Skip to main content

X-Ray and EELS Imaging

  • Chapter
  • First Online:
Transmission Electron Microscopy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

General References

  • Jollife IT (2002) Principal Component Analysis, 2nd edn. Springer, New York

    Google Scholar 

  • Keenan MR (2007) Multivariate analysis of spectral images composed of count data. In: Grahn H, Geladi P (eds) Techniques and applications of hyperspectral image analysis. John Wiley & Sons, Chichester

    Google Scholar 

  • Keenan MR (2009) Exploiting spatial-domain simplicity in spectral image analysis. Surf Int Anal 41:79–87

    Article  Google Scholar 

  • Legge GJF, Hammond I (1979) Total quantitative recording of elemental maps and spectra with a scanning microprobe. J Microsc 117:201–210

    Article  Google Scholar 

  • Lyman CE, Friel JJ (2006) X-ray mapping in electron-beam instruments. Microsc Microanal 12:2–25

    Google Scholar 

  • Malinowski ER (2002) Factor Analysis in Chemistry, 3rd edn. Wiley, New York.

    Google Scholar 

  • See papers in Ultramicroscopy Vol. 28, Issues 1–4, Pages 1–368 (1989) from the NSF/CNRS Workshop entitled, Electron-beam induced spectroscopies with high spatial resolution, Aussois, France 1988.

    Google Scholar 

Specific References

  • Anderson IM (1998) Multivariate statistical analysis of low-voltage EDS spectrum images. Microsc Microanal 4(2):272–273

    Google Scholar 

  • Bonnet N (1998) Multivariate statistical methods for the analysis of microscope image series: applications in materials science. J Microsc 190(1–2):2–18

    Article  Google Scholar 

  • Bonnet N, Hannequin P (1989) Chemical mapping and multivariate statistical analysis prospect. Ultramicroscopy 28(1–4):248–251

    Article  Google Scholar 

  • Bonnet N, Brun N, Colliex C (1999) Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis. Ultramicroscopy 77(3–4):97–112

    Article  Google Scholar 

  • Boyce BL, Michael JR, Kotula PG (2004) Fatigue of metallic microdevices and the role of fatigue-induced surface oxides. Acta Mater 52(6):1609–1619

    Article  Google Scholar 

  • Bright DS (2006) Lispix public domain image analysis program for Windows. http://www.nist.gov/lispix

    Google Scholar 

  • Bright DS, Newbury DE (2004) Maximum pixel spectrum: a new tool for detecting and recovering rare, unanticipated features from spectrum image data cubes. J Microsc 216:186–193

    Article  Google Scholar 

  • Cliff G, Lorimer GW (1975) The quantitative analyses of thin specimens. J Microsc 103:203–207

    Article  Google Scholar 

  • Cosslett VE, Duncumb P (1956) Microanalysis by a flying-spot X-ray method. Nature 177:1172–1173

    Article  Google Scholar 

  • ENVI (2013) Commercial generic and multivariate data visualization software. http://www.ittvis.com/envi/

    Google Scholar 

  • Goldstein JI, Jones RH, Kotula PG, Michael JR (2007) Microstructure and thermal history of metal particles in CH chondrites. Meteoritics Planetary Sci 42:913–933

    Article  Google Scholar 

  • Goods SH, Buchheit TE, Janek RP, Michael JR, Kotula PG (2004) Oxide dispersion strengthening of nickel electrodeposits for microsystem applications. Metall Mater Trans 35A(8):2351–2360

    Article  Google Scholar 

  • Gorlen KE, Barden LK, Delpriore JS, Fiori CE, Gibson CC, Leapman RD (1984) Computerized analytical electron-microscope for elemental imaging. Rev Sci Instr 55(6):912–921

    Article  Google Scholar 

  • Guiton BS, Iberi V, Li SZ, Leonard DN, Parish CM, Kotula PG, Varela M, Schatz GC, Pennycook SJ, Camden JP (2011) Correlated Optical Measurements and Plasmon Mapping of Silver Nanorods. Nano Lett 11(8):3482–3488

    Article  Google Scholar 

  • Hunt JA, Williams DB (1991) Electron Energy-Loss Spectrum-Imaging. Ultramicroscopy 38(1):47–73

    Article  Google Scholar 

  • Jeanguillaume C, Colliex C (1989) Spectrum-image: The next step in EELS digital acquisition and processing. Ultramicroscopy 28:252–257

    Article  Google Scholar 

  • Keenan MR, Kotula PG (2003) Apparatus and System for Multivariate Spectral Analysis. US Patent # 6(584):413

