L., 1981, Hydroxamic acid from Histoplasma capsulatum that displays growth factor activity, Appl. Environ. Microbiol. 42:560–563.

    PubMed  CAS  Google Scholar 

  • Bushby, H. V. A., and Marshall, K. C., 1977, Water status of rhizobia in relation to their susceptibility to desiccation and to their protection by montmorillonite,J. Gen. Microbiol. 99:19–27.

    Google Scholar 

  • Bystricky, V., Stotzky, G., and Schiffenbauer, M., 1975, Electron microscopy of T1-bacteriophage adsorbed to clay minerals: Application of the critical point drying method, Can. J. Microbiol. 21:1278–1282.

    PubMed  CAS  Google Scholar 

  • Campbell, R., 1983, Ultrastructural studies of Gaeumannomyces graminis in the waterfilms on wheat roots and the effect of clay on the interaction between this fungus and antagonistic bacteria, Can. J. Microbiol. 29:39–45.

    Google Scholar 

  • Campbell, R., and Ephgrave, J. M., 1983, Effect of bentonite clay on the growth of Gaeumannomyces graminis var. tritici and on its interactions with antagonistic bacteriaJ. Gen. Microbiol. 129:771–777.

    CAS  Google Scholar 

  • Casida, L. E., Jr., 1965, Abundant microorganisms in soil, Appl. Microbiol. 13:327–334.

    PubMed  Google Scholar 

  • Casida, L. E., Jr., 1971, Microorganisms in unamended soil as observed by various forms of microscopy and staining, Appl. Microbiol. 21:1040–1045.

    PubMed  Google Scholar 

  • Casida, L. E., Jr., 1977, Small cells in pure cultures of Agromyces ramosus and in natural soils, Can. J. Microbiol. 23:214–216.

    PubMed  Google Scholar 

  • Chassin, P., 1969, Adsorption du glycolle par la montmorillonites, Bull. Groupe Fr. Argiles 21:71–88.

    CAS  Google Scholar 

  • Christie, N. T., and Costa, M. 1983, In vitro assessment of the toxicity of metal compounds. III. Effects on DNA structure and function in intact cells, Biol. Trace Elem. Res. 5:55–71.

    CAS  Google Scholar 

  • Clark, A., 1974, The Chemisorptive Bond, Academic Press, New York.

    Google Scholar 

  • Collins, Y. E., and Stotzky, G., 1982, Influence of heavy metals on the electrokinetic properties of bacteria, Abstr. Annu. Meet. Am. Soc. Microbiol. 229.

    Google Scholar 

  • Collins, Y. E., and Stotzky, G., 1983, Heavy metals alter the electrokinetic properties of bacteria, yeasts, and clay minerals, Abstr. 3rd Int. Symp. Microb. Ecol. p. 16.

    Google Scholar 

  • Corpe, W. A., 1980, Microbial surface components involved in adsorption of microorganisms onto surfaces, in: Adsorption of Microorganisms to Surfaces (G. Bitton and K. C. Marshall, eds.), Wiley, New York, pp. 105–144.

    Google Scholar 

  • Costerton, J. W., 1980, Some techniques involved in study of adsorption of microorganisms to surfaces, in: Adsorption of Microorganisms to Surfaces (G. Bitton and K. C. Marshall, eds.), Wiley, New York, pp. 403–424.

    Google Scholar 

  • Costerton, J. W., Irwin, R. T., and Cheng, K.-J., 1981, The role of bacterial surface structures in pathogenesis, Crit. Rev. Microbiol. 8:303–338.

    PubMed  CAS  Google Scholar 

  • Dandiker, W. B., Alonso, R., de Saussure, V. A., Kierszenbaum, F., Levison, S. A., and Schapiro, H. C., 1967, The effect of chaotropic ions on the dissociation of antigen-antibody complexes, Biochemistry 6:1460–1467.

    Google Scholar 

  • Daniels, S. L., 1980, Mechanisms involved in sorption of microorganisms to solid surfaces, in: Adsorption of Microorganisms to Surfaces (G. Bitton and K. C. Marshall, eds.), Wiley, New York, pp. 7–58.

    Google Scholar 

  • Dashman, T., and Stotzky, G., 1982, Adsorption and binding of amino acids on homoionic montmorillonite and kaolinite, Soil Biol. Biochem. 14:447–456.

    CAS  Google Scholar 

  • Dashman, T., and Stotzky, G., 1984, Adsorption and binding of peptides on homoionic montmorillonite and kaolinite, Soil Biol. Biochem. 16:51–55.

    CAS  Google Scholar 

  • Dashman, T., and Stotzky, G., 1985a, Physical properties of homoionic montmorillonite and kaolinite complexed with amino acids and peptides, Soil Biol. Biochem. 17:1–7.

    Google Scholar 

  • Dashman, T., and Stotzky, G., 1985b, Microbial utilization of amino acids and a peptide bound to homoionic montmorillonite and kaolinite, Soil Biol. Biochem., in press.

    Google Scholar 

  • DeFlaun, M. F., and Mayer, L. M., 1983, Relationship between bacteria and grain surfaces in intertidal sediments, Limnol. Oceanogr. 28:873–881.

    Google Scholar 

  • Dixon, J. B., and Weed, S. B. (eds.), 1977, Minerals in Soil Environments, Soil Science Society of America, Madison, Wise.

    Google Scholar 

  • Dorioz, J.-M., and Robert, M., 1982, Etude experimentale de l’interaction entre Champignons et argile: Consequences sur la microstructure des sols, C.R. Acad. Sci. Ser. II 295:511–516.

    Google Scholar 

  • Drayna, D., and Fields, B. N., 1982, Biochemical studies on the mechanism of chemical and physical inactivation of reovirus, J. Gen, Virol. 63:161–170.

    CAS  Google Scholar 

  • Duboise, S. M., Moore, B. E., Sorber, C. A., and Sagik, B. P., 1979, Viruses in soil systems, Crit. Rev. Microbiol. 7:245–285.

    CAS  Google Scholar 

  • Ellwood, D. C., Keevil, C. W., Marsh, P. D., Brown, C. M., and Wardell, J. N., 1982, Surface-associated growth, Philos. Trans. R. Soc. London 297:517–532.

    CAS  Google Scholar 

  • Emerson, W. W., 1959, The structure of soil crumbs, J. Soil Sci. 10:235–244.

    CAS  Google Scholar 

  • Emery, T., 1971, Hydroxamic acids of natural origin, Adv. Enzymol. 35:135–185.

    PubMed  CAS  Google Scholar 

  • Emery, T., 1978, The storage and transport of iron, in: Metal Ions in Biological Systems, Volume 7 (H. Sigel, ed.), Dekker, New York, pp. 77–126.

    Google Scholar 

  • Emery, T., 1982, Iron metabolism in humans and plants, Am. Sci. 70:626–632.

    PubMed  CAS  Google Scholar 

  • Emery, T., and Emery, L., 1973, The biological activity of some siderochrome derivatives, Biochem. Biophys. Res. Commun. 50:670–675.

    PubMed  CAS  Google Scholar 

  • Escudey, M., and Galindo, G., 1983, Effect of iron oxide coatings on electrophoretic mobility and dispersion of allophane, J. Colloid Interface Sci. 93:78–83.

    CAS  Google Scholar 

  • Farmer, V. C., 1978, Water on particle surfaces, in: The Chemistry of Soil Constituents (D. J. Greenland and M. H. B. Hayes, eds.), Dekker, New York, pp. 405–408.

    Google Scholar 

  • Farrah, S. R., Shah, D. O., and Ingram, L. O., 1981, Effect of chaotropic and antichaotropic agents on elution of poliovirus adsorbed on membrane filters, Proc. Natl. Acad. Sci. U.S.A. 78:1229–1232.

    PubMed  CAS  Google Scholar 

  • Filip, Z., 1973, Clay minerals as a factor influencing the biochemical activity of soil microorganisms, Folia Microbiol. (Prague) 18:56–74.

    CAS  Google Scholar 

  • Filip, Z., 1975, Wechselbeziehungen zwischen Mikroorganismen und Tonmineralen und ihre Auswirkung auf die Bodendynamik, Habilitationsschrift, Justus Liebig Universitat, Giessen.

    Google Scholar 

  • Filip, Z., Haider, K., and Martin, J. P., 1972a, Influence of clay minerals on growth and metabolic activity of Epicoccum nigrum and Stachybotrys chartarum, Soil Biol. Biochem. 4:135–145.

    CAS  Google Scholar 

  • Filip, Z., Haider, K., and Martin, J. P., 1972b, Influence of clay minerals on the formation of humic substances by Epicoccum nigrum and Stachybotrys chartarum, Soil Biol. Biochem. 4:147–154.

    CAS  Google Scholar 

  • Flaig, W., Beutelspacher, H., and Rietz, E., 1975, Chemical composition and physical properties of humic substances, in: Soil Components, Volume 1 (J. E. Gieseking, ed.), Springer-Verlag, Berlin, pp. 1–211.

    Google Scholar 

  • Fletcher, M., and Floodgate, G. D., 1973, An electron-microscopic demonstration of an acidic polysaccharide involved in adhesion of a marine bacterium to solid surfaces, J. Gen. Microbiol. 74:325–334.

    CAS  Google Scholar 

  • Fletcher, M., and Marshall, K. C., 1983, Are solid surfaces of ecological significance to aquatic bacteria? in: Advances in Microbial Ecology, Volume 6 (K. C. Marshall, ed.), Plenum Press, New York, pp. 199–236.

    Google Scholar 

  • Fletcher, M., Latham, M. J., Lynch, J. M., and Rutter, P. R., 1980, The characteristics of interfaces and their role in microbial attachment, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), Horwood, Chichester, pp. 67–78.

    Google Scholar 

  • Forslind, E., and Jacobsson, A., 1970, Clay-Water Interactions: An Experimental Study of Interface Phenomena, European Research Office, U.S. Army, Frankfurt, Germany, DAJA 37–69-C-0657.

    Google Scholar 

  • Gast, R. G., 1977, Surface and colloid chemistry, in: Minerals in Soil Environments (J. B. Dixon and S. B. Weed, eds.), Soil Science Society of America, Madison, Wise, pp. 27–74.

    Google Scholar 

  • Gerard, J. F., and Stotzky, G., 1973, Smectite-protein complexes vs. non-complexed proteins as energy and carbon sources for bacteria, Agron. Abstr. p. 91.

    Google Scholar 

  • Gibbons, R. J., 1980, Adhesion of bacteria to the surfaces of the mouth, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), Horwood, Chichester, pp. 351–388.

    Google Scholar 

  • Giesking, J. E. (ed.), 1975, Soil Components, Volume 2, Springer-Verlag, Berlin.

    Google Scholar 

  • Giles, C. H., MacEwan, T. H., Nakhwa, S. N., and Smith, D., 1960, Studies on adsorption. XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc. 786:3973–3993.

    Google Scholar 

  • Giles, C. H., Smith, D., and Huitson, A., 1974, A general treatment and classification of the solute adsorption isotherm. I. Theoretical, J. Colloid Interface Sci. 47:755–765.

    CAS  Google Scholar 

  • Goring, C. A. I., and Bartholomew, W. V., 1952, Adsorption of mononucleotides, nucleic acids, and nucleoproteins by clays, Soil Sci. 74:149–164.

    CAS  Google Scholar 

  • Gray, T. R. G., Baxby, P., Hill, J. R., and Goodfellow, M., 1968, Direct observation of bacteria in soil, in: The Ecology of Soil Bacteria (T. R. G. Gray and D. Parkinson, eds.), Liverpool University Press, Liverpool, pp. 171–192.

    Google Scholar 

  • Greaves, M. P., and Wilson, M. J., 1969, The adsorption of nucleic acids by montmorillonite, Soil Biol. Biochem. 1:317–323.

    CAS  Google Scholar 

  • Greaves, M. P., and Wilson, M. J., 1970, The degradation of nucleic acids and montmorillonite-nucleic acid complexes by soil microorganisms, Soil Biol. Biochem. 2:257–268.

