Advertisement

13 The Mating-Type Genes of the Basidiomycetes

  • Daniela Freihorst
  • Thomas J. Fowler
  • Kirk Bartholomew
  • Marjatta Raudaskoski
  • J. Stephen Horton
  • Erika Kothe
Chapter
Part of the The Mycota book series (MYCOTA, volume I)

Abstract

Basidiomycete mating-type genes are encoded by two different factors resulting in a tetrapolar mating system where a cross can lead to one of four different reactions, only one of which results in a fertile state. Pairs of homeodomain transcription factors termed HD1 and HD2 classes constitute one factor (b genes in the smut fungi, A genes in the hymenomycete basidiomycetes). With the evolution of basidiomycetes, pheromone/receptor (P/R) systems (a genes in smut fungi and B genes in hymenomycetes) were co-opted to become independent master regulators constituting the second factor. Subsequently, the two sets of genes underwent evolutionary radiation with duplications, inversions and gene shuffling leading to the development of multiallelic HD and P/R systems, each functioning independently of the other. The multiallelic loci each developed many allelic specificities, resulting in tens of thousands of potential mating types for some species. An additional complexity of receptor gene homologues directly involved in mate discrimination has been revealed with the ready availability of genome sequences. Using examples derived from some model species, the molecular nature of the mating-type genes, the evolution of multiallelic and multispecific mating-type loci and the potential roles of newly detected receptor-like genes are discussed.

Keywords

Mating Type Pheromone Receptor Pheromone Response Mating Receptor CAAX Motif 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors very much appreciate the comments and help regarding MrBayes/phylogenetic analysis of Dr. M. Gube and D. Sammer, and we also thank the latter for providing protein data on T. vaccinum. We also would like to gratefully acknowledge the Graduate School JSMC and the Deutsche Forschungsgemeinschaft for funding.

References

  1. Aimi T, Yoshida R, Ishikawa M, Bao D, Kitamoto Y (2005) Identification and linkage mapping of the genes for the putative homeodomain protein (hox1) and the putative pheromone receptor protein homologue (rcb1) in a bipolar basidiomycete, Pholiota nameko. Curr Genet 48(3):184–194. doi: 10.1007/s00294-005-0012-7 PubMedCrossRefGoogle Scholar
  2. Akada R, Minomi K, Kai J, Yamashita I, Miyakawa T, Fukui S (1989) Multiple genes coding for precursors of rhodotorucine A, a farnesyl peptide mating pheromone of the basidiomycetous yeast Rhodosporidium toruloides. Mol Cell Biol 9(8):3491–3498PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anderegg RJ, Betz R, Carr SA, Crabb JW, Duntze W (1988) Structure of Saccharomyces cerevisiae mating hormone a-factor. Identification of S-farnesyl cysteine as a structural component. J Biol Chem 263(34):18236–18240PubMedGoogle Scholar
  4. Anderson CM, Willits DA, Kosted PJ, Ford EJ, Martinez-Espinoza AD, Sherwood JE (1999) Molecular analysis of the pheromone and pheromone receptor genes of Ustilago hordei. Gene 240(1):89–97PubMedCrossRefGoogle Scholar
  5. Asada Y, Yue CL, Wu J, Shen GP, Novotny CP, Ullrich RC (1997) Schizophyllum commune Aα mating-type proteins, Y and Z, form complexes in all combinations in vitro. Genetics 147(1):117–123PubMedPubMedCentralGoogle Scholar
  6. Asante-Owusu RN, Banham AH, Böhnert HU, Mellor EJC, Casselton LA (1996) Heterodimerization between two classes of homeodomain proteins in the mushroom Coprinus cinereus brings together potential DNA-binding and activation domains. Gene 172(1):25–31PubMedCrossRefGoogle Scholar
  7. Badalyan SM, Polak E, Hermann R, Aebi M, Kües U (2004) Role of peg formation in clamp cell fusion of homobasidiomycete fungi. J Basic Microbiol 44(3):167–177. doi: 10.1002/jobm.200310361 PubMedCrossRefGoogle Scholar
  8. Bakkeren G, Kämper J, Schirawski J (2008) Sex in smut fungi: structure, function and evolution of mating-type complexes. Fungal Genet Biol 45:S15–S21. doi: 10.1016/j.fgb.2008.04.005 PubMedCrossRefGoogle Scholar
  9. Bandoni RJ (1965) Secondary control of conjugation in Tremella mesenterica. Can J Bot 43(6):627–630CrossRefGoogle Scholar
  10. Banno I (1967) Studies on the sexuality of Rhodotorula. J Gen Appl Microbiol 13(16):196Google Scholar
  11. Banuett F, Herskowitz I (1989) Different a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis. Proc Natl Acad Sci USA 86(15):5878–5882PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bao D, Gong M, Zheng H, Chen M, Zhang L, Wang H, Jiang J, Wu L, Zhu Y, Zhu G, Zhou Y, Li C, Wang S, Zhao Y, Zhao G, Tan Q (2013) Sequencing and comparative analysis of the straw mushroom (Volvariella volvacea) genome. PLoS One 8(3), e58294. doi: 10.1371/journal.pone.0058294 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Billiard S, Lopez-Villavicencio M, Devier B, Hood ME, Fairhead C, Giraud T (2011) Having sex, yes, but with whom? Inferences from fungi on the evolution of anisogamy and mating types. Biol Rev 86(2):421–442. doi: 10.1111/j.1469-185X.2010.00153.x PubMedCrossRefGoogle Scholar
  14. Blakeslee AF (1904) Zygospore formation a sexual process. Science 19(492):864–866. doi: 10.1126/science.19.492.864 PubMedCrossRefGoogle Scholar
  15. Bölker M, Urban M, Kahmann R (1992) The a mating type locus of U. maydis specifies cell signaling components. Cell 68(3):441–450PubMedCrossRefGoogle Scholar
  16. Brown AJ, Casselton LA (2001) Mating in mushrooms: increasing the chances but prolonging the affair. Trends Genet 17(7):393–400PubMedCrossRefGoogle Scholar
  17. Casselton LA (2008) Fungal sex genes—searching for the ancestors. Bioessays 30(8):711–714. doi: 10.1002/Bies.20782 PubMedCrossRefGoogle Scholar
  18. Casselton LA, Kües U (2007) The origin of multiple mating types in the model mushrooms Coprinopsis cinerea and Schizophyllum commune. In: Heitman J, Kronstad JW, Taylor JW, Casseleton LA (eds) Sex in fungi: molecular determination and evolutionary implications. ASM Press, Washington, DC, pp 283–300CrossRefGoogle Scholar
  19. Casselton LA, Olesnicky NS (1998) Molecular genetics of mating recognition in basidiomycete fungi. Microbiol Mol Biol Rev 62(1):55–70PubMedPubMedCentralGoogle Scholar
  20. Clarke S (1992) Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu Rev Biochem 61:355–386. doi: 10.1146/annurev.bi.61.070192.002035 PubMedCrossRefGoogle Scholar
  21. Coelho MA, Rosa A, Rodrigues N, Fonseca A, Goncalves P (2008) Identification of mating type genes in the bipolar basidiomycetous yeast Rhodosporidium toruloides: first insight into the MAT locus structure of the Sporidiobolales. Eukaryot Cell 7(6):1053–1061. doi: 10.1128/EC.00025-08 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Craigie JH (1927) Discovery of the function of the pycnia of the rust fungi. Nature 120:765–767CrossRefGoogle Scholar
  23. Craigie JH (1931) An experimental investigation of sex in the rust fungi. Phytopathology 21:1001–1040Google Scholar
  24. Czaran TL, Hoekstra RF (2004) Evolution of sexual asymmetry. BMC Evol Biol 4:34. doi: 10.1186/1471-2148-4-34 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Davey J (1992) Mating pheromones of the fission yeast Schizosaccharomyces pombe: purification and structural characterization of M-factor and isolation and analysis of two genes encoding the pheromone. EMBO J 11(3):951PubMedPubMedCentralGoogle Scholar
  26. Davey J (1998) Fusion of a fission yeast. Yeast 14(16):1529–1566, Doi: 10.1002/(SICI)1097-0061(199812)14:16<1529::AID-YEA357>3.0.CO;2-0PubMedCrossRefGoogle Scholar
  27. Davidson RC, Moore TD, Odom AR, Heitman J (2000) Characterization of the MFα pheromone of the human fungal pathogen Cryptococcus neoformans. Mol Microbiol 38(5):1017–1026PubMedCrossRefGoogle Scholar
  28. Devier B, Aguileta G, Hood ME, Giraud T (2009) Ancient trans-specific polymorphism at pheromone receptor genes in basidiomycetes. Genetics 181(1):209–223. doi: 10.1534/genetics.108.093708 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Duplessis S, Cuomo CA, Lin YC, Aerts A, Tisserant E, Veneault-Fourrey C, Joly DL, Hacquard S, Amselem J, Cantarel BL, Chiu R, Coutinho PM, Feau N, Field M, Frey P, Gelhaye E, Goldberg J, Grabherr MG, Kodira CD, Kohler A, Kües U, Lindquist EA, Lucas SM, Mago R, Mauceli E, Morin E, Murat C, Pangilinan JL, Park R, Pearson M, Quesneville H, Rouhier N, Sakthikumar S, Salamov AA, Schmutz J, Selles B, Shapiro H, Tanguay P, Tuskan GA, Henrissat B, Van de Peer Y, Rouze P, Ellis JG, Dodds PN, Schein JE, Zhong S, Hamelin RC, Grigoriev IV, Szabo LJ, Martin F (2011) Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci USA 108(22):9166–9171. doi: 10.1073/pnas.1019315108 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Erdmann S, Freihorst D, Raudaskoski M, Schmidt-Heck W, Jung EM, Senftleben D, Kothe E (2012) Transcriptome and functional analysis of mating in the basidiomycete Schizophyllum commune. Eukaryot Cell 11(5):571–589. doi: 10.1128/Ec.05214-11 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Feldbrügge M, Kämper J, Steinberg G, Kahmann R (2004) Regulation of mating and pathogenic development in Ustilago maydis. Curr Opin Microbiol 7(6):666–672. doi: 10.1016/j.mib.2004.10.006 PubMedCrossRefGoogle Scholar
  32. Fell J, Statzell-Tallman A (1998) Rhodosporidium Banno. The yeasts, a taxonomic study, 4th edn. Elsevier, Amsterdam, The Netherlands, pp 678–692Google Scholar
  33. Feng Y, Davis NG (2000) Feedback phosphorylation of the yeast a-factor receptor requires activation of the downstream signaling pathway from G protein through mitogen-activated protein kinase. Mol Cell Biol 20(2):563–574PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fowler TJ (2010) A carboxy-subterminal aromatic residue in Schizophyllum commune mating pheromones controls specific recognition by Bar4 receptor. Fungal Genet Reports 57:4–6Google Scholar
  35. Fowler TJ, DeSimone SM, Mitton MF, Kurjan J, Raper CA (1999) Multiple sex pheromones and receptors of a mushroom-producing fungus elicit mating in yeast. Mol Biol Cell 10(8):2559–2572PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fowler TJ, Mitton MF, Vaillancourt LJ, Raper CA (2001) Changes in mate recognition through alterations of pheromones and receptors in the multisexual mushroom fungus Schizophyllum commune. Genetics 158(4):1491–1503PubMedPubMedCentralGoogle Scholar
  37. Fowler TJ, Mitton MF, Rees EI, Raper CA (2004) Crossing the boundary between the and mating-type loci in Schizophyllum commune. Fungal Genet Biol 41(1):89–101PubMedCrossRefGoogle Scholar
  38. Fox HM, Burden J, Chang S-T, Peberdy JF (1994) Mating-type incompatibility between commercial strains of Lentinula edodes. Exp Mycol 18(2):95–102CrossRefGoogle Scholar
  39. Fraser JA, Subaran RL, Nichols CB, Heitman J (2003) Recapitulation of the sexual cycle of the primary fungal pathogen Cryptococcus neoformans var. gattii: implications for an outbreak on Vancouver Island, Canada. Eukaryot Cell 2(5):1036–1045PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fraser JA, Hsueh Y-P, Findley KM, Heitman J (2007) Evolution of the mating-type locus: the basidiomycetes. In: Heitman J, Kronstad J, Taylor J, Casselton L (eds) Sex in fungi: molecular determination and evolutionary implications. ASM Press, Washington, DC, pp 19–34CrossRefGoogle Scholar
  41. Gillissen B, Bergemann J, Sandmann C, Schroeer B, Bölker M, Kahmann R (1992) A two-component regulatory system for self/non-self recognition in Ustilago maydis. Cell 68(4):647–657PubMedCrossRefGoogle Scholar
  42. Giraud T, Yockteng R, Lopez-Villavicencio M, Refregier G, Hood ME (2008) Mating system of the anther smut fungus Microbotryum violaceum: selfing under heterothallism. Eukaryot Cell 7(5):765–775. doi: 10.1128/EC.00440-07 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gola S, Kothe E (2003) The little difference: in vivo analysis of pheromone discrimination in Schizophyllum commune. Curr Genet 42(5):276–283. doi: 10.1007/s00294-002-0353-4 PubMedGoogle Scholar
  44. Gola S, Hegner J, Kothe E (2000) Chimeric pheromone receptors in the basidiomycete Schizophyllum commune. Fungal Genet Biol 30(3):191–196. doi: 10.1006/fgbi.2000.1222 PubMedCrossRefGoogle Scholar
  45. Gola S, Hegner J, Kothe E (2002) Chimeric pheromone receptors in the basidiomycete Schizophyllum commune (vol 30, pg 191, 2000). Fungal Genet Biol 36(3):255–255. doi: 10.1016/S1087-1845(02)00045-2 CrossRefGoogle Scholar
  46. Griffith G, Hedger J (1994) The breeding biology of biotypes of the witches’ broom pathogen of cocoa, Crinipellis perniciosa. Heredity 72(3):278–289CrossRefGoogle Scholar
  47. Groth J (1975) Two additive, independent genes for mycelial growth versus sporidial growth of haploid cultures of Ustilago hordei. Can J Bot 53(19):2233–2239CrossRefGoogle Scholar
  48. Hagen DC, McCaffrey G, Sprague GF Jr (1986) Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: gene sequence and implications for the structure of the presumed receptor. Proc Natl Acad Sci USA 83(5):1418–1422PubMedPubMedCentralCrossRefGoogle Scholar
  49. Halsall JR, Milner MJ, Casselton LA (2000) Three subfamilies of pheromone and receptor genes generate multiple B mating specificities in the mushroom Coprinus cinereus. Genetics 154(3):1115–1123PubMedPubMedCentralGoogle Scholar
  50. Hegner J, Siebert-Bartholmei C, Kothe E (1999) Ligand recognition in multiallelic pheromone receptors from the basidiomycete Schizophyllum commune studied in yeast. Fungal Genet Biol 26(3):190–197. doi: 10.1006/fgbi.1999.1119 PubMedCrossRefGoogle Scholar
  51. Heitman J, Sun S, James TY (2013) Evolution of fungal sexual reproduction. Mycologia 105(1):1–27. doi: 10.3852/12-253 PubMedCrossRefGoogle Scholar
  52. Herskowitz I (1988) Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol Rev 52(4):536–553PubMedPubMedCentralGoogle Scholar
  53. Hibbett DS, Donoghue MJ (2001) Analysis of character correlations among wood decay mechanisms, mating systems, and substrate ranges in homobasidiomycetes. Syst Biol 50(2):215–242PubMedCrossRefGoogle Scholar
  54. Hsueh YP, Shen WC (2005) A homolog of Ste6, the a-factor transporter in Saccharomyces cerevisiae, is required for mating but not for monokaryotic fruiting in Cryptococcus neoformans. Eukaryot Cell 4(1):147–155. doi: 10.1128/EC.4.1.147-155.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hsueh YP, Xue C, Heitman J (2009) A constitutively active GPCR governs morphogenic transitions in Cryptococcus neoformans. EMBO J 28(9):1220–1233. doi: 10.1038/emboj.2009.68 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755PubMedCrossRefGoogle Scholar
  57. Hull CM, Heitman J (2002) Genetics of Cryptococcus neoformans. Annu Rev Genet 36:557–615. doi: 10.1146/annurev.genet.36.052402.152652 PubMedCrossRefGoogle Scholar
  58. Ishibashi Y, Sakagami Y, Isogai A, Suzuki A (1984) Structures of tremerogens A-9291-I and A-9291-VIII: peptidal sex hormones of Tremella brasiliensis. Biochemistry 23(7):1399–1404CrossRefGoogle Scholar
  59. James TY, Liou SR, Vilgalys R (2004) The genetic structure and diversity of the A and B mating-type genes from the tropical oyster mushroom, Pleurotus djamor. Fungal Genet Biol 41(8):813–825. doi: 10.1016/j.fgb.2004.04.005 PubMedCrossRefGoogle Scholar
  60. James TY, Srivilai P, Kües U, Vilgalys R (2006) Evolution of the bipolar mating system of the mushroom Coprinellus disseminatus from its tetrapolar ancestors involves loss of mating-type-specific pheromone receptor function. Genetics 172(3):1877–1891. doi: 10.1534/genetics.105.051128 PubMedPubMedCentralCrossRefGoogle Scholar
  61. James TY, Sun S, Li W, Heitman J, Kuo HC, Lee YH, Asiegbu FO, Olson A (2013) Polyporales genomes reveal the genetic architecture underlying tetrapolar and bipolar mating systems. Mycologia 105(6):1374–1390. doi: 10.3852/13-162 PubMedCrossRefGoogle Scholar
  62. Kamiya Y, Sakurai A, Tamura S, Takahashi N (1978) Structure of rhodotorucine A, a novel lipopeptide, inducing mating tube formation in Rhodosporidium toruloides. Biochem Biophys Res Commun 83(3):1077–1083PubMedCrossRefGoogle Scholar
  63. Kämper J, Reichmann M, Romeis T, Bölker M, Kahmann R (1995) Multiallelic recognition—nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell 81(1):73–83. doi: 10.1016/0092-8674(95)90372-0 PubMedCrossRefGoogle Scholar
  64. Katoh K, Kuma K, Miyata T, Toh H (2005) Improvement in the accuracy of multiple sequence alignment program MAFFT. Genome Inform 16(1):22–33PubMedGoogle Scholar
  65. Kelly M, Burke J, Smith M, Klar A, Beach D (1988) Four mating-type genes control sexual differentiation in the fission yeast. EMBO J 7(5):1537–1547PubMedPubMedCentralGoogle Scholar
  66. Kemp R (1974) Bifactorial incompatibility in the two-spored basidiomycetes Coprinus sassii and C. bilanatus. Trans Br Mycol Soc 62(3):547–555CrossRefGoogle Scholar
  67. Kim K-H, Kang YM, Im CH, Ali A, Kim SY, Je H-J, Kim M-K, Rho HS, Lee HS, Kong W-S (2014) Identification and functional analysis of pheromone and receptor genes in the B3 mating locus of Pleurotus eryngii. PLoS One 9(8), e104693PubMedPubMedCentralCrossRefGoogle Scholar
  68. Knabe N, Jung EM, Freihorst D, Hennicke F, Horton JS, Kothe E (2013) A central role for Ras1 in morphogenesis of the basidiomycete Schizophyllum commune. Eukaryot Cell 12(6):941–952. doi: 10.1128/Ec.00355-12 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kniep H (1920) Über morphologische und physiologische Geschlechtsdifferenzierung: (Untersuchungen an Basidiomyzeten). Physikal.-med Gesellschaft, WürzburgGoogle Scholar
  70. Kniep H (1922) Über Geschlechtsbestimmung und Reduktionsteilung: (Untersuchungen an Basidiomyzeten). Verlag der Physik.-Med. Ges, WürzburgGoogle Scholar
  71. Koltin Y, Raper JR, Simchen G (1967) The genetic structure of the incompatibility factors of Schizophyllum commune: the B factor. Proc Natl Acad Sci USA 57(1):55–62PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kosted PJ, Gerhardt SA, Anderson CM, Stierle A, Sherwood JE (2000) Structural requirements for activity of the pheromones of Ustilago hordei. Fungal Genet Biol 29(2):107–117. doi: 10.1006/fgbi.2000.1191 PubMedCrossRefGoogle Scholar
  73. Kothe E, Freihorst D (2012) Schleim aus Pilzen zur verbesserten Erdölförderung. BIOspektrum 18(7-12):1Google Scholar
  74. Kothe E, Gola S, Wendland J (2003) Evolution of multispecific mating-type alleles for pheromone perception in the homobasidiomycete fungi. Curr Genet 42(5):268–275PubMedGoogle Scholar
  75. Kües U, Casselton LA (1992a) Homeodomains and regulation of sexual development in basidiomycetes. Trends Genet 8(5):154–155PubMedCrossRefGoogle Scholar
  76. Kües U, Casselton LA (1992b) Molecular and functional analysis of the A mating type genes of Coprinus cinereus. Genet Eng 14:251–268Google Scholar
  77. Kües U, Navarro-Gonzalez M (2010) Mating-type orthologous genes in the primarily homothallic Moniliophthora perniciosa, the causal agent of witches’ broom disease in cacao. J Basic Microbiol 50(5):442–451. doi: 10.1002/jobm.201000013 PubMedCrossRefGoogle Scholar
  78. Kües U, Asante-Owusu RN, Mutasa ES, Tymon AM, Pardo EH, O'Shea SF, Gottgens B, Casselton LA (1994) Two classes of homeodomain proteins specify the multiple a mating types of the mushroom Coprinus cinereus. Plant Cell 6(10):1467–1475. doi: 10.1105/tpc.6.10.1467 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kües U, James T, Heitman J (2011) Mating type in basidiomycetes: Unipolar, bipolar, and tetrapolar patterns of sexuality. In: Pöggeler S, Wöstemeyer J (eds) The Mycota XIV: Evolution of fungi and fungal-like organisms. Springer, Berlin, Germany, pp 97–160CrossRefGoogle Scholar
  80. Kwon-Chung K (1976) Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia 821–833Google Scholar
  81. Kwon-Chung K, Bennett JE (1978) Distribution of a and α mating types of Cryptococcus neoformans among natural and clinical isolates. Am J Epidemiol 108(4):337–340PubMedCrossRefGoogle Scholar
  82. Kwon-Chung KJ, Bennett JE, Rhodes JC (1982) Taxonomic studies on Filobasidiella species and their anamorphs. Antonie van Leeuwenhoek 48(1):25–38PubMedCrossRefGoogle Scholar
  83. Lee N, Bakkeren G, Wong K, Sherwood JE, Kronstad JW (1999) The mating-type and pathogenicity locus of the fungus Ustilago hordei spans a 500-kb region. Proc Natl Acad Sci USA 96(26):15026–15031PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lee SP, O'Dowd BF, Ng GY, Varghese G, Akil H, Mansour A, Nguyen T, George SR (2000) Inhibition of cell surface expression by mutant receptors demonstrates that D2 dopamine receptors exist as oligomers in the cell. Mol Pharmacol 58(1):120–128PubMedGoogle Scholar
  85. Levasseur A, Lomascolo A, Chabrol O, Ruiz-Duenas FJ, Boukhris-Uzan E, Piumi F, Kües U, Ram AF, Murat C, Haon M, Benoit I, Arfi Y, Chevret D, Drula E, Kwon MJ, Gouret P, Lesage-Meessen L, Lombard V, Mariette J, Noirot C, Park J, Patyshakuliyeva A, Sigoillot JC, Wiebenga A, Wosten HA, Martin F, Coutinho PM, de Vries RP, Martinez AT, Klopp C, Pontarotti P, Henrissat B, Record E (2014) The genome of the white-rot fungus Pycnoporus cinnabarinus: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown. BMC Genomics 15:486. doi: 10.1186/1471-2164-15-486 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Luo YH, Ullrich RC, Novotny CP (1994) Only one of the paired Schizophyllum commune Aα mating-type, putative homeobox genes encodes a homeodomain essential for Aα-regulated development. Mol Gen Genet 244(3):318–324PubMedCrossRefGoogle Scholar
  87. Malloure BD, James TY (2013) Inbreeding depression in urban environments of the bird’s nest fungus Cyathus stercoreus (Nidulariaceae: Basidiomycota). Heredity 110(4):355–362. doi: 10.1038/hdy.2012.95 PubMedCrossRefGoogle Scholar
  88. Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22(6):695–700. doi: 10.1038/nbt967 PubMedCrossRefGoogle Scholar
  89. Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, Hammel KE, Vanden Wymelenberg A, Gaskell J, Lindquist E, Sabat G, Bondurant SS, Larrondo LF, Canessa P, Vicuna R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavin JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kües U, Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA 106(6):1954–1959. doi: 10.1073/pnas.0809575106 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Martinez-Espinoza AD, Gerhardt SA, Sherwood JE (1993) Morphological and mutational analysis of mating in Ustilago hordei. Exp Mycol 17(3):200–214CrossRefGoogle Scholar
  91. McClelland CM, Fu J, Woodlee GL, Seymour TS, Wickes BL (2002) Isolation and characterization of the Cryptococcus neoformans MATa pheromone gene. Genetics 160(3):935–947PubMedPubMedCentralGoogle Scholar
  92. Metin B, Findley K, Heitman J (2010) The mating type locus (MAT) and sexual reproduction of Cryptococcus heveanensis: insights into the evolution of sex and sex-determining chromosomal regions in fungi. PLoS Genet 6(5), e1000961PubMedPubMedCentralCrossRefGoogle Scholar
  93. Michaelis S, Barrowman J (2012) Biogenesis of the Saccharomyces cerevisiae pheromone a-factor, from yeast mating to human disease. Microbiol Mol Biol Rev 76(3):626–651. doi: 10.1128/MMBR.00010-12 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Moore T, Edman JC (1993) The α-mating type locus of Cryptococcus neoformans contains a peptide pheromone gene. Mol Cell Biol 13(3):1962–1970PubMedPubMedCentralCrossRefGoogle Scholar
  95. Nakayama N, Miyajima A, Arai K (1987) Common signal transduction system shared by STE2 and STE3 in haploid cells of Saccharomyces cerevisiae: autocrine cell-cycle arrest results from forced expression of STE2. EMBO J 6(1):249–254PubMedPubMedCentralGoogle Scholar
  96. Niculita-Hirzel H, Labbe J, Kohler A, le Tacon F, Martin F, Sanders IR, Kües U (2008) Gene organization of the mating type regions in the ectomycorrhizal fungus Laccaria bicolor reveals distinct evolution between the two mating type loci. New Phytol 180(2):329–342. doi: 10.1111/j.1469-8137.2008.02525.x PubMedCrossRefGoogle Scholar
  97. Ohm RA, de Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, de Vries RP, Record E, Levasseur A, Baker SE, Bartholomew KA, Coutinho PM, Erdmann S, Fowler TJ, Gathman AC, Lombard V, Henrissat B, Knabe N, Kües U, Lilly WW, Lindquist E, Lucas S, Magnuson JK, Piumi F, Raudaskoski M, Salamov A, Schmutz J, Schwarze FWMR, vanKuyk PA, Horton JS, Grigoriev IV, Wosten HAB (2010) Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol 28(9):957–U910. doi: 10.1038/Nbt.1643 PubMedCrossRefGoogle Scholar
  98. Olesnicky NS, Brown AJ, Dowell SJ, Casselton LA (1999) A constitutively active G-protein-coupled receptor causes mating self-compatibility in the mushroom Coprinus. EMBO J 18(10):2756–2763. doi: 10.1093/emboj/18.10.2756 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Olesnicky NS, Brown AJ, Honda Y, Dyos SL, Dowell SJ, Casselton LA (2000) Self-compatible B mutants in Coprinus with altered pheromone-receptor specificities. Genetics 156(3):1025–1033PubMedPubMedCentralGoogle Scholar
  100. O'Shea SF, Chaure PT, Halsall JR, Olesnicky NS, Leibbrandt A, Connerton IF, Casselton LA (1998) A large pheromone and receptor gene complex determines multiple B mating type specificities in Coprinus cinereus. Genetics 148(3):1081–1090PubMedPubMedCentralGoogle Scholar
  101. Palmer GE, Horton JS (2006) Mushrooms by magic: making connections between signal transduction and fruiting body development in the basidiomycete fungus Schizophyllum commune. FEMS Microbiol Lett 262(1):1–8. doi: 10.1111/j.1574-6968.2006.00341.x PubMedCrossRefGoogle Scholar
  102. Parag Y (1962) Mutations in the B incompatibility factor of Schizophyllum commune. Proc Natl Acad Sci USA 48:743–750PubMedPubMedCentralCrossRefGoogle Scholar
  103. Pelkmans JF, Lugones LG, Wösten HAB (2016) Fruiting body formation in basidiomycetes. In: Wendland J (ed) Growth, differentiation and sexuality. Springer, HeidelbergGoogle Scholar
  104. Perrin N (2012) What uses are mating types? The “developmental switch” model. Evolution 66(4):947–956. doi: 10.1111/j.1558-5646.2011.01562.x PubMedCrossRefGoogle Scholar
  105. Raffle V, Anderson N, Furnier G, Doudrick R (1995) Variation in mating competence and random amplified polymorphic DNA in Laccaria bicolor (Agaricales) associated with three tree host species. Can J Bot 73(6):884–890CrossRefGoogle Scholar
  106. Rajchenberg M (2011) Nuclear behavior of the mycelium and the phylogeny of polypores (Basidiomycota). Mycologia 103(4):677–702. doi: 10.3852/10-310 PubMedCrossRefGoogle Scholar
  107. Rambaut A, Drummond A (2003) Tracer: a program for analysing results from Bayesian MCMC programs such as BEAST & MrBayes. Oxford, UK. http://evolve.zoo.ox.ac.uk/software.html
  108. Raper JR (1966) Genetics of sexuality in higher fungi. Ronald Press Company, New YorkGoogle Scholar
  109. Raper CA, Raper JR (1973) Mutational analysis of a regulatory gene for morphogenesis in Schizophyllum. Proc Natl Acad Sci USA 70(5):1427–1431PubMedPubMedCentralCrossRefGoogle Scholar
  110. Raper JR, Baxter MG, Ellingboe AH (1960) The genetic structure of the incompatibility factors of Schizophyllum commune: The A-factor. Proc Natl Acad Sci USA 46(6):833–842PubMedPubMedCentralCrossRefGoogle Scholar
  111. Raudaskoski M (1998) The relationship between B-mating-type genes and nuclear migration in Schizophyllum commune. Fungal Genet Biol 24(1-2):207–227. doi: 10.1006/fgbi.1998.1069 PubMedCrossRefGoogle Scholar
  112. Raudaskoski M, Kothe E (2010) Basidiomycete mating type genes and pheromone signaling. Eukaryot Cell 9(6):847–859. doi: 10.1128/Ec.00319-09 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Raudaskoski M, Kothe E, Fowler TJ, Jung EM, Horton JS (2012) Ras and Rho small G proteins: insights from the Schizophyllum commune genome sequence and comparisons to other fungi. Biotechnol Genet Eng Rev 28:61–100PubMedCrossRefGoogle Scholar
  114. Riquelme M, Challen MP, Casselton LA, Brown AJ (2005) The origin of multiple B mating specificities in Coprinus cinereus. Genetics 170(3):1105–1119. doi: 10.1534/genetics.105.040774 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Robertson CI, Kende AM, Toenjes K, Novotny CP, Ullrich RC (2002) Evidence for interaction of Schizophyllum commune Y mating-type proteins in vivo. Genetics 160(4):1461–1467PubMedPubMedCentralGoogle Scholar
  116. Sakagami Y, Yoshida M, Isogai A, Suzuki A (1981) Peptidal sex hormones inducing conjugation tube formation in compatible mating-type cells of Tremella mesenterica. Science 212(4502):1525–1527. doi: 10.1126/science.212.4502.1525 PubMedCrossRefGoogle Scholar
  117. Schlesinger R, Kahmann R, Kämper J (1997) The homeodomains of the heterodimeric bE and bW proteins of Ustilago maydis are both critical for function. Mol Gen Genet 254(5):514–519PubMedGoogle Scholar
  118. Scholtmeijer K, Cankar K, Beekwilder J, Wösten HA, Lugones LG, Bosch D (2014) Production of (+)-valencene in the mushroom-forming fungus S. commune. Appl Microbiol Biotechnol 98(11):5059–5068. doi: 10.1007/s00253-014-5581-2 PubMedCrossRefGoogle Scholar
  119. Schubert D, Raudaskoski M, Knabe N, Kothe E (2006) Ras GTPase-activating protein Gap1 of the homobasidiomycete Schizophyllum commune regulates hyphal growth orientation and sexual development. Eukaryot Cell 5(4):683–695. doi: 10.1128/Ec.5.4.683-695.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Schulz B, Banuett F, Dahl M, Schlesinger R, Schafer W, Martin T, Herskowitz I, Kahmann R (1990) The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60(2):295–306PubMedCrossRefGoogle Scholar
  121. Seike T, Yamagishi Y, Iio H, Nakamura T, Shimoda C (2012) Remarkably simple sequence requirement of the M-factor pheromone of Schizosaccharomyces pombe. Genetics 191(3):815–825. doi: 10.1534/genetics.112.140483 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Shen GP, Park DC, Ullrich RC, Novotny CP (1996) Cloning and characterization of a Schizophyllum gene with Aβ6 mating-type activity. Curr Genet 29(2):136–142PubMedCrossRefGoogle Scholar
  123. Skrede I, Maurice S, Kauserud H (2013) Molecular characterization of sexual diversity in a population of Serpula lacrymans, a tetrapolar basidiomycete. G3 3(2):145–152. doi: 10.1534/g3.112.003731 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Specht CA (1995) Isolation of the and mating-type loci of Schizophyllum commune. Curr Genet 28(4):374–379PubMedCrossRefGoogle Scholar
  125. Specht CA, Novotny CP, Ullrich RC (1992a) Mitochondrial DNA of Schizophyllum commune: restriction map, genetic map, and mode of inheritance. Curr Genet 22(2):129–134PubMedCrossRefGoogle Scholar
  126. Specht CA, Stankis MM, Giasson L, Novotny CP, Ullrich RC (1992b) Functional analysis of the homeodomain-related proteins of the locus of Schizophyllum commune. Proc Natl Acad Sci USA 89(15):7174–7178PubMedPubMedCentralCrossRefGoogle Scholar
  127. Spellig T, Bölker M, Lottspeich F, Frank RW, Kahmann R (1994) Pheromones trigger filamentous growth in Ustilago maydis. EMBO J 13(7):1620–1627PubMedPubMedCentralGoogle Scholar
  128. Spit A, Hyland RH, Mellor EJC, Casselton LA (1998) A role for heterodimerization in nuclear localization of a homeodomain protein. Proc Natl Acad Sci USA 95(11):6228–6233. doi: 10.1073/pnas.95.11.6228 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Stankis MM, Specht CA (2007) Cloning the mating-type genes of Schizophyllum commune: a historical perspective. In: Heitman J, Kronstad JW, Taylor JW, Casselton LA (eds) Sex in fungi: molecular determination and evolutionary implications. ASM Press, Washington, DC, USA, pp 267–282CrossRefGoogle Scholar
  130. Stankis MM, Specht CA, Yang H, Giasson L, Ullrich RC, Novotny CP (1992) The mating locus of Schizophyllum commune encodes two dissimilar multiallelic homeodomain proteins. Proc Natl Acad Sci USA 89(15):7169–7173PubMedPubMedCentralCrossRefGoogle Scholar
  131. Stanton BC, Hull CM (2007) Mating-type locus control of cell identity. In: Heitman J, Kronstad JW, Taylor JW, Casselton LA (eds) Sex in fungi: molecular determination and evolutionary implications. ASM Press, Washington, DC, pp 59–73CrossRefGoogle Scholar
  132. Szabo Z, Tonnis M, Kessler H, Feldbrügge M (2002) Structure-function analysis of lipopeptide pheromones from the plant pathogen Ustilago maydis. Mol Genet Genomics 268(3):362–370. doi: 10.1007/s00438-002-0756-4 PubMedCrossRefGoogle Scholar
  133. Takano H, Onoue K, Kawano S (2010) Mitochondrial fusion and inheritance of the mitochondrial genome. J Plant Res 123(2):131–138. doi: 10.1007/s10265-009-0268-y PubMedCrossRefGoogle Scholar
  134. Vaillancourt LJ, Raudaskoski M, Specht CA, Raper CA (1997) Multiple genes encoding pheromones and a pheromone receptor define the Bβ1 mating-type specificity in Schizophyllum commune. Genetics 146(2):541–551PubMedPubMedCentralGoogle Scholar
  135. Vallim MA, Fernandes L, Alspaugh JA (2004) The RAM1 gene encoding a protein-farnesyltransferase β-subunit homologue is essential in Cryptococcus neoformans. Microbiology 150(Pt 6):1925–1935. doi: 10.1099/mic.0.27030-0 PubMedCrossRefGoogle Scholar
  136. van Peer AF, Park SY, Shin PG, Jang KY, Yoo YB, Park YJ, Lee BM, Sung GH, James TY, Kong WS (2011) Comparative genomics of the mating-type loci of the mushroom Flammulina velutipes reveals widespread synteny and recent inversions. PLoS One 6(7), e22249. doi: 10.1371/journal.pone.0022249 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Weber M, Salo V, Uuskallio M, Raudaskoski M (2005) Ectopic expression of a constitutively active Cdc42 small GTPase alters the morphology of haploid and dikaryotic hyphae in the filamentous homobasidiomycete Schizophyllum commune. Fungal Genet Biol 42(7):624–637. doi: 10.1016/j.fgb.2005.03.012 PubMedCrossRefGoogle Scholar
  138. Wendland J, Vaillancourt LJ, Hegner J, Lengeler KB, Laddison KJ, Specht CA, Raper CA, Kothe E (1995) The mating-type locus Bα1 of Schizophyllum commune contains a pheromone receptor gene and putative pheromone genes. EMBO J 14(21):5271–5278PubMedPubMedCentralGoogle Scholar
  139. Whitehouse H (1949) Heterothallism and sex in the fungi. Biol Rev 24(4):411–447PubMedCrossRefGoogle Scholar
  140. Wong GJ, Wells K (1985) Modified bifactorial incompatibility in Tremella mesenterica. Trans Br Mycol Soc 84(1):95–109CrossRefGoogle Scholar
  141. Wu L, van Peer A, Song W, Wang H, Chen M, Tan Q, Song C, Zhang M, Bao D (2013) Cloning of the Lentinula edodes B mating-type locus and identification of the genetic structure controlling B mating. Gene 531(2):270–278. doi: 10.1016/j.gene.2013.08.090 PubMedCrossRefGoogle Scholar
  142. Yi R, Mukaiyama H, Tachikawa T, Shimomura N, Aimi T (2010) A-mating-type gene expression can drive clamp formation in the bipolar mushroom Pholiota microspora (Pholiota nameko). Eukaryot Cell 9(7):1109–1119. doi: 10.1128/EC.00374-09 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Yue CL, Osier M, Novotny CP, Ullrich RC (1997) The specificity determinant of the Y mating-type proteins of Schizophyllum commune is also essential for Y-Z protein binding. Genetics 145(2):253–260PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Daniela Freihorst
    • 1
  • Thomas J. Fowler
    • 2
  • Kirk Bartholomew
    • 3
  • Marjatta Raudaskoski
    • 4
  • J. Stephen Horton
    • 5
  • Erika Kothe
    • 1
  1. 1.Institute for Microbiology, Microbial Communication, Friedrich Schiller University JenaJenaGermany
  2. 2.Department of Biological SciencesSouthern Illinois University EdwardsvilleEdwardsvilleUSA
  3. 3.Department of BiologySacred Heart UniversityFairfieldUSA
  4. 4.Department of Biochemistry, Plant Molecular BiologyUniversity of Turku, Biocity ATykistök. 6AFinland
  5. 5.Department of Biological SciencesUnion College, Peter Irving Wold CenterSchenectadyUSA

Personalised recommendations