    Google Scholar 

  • Keenan MR, Kotula PG (2004a) Accounting noise in the multivariate statistical analysis of TOF-SIMS data. Surf Interf Anal 36:203–212

    Article  Google Scholar 

  • Keenan MR, Kotula PG (2004b) Method of Multivariate Spectral Analysis. US Patent # 6(675):106

    Google Scholar 

  • Keenan MR, Kotula PG (2004c) Multivariate Statistical Analysis of EEL-Spectral Images. Microsc Microanal 10(Suppl. 2):874CD–875CD

    Article  Google Scholar 

  • Keenan MR, Kotula PG (2004d) Optimal Scaling of ToF-SIMS spectrum-images prior to multivariate statistical analysis. Appl Surf Sci 231–232:240–244

    Article  Google Scholar 

  • Kotula PG, Keenan MR (2000) Automated unbiased information extraction of STEM-EDS spectrum images. IoP Conference Series 165:147–148

    Google Scholar 

  • Kotula PG, Keenan MR (2003a) Automated analysis of large (>4Gb) spectral images with efficient out-of-core RAM algorithms. Microsc Microanal 9(Suppl. 2):152–153

    Google Scholar 

  • Kotula PG, Keenan MR (2003b) X-ray Spectral Imaging in the STEM for Microelectronics Failure Analysis. Microsc Microanal 9(Suppl. 2):998–999

    Google Scholar 

  • Kotula PG, Keenan MR (2006) Application of Multivariate Statistical Analysis to STEM X-ray Spectral Images: Interfacial Analysis in Microelectronics. Microsc Microanal 12(6):538–544

    Article  Google Scholar 

  • Kotula PG, Keenan MR, Michael JR (2003a) Automated analysis of EDS spectral images in the SEM: a powerful new microanalysis technique. Microsc Microanal 9(1):1–17

    Article  Google Scholar 

  • Kotula PG, Klenov DO, von Harrach HS (2012) Challenges to Quantitative Multivariate Statistical Analysis of Atomic-Resolution X-Ray Spectral. Microsc Microanal 18:691–698

    Article  Google Scholar 

  • Kotula PG, Michael JR (2006) Spectral Imaging and Multivariate Statistical Analysis from Thin Specimens in the SEM with a Four-Channel Silicon Drift Detector. Microsc Microanal 12(Suppl. 2):1390–1391

    Article  Google Scholar 

  • Loehman RE, Kotula PG (2004) Spectral imaging analysis of interfacial reactions and microstructures in brazing of alumina by a Hf-Ag-Cu alloy. J Am Ceram Soc 87:55–59

    Article  Google Scholar 

  • Mathematicaâ„¢ (2015) Commercial generic and multivariate data analysis software. http://wolfram.com

    Google Scholar 

  • Matlabâ„¢ (2015) Commercial generic and multivariate data analysis software. http://mathworks.com

    Google Scholar 

  • Mayer TM, Elam JW, George SM, Kotula PG, Goeke RS (2003) Atomic-layer deposition of wear-resistant coatings for microelectromechanical devices. Appl Phys Lett 82(17):2883–2885

    Article  Google Scholar 

  • Mott RB, Waldman CG, Batcheler R, Friel JJ (1995) Position tagged spectrometry: A new approach for EDS spectrum imaging. In: Bailey GW, Ellisman MH, Hennigar RA, Zaluzec NJ (eds) Proc. Microscopy Microanalysis. Jones and Begell Publishing., New York, pp 592–593

    Google Scholar 

  • Niculae A, Lechner P, Soltau H, Lutz G, Strüder L, Fiorini C, Longoni A (2006) Optimized readout methods of silicon drift detectors for high-resolution X-ray spectroscopy. Nuclear Instruments and Methods. Physics Research A 568:336–342

    Google Scholar 

  • Oliver JM, Pfeiffer JR, Surviladze Z, Steinberg SL, Leiderman K, Sanders ML, Wofsy C, Zhang J, Fan H-Y, Andrews N, Bunge S, Boyle TJ, Kotula PG, Wilson BS (2003) Membrane Receptor Mapping: The Membrane Topography of FcεRI Signaling. In: Quinn PJ (ed) Membrane Dynamics and Domains. Subcellular Biochemistry, vol 37. Kluwer Academic Press/Plenum Publishers., New York, pp 3–34

    Chapter  Google Scholar 

  • Parish CM, Brennecka GL, Tuttle BA, Brewer LN (2008) Quantitative X-Ray Spectrum Imaging of Lead Lanthanum Zirconate Titanate PLZT Thin-Films. J Am Ceram Soc 91:3690–3697

    Article  Google Scholar 

  • PLS_Toolbox (2016) Commercial multivariate data analysis software. http://eigenvector.com

  • Shelton CT, Kotula PG, Brennecka GL, Lam PG, Meyer KE, Maria J-P, Gibbons BJ, Ihlefeld JF (2012) Chemically Homogeneous Complex Oxide Thin Films Via Improved Substrate Metallization. Adv Functional Mater 22(11):2295–2302

    Article  Google Scholar 

  • Strüder L, Meidinger N, Stotter D, Kemmer J, Lechner P, Leutenegger P, Soltau H, Eggert F, Rohde M, Schulein T (1998) High-resolution X-ray spectroscopy at close to room temperature. Microsc Microanal 4:622–631

    Article  Google Scholar 

  • Tauler R, de Juan A (2013) Multivariate curve resolution home page. http://www.cid.csic.es/homes/rtaqam/tmp/WEB_MCR/welcome.htm

    Google Scholar 

  • Titchmarsh JM (1997) Extraction of Information from STEM-EDX Segregation Profiles Using Multivariate Statistical Analysis. Microsc Microanal S2:937–938

    Google Scholar 

  • Titchmarsh JM (1999) EDX spectrum modeling and multivariate analysis of sub-nanometer segregation. Micron 30:159–171

    Article  Google Scholar 

  • Titchmarsh JM, Dumbill S (1996) Multivariate statistical analysis of FEG-STEM EDX spectra. J Microsc 184(3):195–207

    Article  Google Scholar 

  • Titchmarsh JM, Dumbill S, Vatter IA (1995) Investigation of Interfacial Segregation in Steels Using Multivariate Statistical Analysis of EDX Spectra. Microbeam Analysis. VCH Publishers, New York, NY, pp 259–260

    Google Scholar 

  • Watanabe M, Williams DB (2003) Quantification of elemental segregation to lath and grain boundaries in low-alloy steel by STEM X-ray mapping combined with the ζ-factor method. Z Metallk 94:307–316

    Article  Google Scholar 

  • Watanabe M, Ackland DW, Burrows A, Kiely CJ, Williams DB, Krivanek OL, Dellby N, Murfitt MF, Szilagyi Z (2006) Improvements in the X-ray analytical capabilities of a scanning transmission electron microscope by spherical-aberration correction. Microsc Microanal 12:515–526

    Article  Google Scholar 

  • Weiss JK, Rez P, Higgs AA (1992) A computer-system for imaging and spectroscopy in analytical electron-microscopy. Ultramicroscopy 41:291–301

    Article  Google Scholar 

  • Wilson BS, Pfeiffer JR, Surviladze Z, Steinberg SL, Zhang J, Lieberman K, Kotula PG, Oliver JM (2004) High resolution imaging shows distinct and independent behavior for GPI-anchored proteins, gangliosides and receptors in native membranes. Mol Biol Cell 15(6):2580–2592

    Article  Google Scholar 

  • Yang H, Kotula PG, Sato Y, Ikuhara Y, Browning ND (2013) Segregation of Mn2+ Dopants as Interstitials in SrTiO3 Grain Boundaries. Mater Res Lett. http://dx.doi.org/10.1080/21663831.2013.856815

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Kotula .

Editor information

Editors and Affiliations

Appendix

Appendix

16.1.1 People

Peter Duncumb joined the Tube Investments Lab in 1959 and is credited with first converting the TEM into an AEM by adding a spectrometer – the new instrument was called EMMA.

John J. Friel died aged 70 on February 17, 2015, after slipping on ice. He was a pioneer in bringing modern spectral imaging to the microanalysis community.

16.1.2 Self-Assessment Questions

In setting up for an XEDS spectral image we have an instantaneous count rate from our sample of 3000 counts per second. How long do we have to acquire data from each pixel (total per pixel dwell time) to get 100 counts per spectrum?

16.1.3 Text-Specific Questions

Why can we event-stream or make multiple passes to collect XEDS-SI data but not for an EELS-SI?

We’re setting up for an EELS-SI and notice that we are saturating the detector. Aside from decreasing the dwell time, what else can we do to decrease our signal on the detector without changing the detector collection angle?

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kotula, P. (2016). X-Ray and EELS Imaging. In: Carter, C., Williams, D. (eds) Transmission Electron Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-319-26651-0_16

Download citation

Publish with us

Policies and ethics