    CAS  Google Scholar 

  • Greaves, M. P., and Wilson, M. J., 1973, Effects of soil microorganisms on montmorillonite-adenine complexes, Soil Biol. Biochem. 5:275–276.

    CAS  Google Scholar 

  • Greenland, D. J., 1965, Interactions between clays and organic compounds in soils, II, Soils Fert. 28:521–532.

    CAS  Google Scholar 

  • Greenland, D. J., 1971, Interactions between humic and fulvic acids and clays, Soil Sci. 111:34–41.

    CAS  Google Scholar 

  • Greenland, D. J., and Hayes, M. H. B. (eds), 1978, The Chemistry of Soil Constituents, Wiley, New York.

    Google Scholar 

  • Greenland, D. J., and Mott, C. J. B., 1978, Surfaces of soil particles, in: The Chemistry of Soil Constituents (D. J. Greenland and M. H. B. Hayes, eds.), Wiley, New York, pp. 321–354.

    Google Scholar 

  • Grim, R. E., 1968, Clay Mineralogy, McGraw-Hill, New York.

    Google Scholar 

  • Habte, M., and Alexander, M., 1978a, Mechanisms of persistence of low numbers of bacteria preyed upon by protozoa, Soil Biol. Biochem. 10:1–6.

    Google Scholar 

  • Habte, M., and Alexander, M., 1978b, Protozoan density and the coexistence of protozoan predators and bacterial prey, Ecology 59:140–146.

    Google Scholar 

  • Harter, R. D., 1977, Reactions of minerals with organic compounds in the soil, in: Minerals in Soil Environments(J. B. Dixon and S. B. Reed, eds.), Soil Science Society of America, Madison, Wise, pp. 709–739.

    Google Scholar 

  • Harter, R. D., and Stotzky, G., 1971, Formation of clay-protein complexes, Soil Sci. Soc. Am. Proc. 35:383–389.

    CAS  Google Scholar 

  • Harter, R. D., and Stotzky, G., 1973, X-ray diffraction, electron microscopy, electrophoretic mobility, and pH of some stable smectite-protein complexes, Soil Sci. Soc. Am. Proc. 37:116–123.

    CAS  Google Scholar 

  • Hatefi, Y., and Hanstein, W. G., 1969, Solubilization of particulate proteins and nonelectrolytes by chaotropic agents, Proc. Natl. Acad. Sci. U.S.A. 62:1129–1136.

    PubMed  CAS  Google Scholar 

  • Hatefi, Y., and Hanstein, W. G., 1974, Destabilization of membranes with chaotropic ions, Methods Enzymol. 31:770–790.

    PubMed  CAS  Google Scholar 

  • Hattori, T., 1973, Microbial Life in the Soil, Dekker, New York.

    Google Scholar 

  • Hattori, T., and Hattori, R., 1976, The physical environment in soil microbiology: An attempt to extend principles of microbiology to soil microorganisms, Crit. Rev. Microbiol. 4:423–461.

    CAS  Google Scholar 

  • Hayes, M. H. B., and Swift, R. S., 1978, The chemistry of soil organic colloids, in: The Chemistry of Soil Constituents (D. J. Greenland and M. H. B. Hayes, eds.), Dekker, New York, pp. 179–320.

    Google Scholar 

  • Hendershot, W. H., and Lavkulich, L. M., 1983, Effect of sesquioxide coatings on surface charge of standard mineral and soil samples, Soil Sci. Soc. Am. J. 47:1252–1260.

    CAS  Google Scholar 

  • Hodson, R. E., Maccubin, A. E., and Pomeroy, L. R., 1981, Dissolved adenosine triphosphate utilization by free-living and attached bacterioplankton, Mar. Biol. 64:43–51.

    CAS  Google Scholar 

  • Hunsley, D., and Burnett, J. H., 1970, The ultrastructural architecture of the walls of some hyphal fungi, J. Gen Microbiol. 66:203–218.

    Google Scholar 

  • Ivarson, K. C., Schnitzer, M., and Cortez, J., 1982, The biodegradability of nucleic acid bases adsorbed on inorganic and organic soil components, Plant Soil 64:343–353.

    CAS  Google Scholar 

  • Jang, S. D., and Condrate, R. A., Sr., 1972a, The IR spectra of lysine adsorbed on several cation-substituted montmorillonites, Clays Clay Miner. 20:79–82.

    CAS  Google Scholar 

  • Jang, S. D., and Condrate, R. A., Sr., 1972b, Infared spectra of a-alanine adsorbed on Cu-montmorillonite, Appl. Spectrosc. 26:102–104.

    CAS  Google Scholar 

  • Keya, S. D., and Alexander, M., 1975, Factors affecting growth of Bdellovibrio on Rhizobium, Arch. Microbiol. 103:37–43.

    CAS  Google Scholar 

  • Kirchman, D., 1983, The production of bacteria attached to particles suspended in a freshwater pond, Limnol. Oceanogr. 28:858–872.

    Google Scholar 

  • Kiremidjian, L., and Stotzky, G., 1973, Effects of natural microbial preparations on the electrokinetic potential of bacterial cells and clay minerals, Appl. Microbiol. 25:964–971.

    PubMed  CAS  Google Scholar 

  • Kiremidjian, L., and Stotzky, G., 1975, Influence of mono- and multivalent cations on the electrokinetic properties of adult Rana pipiens kidney cells, J. Cell. Physiol. 85:125–134.

    PubMed  CAS  Google Scholar 

  • Kiremidjian, L., and Stotzky, G., 1976, Influence of mono- and multivalent cations on the electrokinetic properties of normal human lymphoid and Burkitt lymphoma cells, Experientia 32:312–314.

    Google Scholar 

  • Kjelleberg, S., Humphrey, B. A., and Marshall, K. C., 1982, Effect of interfaces on small, starved marine bacteria, Appl. Environ. Microbiol. 43:1166–1172.

    PubMed  CAS  Google Scholar 

  • Kjelleberg, S., Humphrey, B. A., and Marshall, K. C., 1983, Initial phases of starvation and activity of bacteria at surfaces, Appl. Environ. Microbiol. 46:978–984.

    PubMed  CAS  Google Scholar 

  • Kloepper, J. W., Leong, J., Teintze, M., and Schroth, M. N., 1980, Pseudomonas siderophores: A mechanism explaining disease-suppressive soils, Curr. Microbiol. 4:317–320.

    CAS  Google Scholar 

  • Krasil’nikov, N. A., 1958, Soil Microorganisms and Higher Plants, Akad. Nauk SSSR, Moscow (translated by Israel Program Sci. Transl., Washington, D.C., 1961).

    Google Scholar 

  • Krumins, S., and Stotzky, G., 1980, Protein-membrane interactions: Equilibrium adsorption and binding of proteins and poly amino acids to erythroblasts transformed by Friend virus, Cell Biol. Int. Rep. 4:1131–1141.

    PubMed  CAS  Google Scholar 

  • Krumins, S., and Stotzky, G., 1982, Scanning electron microscopy studies of interactions of proteins and polyamino acids with erythroblasts transformed by Friend virus, Cell Biol. Int. Rep. 6:443–453.

    PubMed  CAS  Google Scholar 

  • Krumins, S., and Stotzky, G., 1983, Protein-membrane interactions: Specific vs. non-specific adsorption and binding of proteins and a polyamino acid on erythroblasts transformed by Friend virus, Cell Biol. Int. Rep. 7:625–635.

    PubMed  CAS  Google Scholar 

  • Kunc, F., and Stotzky, G., 1974, Effect of clay minerals on heterotrophic microbial activity in soil, Soil Sci. 118:186–195.

    CAS  Google Scholar 

  • Kunc, F., and Stotzky, G., 1977, Acceleration of aldehyde decomposition in soil by montmorillonite, Soil Sci. 124:167–172.

    CAS  Google Scholar 

  • Kunc, F., and Stotzky, G., 1980, Acceleration by montmorillonite of nitrification in soil, Folia Microbiol. (Prague) 25:106–125.

    CAS  Google Scholar 

  • Labeda, D. P., Liu, K.-C., and Casida, L. E., Jr., 1976, Colonization of soil by Arthrobacter and Pseudomonas under varying conditions of water and nutrient availability as studied by plate counts and transmission electron microscopy, Appl. Environ. Microbiol. 31:551–561.

    PubMed  CAS  Google Scholar 

  • Lahav, N., 1962, Adsorption of sodium bentonite particles on Bacillus subtilis, Plant Soil 17:191–208.

    CAS  Google Scholar 

  • Lailach, G. E., Thompson, T. D., and Brindley, G. W., 1968, Adsorption of pyrimidines, purines, and nucleosides by Li-, Na-, Mg-, and Ca-montmorillonite (clay-organic studies XII), Clays Clay Miner. 16:285–293.

    Google Scholar 

  • Lavie, S., and Stotzky, G., 1981, Effects of clay minerals on respiration and growth of Histoplasma capsulatum, Abstr. Annu. Meet. Am. Soc. Microbiol, p. 316.

    Google Scholar 

  • Lee, K. W., Davey, B. G., and Low, P. F., 1970, Effect of the sol-gel transformation in clay-water systems on biological activity. I. Seed germination and bacterial thermogenesis, Soil Sci. Soc. Am. Proc. 34:45–49.

    CAS  Google Scholar 

  • Lipson, S. M., and Stotzky, G., 1983, Adsorption of reovirus to clay minerals: Effects of cation exchange capacity, cation saturation, and surface area, Appl. Environ. Microbiol. 46:673–682.

    PubMed  CAS  Google Scholar 

  • Lipson, S. M., and Stotzky, G., 1984a, Adsorption of viruses to particulates: Possible effects on virus survival, in: Viral Ecology (A. H. Misra and H. Polasa, eds.), South Asian Publishers, New Delhi, pp. 165–178.

    Google Scholar 

  • Lipson, S. M., and Stotzky, G., 1984b, Effect of proteins on reovirus adsorption to clay minerals, Appl. Environ. Microbiol. 48:525–530.

    PubMed  CAS  Google Scholar 

  • Lipson, S. M., and Stotzky, G., 1985a, Infectivity of reovirus adsorbed to homoionic and mixed cation clays, Water Res., in press.

    Google Scholar 

  • Lipson, S. M., and Stotzky, G., 1985b, Specificity of virus adsorption to clay minerals, Can. J. Microbiol., in press.

    Google Scholar 

  • Lockhart, N. C., 1980a, Electrical properties and the surface characteristics and structure of clays. I. Swelling clays, J. Colloid Interface Sci. 74:509–519.

    CAS  Google Scholar 

  • Lockhart, N. C., 1980b, Electrical properties and the surface characteristics and structure of clays. II. Kaolinite—a nonswelling clay, J. Colloid Interface Sci. 74:520–529.

    CAS  Google Scholar 

  • Low, P. F., 1960, Viscosity of water in clay systems, Clays Clay Miner. 8:170–182.

    CAS  Google Scholar 

  • Low, P. F., 1961, Physical chemistry of clay-water interactions, Adv. Agron. 13:269–327.

    CAS  Google Scholar 

  • Low, P. F., 1962, Effect of quasi-crystalline water on rate processes involved in plant nutrition, Soil Sci. 93:6–15.

    CAS  Google Scholar 

  • Low, P. F., 1979, Nature and properties of water in montmorillonite-water systems, Soil Sci. Soc. Am. J. 43:651–658.

    CAS  Google Scholar 

  • McCormick, R. W., and Wolfe, D. C., 1979a, Effect of montmorillonite and trace elements on the growth of Penicillium frequentans. I. Ammonium nitrogen source, Soil Sci. Soc. Am. J. 43:1114–1120.

    CAS  Google Scholar 

  • McCormick, R. W., and Wolf, D. C., 1979b, Effect of montmorillonite and trace elements on the growth of Penicillium frequentans. II. Nitrate nitrogen source, Soil Sci. Soc. Am. J. 43:1120–1124.

    CAS  Google Scholar 

  • McLaren, A. D., 1954, The adsorption and reactions of enzymes and proteins on kaolinite, I, J. Phys. Chem. 58:129–137.

    CAS  Google Scholar 

  • McLaren, A. D., and Skujins, J., 1968, The physical environment of microorganisms in soil, in: The Ecology of Soil Bacteria (T. R. G. Gray and D. Parkinson, eds.), Liverpool University Press, Liverpoool, pp. 3–24.

    Google Scholar 

  • McLaren, A. D., Peterson, G. H. and Barshad, I., 1958, The adsorption and reactions of enzymes and proteins on clay minerals. IV. Kaolinite and montmorillonite, Soil Sci. Soc. Am. Proc. 22:239–244.

    CAS  Google Scholar 

  • MacRitchie, F., and Alexander, A. E., 1963, Kinetics of adsorption of proteins at interfaces. III. The role of electrical barriers in adsorption, J. Colloid Sci. 18:464–469.

    Google Scholar 

  • Macura, J., and Stotzky, G., 1980, Effect of montmorillonite and kaolinite on nitrification in soil, Folia Microbiol. (Prague) 25:90–105.

    CAS  Google Scholar 

  • Mahler, H. R., and Cordes, E. H., 1969, Basic Biological Chemistry, Harper & Roe, New York.

    Google Scholar 

  • Marshall, C. E., 1964, The Physical Chemistry and Mineralogy of Soils, Wiley, New York.

    Google Scholar 

  • Marshall, K. C., 1968, Interaction between colloidal montmorillonite and cells of Rhizobium species with different ionogenic surfaces, Biochim. Biophys. Acta 156:179–186.

    PubMed  CAS  Google Scholar 

  • Marshall, K. C., 1969, Studies by microelectrophoretic and microscopic techniques of the sorption of illite and montmorillonite to rhizobia, J. Gen. Microbiol. 56:301–306.

    CAS  Google Scholar 

  • Marshall, K. C., 1976, Interfaces in Microbial Ecology, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Marshall, K. C., 1980a, Adsorption of microorganisms to soils and sediments, in: Adsorption of Microorganisms to Surfaces (G. Bitton and K. C. Marshall, eds.), Wiley, New York, pp. 317–330.

    Google Scholar 

  • Marshall, K. C., 1980b, Bacterial adhesion in natural environments, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), Horwood, Chichester, pp. 187–196.

    Google Scholar 

  • Marshall, K. C., and Roberts, J. F. J., 1963, Influence of fine particle materials on survival of Rhizobium trifolii in sandy soil, Nature (London) 198:410–411.

    Google Scholar 

  • Martin, J. P., Filip, Z., and Haider, K., 1976, Effect of montmorillonite and humate on growth and metabolic activity of some actinomycetes, Soil Biol Biochem. 8:409–413.

    CAS  Google Scholar 

  • Martin, S. M., and Adams, G. A., 1965, A survey of fungal polysaccharides, Can. J. Microbiol. 2:715–719.

    Google Scholar 

  • Meadows, P. S., and Anderson, J. G., 1966, Microorganisms attached to marine and freshwater sand grains, Nature (London) 212:1059–1060.

    Google Scholar 

  • Michaels, A. S., 1958, Deflocculation of kaolinite by the alkali polyphosphates, Ind. Eng. Chem. 50:951–958.

    CAS  Google Scholar 

  • Mortland, M. M., 1970, Clay-organic complexes and interactions, Adv. Agron. 22:75–117.

    CAS  Google Scholar 

  • Mysels, K. J., 1967, Introduction to Colloid Chemistry, Wiley, New York.

    Google Scholar 

  • Nanfara, M., and Stotzky, G., 1979, Protection of microorganisms by clay minerals against hypertonic osmotic pressures, Abstr. Annu. Meet. Am. Soc. Microbiol, p. 189.

    Google Scholar 

  • Neihof, R. A., and Loeb, G. I., 1972, The surface charge of particulate matter in seawater, Limnol. Oceanogr. 17:7–16.

    CAS  Google Scholar 

  • Neihof, R. A., and Loeb, G. I., 1974, Dissolved organic matter in seawater and the electric charge of immersed surfaces, J. Mar. Res. 32:5–12.

    CAS  Google Scholar 

  • Neilands, J. B., 1973, Microbial iron transport compounds (siderochromes), in: Inorganic Biochemistry (G. L. Eichorn, ed.), Elsevier, Amsterdam, pp. 167–202.

    Google Scholar 

  • Neilands, J. B., 1981a, Iron absorption and transport in microorganisms, Annu. Rev. Nutr. 1:27–46.

    PubMed  CAS  Google Scholar 

  • Neilands, J. B., 1981b, Microbial iron compounds, Annu. Rev. Biochem. 50:715–731.

    PubMed  CAS  Google Scholar 

  • Nikitin, D. I., Vasil’eva, L. V., and Lokhmacheva, R. A., 1966, New and Rare Forms of Soil Microorganisms, Nauka, Moscow.

    Google Scholar 

  • Norrish, K., 1954, The swelling of montmorillonite, Discuss. Faraday Soc. 18:120–134.

    CAS  Google Scholar 

  • Olness, A., and Clapp, C. E., 1972, Microbial degradation of a montmorillonite-dextran complex, Soil Sci. Soc. Am. Proc. 36:179–181.

    CAS  Google Scholar 

  • Osa-Afiana, L. O., and Alexander, M., 1982, Clays and the survival of Rhizobium in soil during desiccation, Soil Sci. Soc. Amer. J. 46:285–288.

    Google Scholar 

  • Oxender, D. L., 1972, Amino acid transport in microorganisms, in: Metabolic Pathways, Volume VI (L. E. Hokin, ed.), Academic Press, New York, pp. 133–172.

    Google Scholar 

  • Parfitt, R. L., and Greenland, D. J., 1970, Adsorption of polysaccharides by montmorillonite, Soil Sci. Soc. Am. Proc. 34:862–866.

    CAS  Google Scholar 

  • Parks, G. A., 1965, The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems, Chem. Rev. 65:177–198.

    CAS  Google Scholar 

  • Parsons, J. W., and Tinsley, J., 1975, Nitrogenous substances, in: Soil Components, Volume 1 (J. E. Gieseking, ed.), Springer-Verlag, Berlin, pp. 263–304.

    Google Scholar 

  • Pedros-Alio, C., and Brock, T. D., 1983, The importance of attachment to particles for planktonic bacteria, Arch. Hydrobiol. 98:354–379.

    Google Scholar 

  • Peele, T. C., 1936, Adsorption of bacteria by soils, Cornell Univ. Exp. Sta. Mem. 197.

    Google Scholar 

  • Pethica, B. A., 1980, Microbial and cell adhesion, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), Horwood, Chichester, pp. 19–46.

    Google Scholar 

  • Pett, D. M., Vanaman, T. C., and Joklik, W. K., 1973, Studies on the amino and carboxyl terminal amino acid sequences of reovirus capsid polypeptides, Virology 52:174–186.

    PubMed  CAS  Google Scholar 

  • Philen, O. D., Jr., Weed, S. B., and Weber, J. B., 1971, Surface charge characterization of layer silicates by competitive adsorption of two organic divalent cations, Clays Clay Miner. 19:295–302.

    CAS  Google Scholar 

  • Pinck, L. A., and Allison, F. E., 1951, Resistance of a protein-montmorillonite complex to decomposition by soil microorganisms, Science 114:131.

    Google Scholar 

  • Poindexter, J. S., 1981, Oligotrophy: Fast and famine existence, in: Advances in Microbial Ecology, Volume 5 (M. Alexander, ed.), Plenum Press, New York, pp. 63–89.

    Google Scholar 

  • Powell, P. E., Cline, G. R., Reid, C. P. P., and Szaniszlo, P. J., 1980, Occurrence of hydroxamate siderophore iron chelators in soils, Nature (London) 287:833–834.

    CAS  Google Scholar 

  • Powell, P. E., Cline, G. R., Reid, C. P. P., and Szaniszlo, P. J., 1981, Factors affecting the concentration of hydroxamate siderophores in soil solution, Abstr. Annu. Meet. Am. Soc. Microbiol, p. 184.

    Google Scholar 

  • Powell, P. E., Szaniszlo, P. J., and Reid, C. P. P., 1983, Confirmation of occurrence of hydroxamate siderophores in soil by a novel Escherichia coli bioassay, Appl. Environ. Microbiol. 46:1080–1083.

    PubMed  CAS  Google Scholar 

  • Rao, S. R., 1972, Surface Phenomena, Hutchinson, London.

    Google Scholar 

  • Reisinger, O., Fargues, J., Robert, P., and Arnold, M.-F., 1977, Effet de l’argile sur la conservation des micro-organismes. I. Etude ultrastructurale de la biodegradation dans le sol de l’hyphomycete entomopathogene Beauveria bassiana (Bals.) Vuill., Ann. Microbiol. 128B:271–287.

    Google Scholar 

  • Rich, C. I., and Kunze, G. W. (eds.), 1964, Soil Clay Mineralogy, University of North Carolina Press, Chapel Hill.

    Google Scholar 

  • Rogers, H. J., Perkins, H. R., and Ward, J. B., 1980, Microbial Cell Walls and Membranes, Chapman & Hall, London.

    Google Scholar 

  • Roper, M. M., and Marshall, K. C., 1974, Modification of the interaction between Escherichia coli and bacterio-phage in saline sediment, Microb. Ecol. 1:1–13.

    Google Scholar 

  • Roper, M. M., and Marshall, K. C., 1978a, Effect of clay particle size on clay-Escherichia coft-bacteriophage interactions, J. Gen. Microbiol. 106:187–189.

    Google Scholar 

  • Roper, M. M., and Marshall, K. C., 1978b, Effects of a clay mineral on microbial predation and parasitism of Escherichia coli, Microbiol. Ecol. 4:279–289.

    Google Scholar 

  • Rosan, B., Appelbaum, B., Campbell, L. K., Knox, K. W., and Wicken, A. J., 1982, Chemostat studies of the effect of environmental control on Streptococcus sanguis adherence to hydroxyapatite, Infect. Immun. 35:64–70.

    PubMed  CAS  Google Scholar 

  • Rosenzweig, W. D., and Stotzky, G., 1979, Influence of environmental factors on antagonism of fungi by bacteria in soil: Clay minerals and pH, Appl. Environ. Microbiol. 38:1120–1126.

    PubMed  CAS  Google Scholar 

  • Rosenzweig, W. D., and Stotzky, G., 1980, Influence of environmental factors on antagonism of fungi by bacteria in soil: Nutrient levels, Appl. Environ. Microbiol. 39:354–360.

    PubMed  CAS  Google Scholar 

  • Rutter, P. R., and Vincent, B., 1980, The adhesion of micro-organisms to surfaces: Physicochemical aspects, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), Horwood, Chichester, pp. 79–92.

    Google Scholar 

  • Santoro, T., and Stotzky, G., 1967a, Effect of electrolyte composition and pH on the particle size distribution of microorganisms and clay minerals as determined by the electrical sensing zone method, Arch. Biochem. Biophys. 122:664–669.

    CAS  Google Scholar 

  • Santoro, T., and Stotzky, G., 1967b, Influence of cations on flocculation of clay minerals by microbial metabolites as determined by the electrical sensing zone particle analyzer, Soil Sci. Soc. Am. Proc. 31:761–765.

    CAS  Google Scholar 

  • Santoro, T., and Stotzky, G., 1967c, Effect of cations and pH on the electrophoretic mobility of microbial cells and clay minerals, Bacteriol. Proc. A15.

    Google Scholar 

  • Santoro, T., and Stotzky, G., 1968, Sorption between microorganisms and clay minerals as determined by the electrical sensing zone particle analyzer, Can. J. Microbiol. 14:299–307.

    PubMed  CAS  Google Scholar 

  • Santoro, T., Stotzky, G., and Rem, L. T., 1967, The electrical sensing zone particle analyzer for measuring germination of fungal spores in presence of other particles, Appl. Microbiol. 15:935–939.

    PubMed  CAS  Google Scholar 

  • Scher, F. M., and Baker, R. R., 1982, Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens, Phytopathology 72:1567–1573.

    CAS  Google Scholar 

  • Schiffenbauer, M., and Stotzky, G., 1982, Adsorption of coliphages T1 and T7 to clay minerals, Appl. Environ. Microbiol. 43:590–596.

    PubMed  CAS  Google Scholar 

  • Schiffenbauer, M., and Stotzky, G., 1983, Adsorption of coliphages T1 and T7 to host and nonhost microbes and to clay minerals, Curr. Microbiol. 8:245–259.

    CAS  Google Scholar 

  • Schiffenbauer, M., and Stotzky, G., 1984, Adsorption and desorption of coliphages T1 and T7 to and from kaolinite and montmorillonite and the lytic capabilities of clay-coliphage complexes, Can J. Microbiol, submitted for publication.

    Google Scholar 

  • Schnitzer, M., and Khan, S. U., 1972, Humic Substances in the Environment, Dekker, New York.

    Google Scholar 

  • Schnitzer, M., and Kodama, H., 1977, Reactions of minerals with soil humic substances, in: Minerals in Soil Environments (J. B. Dixon and S. B. Weed, eds.), Soil Science Society of America, Madison, Wise, pp. 741–770.

    Google Scholar 

  • Schroth, M. N., and Hancock, J. G., 1982, Disease-suppressive soil and root-colonizing bacteria, Science 216:1376–1381.

    PubMed  CAS  Google Scholar 

  • Shields, P. A., and Farrah, S. R., 1983, Influence of salts on electrostatic interactions between poliovirus and membrane filters, Appl. Environ. Microbiol. 45:526–531.

    PubMed  CAS  Google Scholar 

  • Skinner, F., 1956, The effect of adding clays to mixed cultures of Streptomyces albidoflavus and Fusarium culmorum, J. Gen. Microbiol. 14:393–405.

    CAS  Google Scholar 

  • Smith, J. B., and Berry, D. R., 1974, An Introduction to Biochemistry of Fungal Development, Academic Press, New York.

    Google Scholar 

  • Sorensen, L. H., 1972, Stabilization of newly-formed amino acid metabolites in soil by clay minerals, Soil Sci. 114:5–11.

    Google Scholar 

  • Sorensen, L. H., 1975, The influence of clay on the rate of decay of amino acid metabolites synthesized in soil during decomposition of cellulose, Soil Biol. Biochem. 7:171–177.

    CAS  Google Scholar 

  • Soulides, D. A., 1969, Antibiotic tolerance of the soil microflora in relation to type of minerals, Soil Sci. 107:105–107.

    CAS  Google Scholar 

  • Sposito, G., 1981, The operational definition of zero point of charge in soils, Soil Sci. Soc. Am. J. 45:292–297.

    CAS  Google Scholar 

  • Stent, G. S., 1963, Molecular Biology of Bacterial Viruses, Freeman, San Francisco.

    Google Scholar 

  • Stevenson, F. J., 1982, Humus Chemistry, Wiley, New York.

    Google Scholar 

  • Stotzky, G., 1965, Replica plating technique for studying microbial interactions in soil, Can. J. Microbiol. 11:629–636.

    PubMed  CAS  Google Scholar 

  • Stotzky, G., 1966a, Influence of clay minerals on microorganisms. II. Effect of various clay species, homoionic clays, and other particles on bacteria, Can. J. Microbiol. 12:831–848.

    PubMed  CAS  Google Scholar 

  • Stotzky, G., 1966b, Influence of clay minerals on microorganisms. III. Effect of particle size, cation exchange capacity, and surface area on bacteria, Can. J. Microbiol. 12:1235–1246.

    PubMed  CAS  Google Scholar 

  • Stotzky, G., 1967, Clay minerals and microbial ecology, Trans. N.Y. Acad. Sci. II 20:11–21.

    Google Scholar 

  • Stotzky, G., 1970, Further observations on the apparent relation between clay mineralogy and geographic distribution of human pathogens in soil, 10th Int. Congr. Microbiol, (abstract).

    Google Scholar 

  • Stotzky, G., 1971, Ecologic eradication of fungi—Dream or reality?, in: Histoplasmosis, Proceedings of the Second National Conference (M. L. Furcolow and E. W. Chick, eds.), Thomas, Springfield, Ill., pp. 477–486.

    Google Scholar 

  • Stotzky, G., 1973, Techniques to study interactions between microorganisms and clay minerals in vivo and in vitro, Bull. Ecol. Res. Comm. (Stockholm) 17:17–28.

    CAS  Google Scholar 

  • Stotzky, G., 1974, Activity, ecology, and population dynamics of microorganisms in soil, in: Microbial Ecology(A. I. Laskin and H. Lechevalier, eds.), Chemical Rubber Co., Cleveland, pp. 57–135.

    Google Scholar 

  • Stotzky, G., 1980, Surface interactions between clay minerals and microbes, viruses, and soluble organics, and the probable importance of these interactions to the ecology of microbes in soil, in: Microbial Adhesion to Surfaces(R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), Horwood, Chichester, pp. 231–249.

    Google Scholar 

  • Stotzky, G., and Babich, H., 1980, Physicochemical factors that affect the toxicity of heavy metals to microbes in aquatic habitats, in: Proceedings of the ASM Conference on Aquatic Microbial Ecology (R. R. Colwell and J. Foster, eds.), University of Maryland, College Park, pp. 181–203.

    Google Scholar 

  • Stotzky, G., and Babich, H., 1984, Fate of genetically-engineered microbes in natural environment, Recomb. DNA Tech. Bull. 7:167–191.

    Google Scholar 

  • Stotzky, G., and Burns, R. G., 1982, The soil environment: Clay-humus-microbe interactions, in: Experimental Microbial Ecology (R. G. Burns and J. H. Slater, eds.), Blackwell, Oxford, pp. 105–133.

    Google Scholar 

  • Stotzky, G., and Krasovsky, V. N., 1981, Ecological factors that affect the survival, establishment, growth, and genetic recombination of microbes in natural habitats, in: Molecular Biology, Pathogenicity, and Ecology of Bacterial Plasmids (S. B. Levy, R. C. Clowes, and E. L. Koenig, eds.), Plenum Press, New York, pp. 31–42.

    Google Scholar 

  • Stotzky, G., and Martin, R. T., 1963, Soil mineralogy in relation to the spread of Fusarium wilt of banana in Central America, Plant Soil 18:317–338.

    CAS  Google Scholar 

  • Stotzky, G., and Mortensen, J. L., 1957, The effect of crop residue and nitrogen additions on the decomposition of an Ohio muck soil, Soil Sci. 83:165–174.

    Google Scholar 

  • Stotzky, G., and Mortensen, J. L., 1958, Effect of addition level and maturity of rye tissue on the decomposition of a muck soil, Soil Sci. Soc. Am. Proc. 22:521–524.

    CAS  Google Scholar 

  • Stotzky, G., and Post, A. H., 1967, Soil mineralogy as possible factor in geographic distribution of Histoplasma capsulatum, Can. J. Microbiol. 13:1–7.

    CAS  Google Scholar 

  • Stotzky, G., and Rem, L. T., 1966, Influence of clay minerals on microorganisms. I. Montmorillonite and kaolinite on bacteria, Can. J. Microbiol. 12:547–563.

    PubMed  CAS  Google Scholar 

  • Stotzky, G., and Rem, L. T., 1967, Influence of clay minerals on microorganisms. IV. Montmorillonite and kaolinite on fungi, Can. J. Microbiol. 13:1535–1550.

    PubMed  CAS  Google Scholar 

  • Stotzky, G., and Schenck, S., 1976, Volatile organic compounds and microorganisms, Crit. Rev. Microbiol. 4:333–382.

    CAS  Google Scholar 

  • Stotzky, G., Dawson, J. E., Martin, R. T., and ter Kuile, G. H. H., 1961, Soil mineralogy as a factor in the spread of Fusarium wilt of banana, Science 133:1483–1485.

    PubMed  CAS  Google Scholar 

  • Stotzky, G., Schiffenbauer, M., Lipson, S. M., and Yu, B. H., 1981, Surface interactions between viruses and clay minerals and microbes: Mechanisms and implications, in: Viruses and Wastewater Treatment (M. Goddard and M. Butler, eds.), Pergamon Press, Elmsford, N.Y., pp. 199–204.

    Google Scholar 

  • Sutherland, I. W., 1980, Polysaccharides in the adhesion of marine and freshwater bacteria, in: Microbiol Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), Horwood, Chichester, pp. 329–338.

    Google Scholar 

  • Sutherland, I. W., 1983, Microbial exopolysaccharides—Their role in microbial adhesion in aqueous systems, Crit. Rev. Microbiol. 10:173–200.

    PubMed  CAS  Google Scholar 

  • Swartzen-Allen, L. S., and Matijevic, E., 1974, Surface and colloid chemistry of clays, Chem. Rev. 74:385–400.

    CAS  Google Scholar 

  • Sykes, I. K., and Williams, S. T., 1978, Interactions of actinophage and clays, J. Gen. Microbiol. 108:97–102.

    CAS  Google Scholar 

  • Tadros, T. F., 1980, Particle-surface adhesion, in: Microbial Adhesion to Surfaces (R. C. W. Bekeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), Horwood, Chichester, pp. 93–116.

    Google Scholar 

  • Taylor, D. H., 1981, Interpretation of the adsorption of viruses by clays from their electrokinetic properties, in: Chemistry of Water Reuse (W. J. Cooper, ed.), Ann Arbor Science, Ann Arbor, Mich., pp. 595–612.

    Google Scholar 

  • Theng, B. K. G., 1974, The Chemistry of Clay-Organic Reactions, Wiley, New York.

    Google Scholar 

  • Theng, B. K. G., 1979, Formation and Properties of Clay-Polymer Complexes, Elsevier, Amsterdam.

    Google Scholar 

  • Vandenbergh, P. A., Gonzales, C. F., Wright, A. M., and Kunka, B. S., 1983, Iron-chelating compounds produced by soil pseudomonads: Correlation with fungal growth inhibition, Appl. Environ. Microbiol. 46:128–132.

    PubMed  CAS  Google Scholar 

  • van Olphen, H., 1977, An Introduction to Clay Colloid Chemistry, 2nd ed., Wiley, New York.

    Google Scholar 

  • van Olphen, H., and Fripiat, J. J. (eds.), 1979, Data Handbook for Clay Materials and Other Non-Metallic Minerals, Pergamon Press, Elmsford, N.Y.

    Google Scholar 

  • Ward, J. B., and Berkeley, R. C. W., 1980, The microbial cell surface and adhesion, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), Horwood, Chichester, pp. 47–66.

    Google Scholar 

  • Wardell, J. N., Brown, C.M., and Ellwood, D. C., 1980, A continuous culture study of the attachment of bacteria to surfaces, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), Horwood, Chichester, pp. 221–230.

    Google Scholar 

  • Weinberg, S. R., and Stotzky, G., 1972, Conjugation and genetic recombination of Escherichia coli in soil, Soil Biol. Biochem. 4:171–180.

    Google Scholar 

  • White, R. E., 1979, Introduction to the Principles and Practice of Soil Science, Wiley, New York.

    Google Scholar 

  • Yu, B. H., and Stotzky, G., 1979, Adsorption and binding of herpes-virus hominis type 1 (HSV 1) by clay minerals, Abstr. Annu. Meet. Am. Soc. Microbiol, p. 188.

    Google Scholar 

  • Zvyaginstsev, D., 1973, Interaction between Microorganisms and Solid Surfaces, Moscow University Press, Moscow.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Stotzky, G. (1985). Mechanisms of Adhesion to Clays, with Reference to Soil Systems. In: Savage, D.C., Fletcher, M. (eds) Bacterial Adhesion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6514-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6514-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6516-1

  • Online ISBN: 978-1-4615-6514-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics