Skip to main content

On the Memristive Properties of Slime Mould

  • Chapter
  • First Online:
Advances in Physarum Machines

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 21))

Abstract

Physarum polycephalum has been shown to be a biological computer, capable of solving problems through morphological computation. We present laboratory experiments where Physarum was investigated as a component of electronic or wet-ware computers. We find that \(I-T\) electronic signals consistent in time-scale with shuttle transport can be recorded with a sensitive Keithley electrometer. The memristor is a novel non-linear stateful resistor with great promise in neuromorphic computing. We demonstrate that Physarum gives \(I-V\) curves consistent with a memristor and that this response is located in the living cytosol part of the organism (as opposed to the gel outer-body or slime layer). We model the Physarum as an active memristor (a memristor combined with a battery), where the living Physarum metabolism provides energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamatzky, A.: Developing proximity graphs by Physarum polycephalum: does the plasmodium follow toussaint hierarchy? Parallel Process. Lett. 19, 105–127 (2008)

    Article  MathSciNet  Google Scholar 

  2. Adamatzky, A.: Physarum Machines. World Scientific (2010)

    Google Scholar 

  3. Adamatzky, A.: Slime mould tactile sensor. Sens. Actuators B: Chemical 188, 38–44 (2013)

    Article  Google Scholar 

  4. Adamatzky, A.: Towards slime mould colour sensor: recognition of colours by physarum polycephalum. Org. Electron. 14, 3355–3361 (2013)

    Article  Google Scholar 

  5. Adamatzky, A.: Tactile bristle sensors made with slime mold. IEEE Sens. J. 14(14), 324–332 (2014)

    Article  Google Scholar 

  6. Adamatzky, A., Jones, J.: On electrical correlates of physarum polycephalum spatial activity: can we see physarum machine in the dark? Biophys. Rev. Lett. 6, 29–57 (2011)

    Article  Google Scholar 

  7. Borghetti, J., Snider, G.D., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010)

    Article  Google Scholar 

  8. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  9. Chua, L., Sbitnev, V., Kim, H.: Hodgkin-huxley axon is made of memristors. Int. J. Bifurcat. Chaos 22, 1230,011 (48pp) (2012)

    Google Scholar 

  10. Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  11. Ella Gale, B.d.L.C., Adamatzky, A.: Is spiking logic the route to memristor-based computers? In: Proceedings of 2013 IEEE International Conference on Electronics, Circuits and Systems, pp. 297–300 (2013)

    Google Scholar 

  12. Gale, E.: The memory-conservation theory of memristance. Proceedings of UKSIM-AMSS 16th International Conference on Simulation and Modelling 95, 598–603 (2014)

    Google Scholar 

  13. Gale, E., Pearson, D., Kitson, S., Adamatzky, A., de Lacy Costello, B.: The effect of changing electrode metal on solution-processed flexible titanium dioxide memristors. Mater. Phys. Chem. 162, 20–30 (2015)

    Google Scholar 

  14. Gale E. de Lacy Costello B., Adamatzky, A.: Electronic measurement light response of physarum polycephalum. Forthcoming (2015)

    Google Scholar 

  15. Georgiou, P., Yaliraki, S., Drakakis, E., Barahona, M.: Quantitative measure of hysteresis for memristors through explicit dynamics. Proc. Roy. Soc. A 468, 2210–2229 (2012)

    Article  MathSciNet  Google Scholar 

  16. Howard, G.D., Gale, E., Bull, L., de Lacy Costello, B. Adamatzky, A.: Evolution of plastic learning in spiking networks via memristive connections. IEEE Trans. Evol. Comput. 16, 711–719 (2012)

    Google Scholar 

  17. Itoh, M., Chua, L.: Memristor oscillators. Int. J. Bifurcat. Chaos 18, 3183–3206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as a synapse in neuromorphic systems. Nanoletters 10, 1297–1301 (2010)

    Article  Google Scholar 

  19. Johnsen, G.K., Lütken, C.A., Martinsen, O.G., Grimnes, S.: Memristive model of electro-osmosis in skin. Phys. Rev. E 83, 031–916 (2011). doi:10.1103/PhysRevE.83.031916. http://link.aps.org/doi/10.1103/PhysRevE.83.031916

  20. Kosta, S., Kosta, Y., Bhatele, M., Dubey, Y., Gaur, A., Kosta, S., Gupta, J., Patel, A., Patel, B.: Human blood liquid memristor. Int. J. Med. Eng. Informatics 16–29 (2011)

    Google Scholar 

  21. Kosta, S.P., Kosta, Y., Gaur, A., Dube, Y.M., Chuadhari, J.P., Patoliya, J., Kosta, S., Panchal, P., Vaghela, P., Patel, K., Patel, B., Bhatt, R., Patel, V.: New vistas of electronics towards biological (biomass) sensors. Int. J. Acad. Res. 511–526 (2011)

    Google Scholar 

  22. de Lacy Costello, B., Adamatzky, A.: Assessing the chemotaxis behavior of Physarum polycephalum to a range of simple volatile organic chemicals. Commun. Interfrative Biol. 6 (2013)

    Google Scholar 

  23. Nakagaki, T., Yamada, H., Toth, A.: Maze-solving by an amoeboid organism. Nature 407(6803), 470 (2000). doi:10.1038/35035159. http://dx.doi.org/10.1038/35035159

    Google Scholar 

  24. Pershin, Y.V., Di Ventra, M.: Experimental demonstration of associative memory with memristive neural networks. Neural Networks 23(7), 881–886 (2010). doi:10.1016/j.neunet.2010.05.001. http://dx.doi.org/10.1016/j.neunet.2010.05.001

    Google Scholar 

  25. Pershin, Y.V., Fontaine, S.L., di Ventra, M.: Memristive model of amoeba’s learning. Phys. Rev. E 80, 021,926 (6 pages) (2009)

    Google Scholar 

  26. Angelica, C., Alice, D., Tatiana, B., Victor, E., On the loading of slime mold physarum polycephalum with microparticles for unconventional computing application. J BioNanoScience 4(1) 2191–630 (2014)

    Google Scholar 

  27. Saigusa, T., Tero, A., Nakagaki, T., Kuramoto, Y.: Amoebae anticipate periodic events. Phys. Rev. Lett. 100, 018,101 (2008). doi:10.1103/PhysRevLett.100.018101. http://link.aps.org/doi/10.1103/PhysRevLett.100.018101

  28. Smerieri, A., Berzina, T., Erokhin, V., Fontana, M.P.: Polymeric electrochemical element for adaptive networks: pulse mode. J. Appl. Phys. 104(11), 114513 (2008). doi:10.1063/1.3033399. http://scitation.aip.org/content/aip/journal/jap/104/11/10.1063/1.3033399

    Google Scholar 

  29. Stanley Williams, R.: Aftermath of Finding the Memristor. In: Adamatzky, A. et al. (eds.) Chaos, CNN, Memristors and Beyond: A Festschrift for Leon Chua (With DVD-ROM, Composed by Eleonora Bilotta). Andrew, A. et al. (eds.) World Scientific Publishing Co., Pte. Ltd., 2013. pp. 490–493, ISBN #9789814434805, pp. 490–493 (2013). doi:10.1142/9789814434805_0039

    Google Scholar 

  30. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  31. Tian, B., Liu, J., Dvir, T., Jin, L., Tsui, J.H., Qing, Q., Suo, Z., Langer, R., Kohane, D.S., Lieber, C.M.: Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nature Mater. 11, 986994 (2012). doi:10.1038/nmat3404. http://www.nature.com/nmat/journal/v11/n11/full/nmat3404.html

    Google Scholar 

  32. Valov, I., Linn, E., Tappertzhofen, S., Schmelzer, S., van den Hurk, J., Lentz, F., Waser, R.: Nanobatteries in redox-based resistive switches require extension of memristor theory. Nature Commun. 4(1771), 9 (2013)

    Google Scholar 

  33. Whiting, J.G., de Lacy Costello, B.P., Adamatzky, A.: Towards slime mould chemical sensor: mapping chemical inputs onto electrical potential dynamics of physarum polycephalum. Sens. Actuators B Chemical 191, 844–853 (2014). doi:10.1016/j.snb.2013.10.064. http://www.sciencedirect.com/science/article/pii/S0925400513012501

    Google Scholar 

  34. Zamarreno-Ramos, C., nas, L.A.C., Pérez-Carrasco, J.A., Masquelier, T., Serrano-Gotarredona, T., Linares-Barranco, B.: On spike-timing dependent plasticity, memristive devices and building a self-learning visual cortex. Front. Neuormorphic Eng. 5, 26(1)–26(20) (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ella Gale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gale, E., Adamatzky, A., de Lacy Costello, B. (2016). On the Memristive Properties of Slime Mould. In: Adamatzky, A. (eds) Advances in Physarum Machines. Emergence, Complexity and Computation, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-26662-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26662-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26661-9

  • Online ISBN: 978-3-319-26662-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics